• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 1
  • Tagged with
  • 97
  • 20
  • 20
  • 15
  • 14
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Fluorescent and Photocaged Lipids to Probe the Ceramide-mediated Reorganization of Biological Membranes

Carter Ramirez, Daniel Marcelo 23 January 2013 (has links)
This thesis describes the development of novel fluorescent and photocaged lipids, and their application as tools to probe the morphological effects of ceramide (Cer)-mediated membrane reorganization in supported lipid bilayers. Cer is a sphingolipid found in eukaryotic cells that plays a key role in regulating biological processes such as apoptosis, cell-to-cell communication, differentiation and some types of pathogenesis. Sphingolipid and cholesterol-rich lipid rafts in the plasma membrane are thought to be the point of origin for many of this lipid second messenger’s effects. Cer is formed in the exoplasmic leaflet of the plasma membrane via the enzymatic hydrolysis of sphingomyelin. The compositional complexity of biological membranes has prompted the adoption of simpler model systems to study the effects of Cer generation. When it is directly incorporated into model membranes, Cer segregates into highly ordered domains with physical properties that are distinct from those of the surrounding fluid environments. However, enzymatic generation of Cer induces complex and dynamic membrane heterogeneity that is difficult to interpret and reconcile with its direct incorporation. Here I describe the synthesis of 4-nitrobenzo-2-oxa-1,3-diazol-7-yl (NBD)-labelled cholesterol (Chol) and Cer analogs, and their use as probes in model membranes exhibiting liquid-disordered (Ld) and liquid-ordered (Lo) phase coexistence. The Chol probes reproduce the modest enrichment of Chol in Lo membrane domains as well as the Cer-induced displacement of cholesterol. One of the NBD Chol probes is used to provide direct visualization of Chol redistribution during enzymatic Cer generation, and assists in identifying new features as Cer-rich regions. The NBD-labelled Cer quantifies membrane order using orientational order parameter measurements derived from polarized total internal reflection fluorescence microscopy (pTIRFM) images. The probe reports on changes in membrane order upon enzymatic generation of Cer, and indicates a significant increase in the molecular order of Ld membrane regions that is consistent with the redistribution of Chol into these areas. The probe also identifies de novo Cer-rich domains as areas of particularly high molecular order. In the final project area, 6-Bromo-7-hydroxycoumarin-4-ylmethyl (Bhc)-caged Cers are shown to release Cer rapidly and efficiently upon irradiation with near-visible UV light. The caged lipids are then incorporated into supported membranes and photolyzed to release Cer with a high degree of spatial and temporal control. Controlled Cer generation is then used to drive protein-ganglioside clustering in lipid bilayers.
32

The role of Dlc-2 in ceramide signaling to PGP synthase

Shields, Caroline 10 September 2010 (has links)
The purpose of this project was to determine how Dlc-2 and Rho signaling modulate the ceramide induction of PGP synthase. This induction was studied at the transcriptional, post-transcriptional, and post-translational levels using cell culture, Real-Time RT-PCR, protein purification, phage display, and western blotting techniques. We have demonstrated that the PGP synthase gene is not controlled at the transcriptional level by ceramide and Rho, nor is the mRNA stability of PGP synthase affected. However, ceramide and Rho do seem to exhibit translational or post-translational control over the PGP synthase protein. The relationships between Dlc-2 (and Rho), ceramide, and PGP synthase (and CL) are important to understand. All three are involved in cancer and apoptotic responses. The knowledge gained by the experiments discussed in this thesis will contribute to an understanding of how these proteins and lipids interact. This knowledge may then be used in the future to develop cancer treatments.
33

Fluorescent and Photocaged Lipids to Probe the Ceramide-mediated Reorganization of Biological Membranes

Carter Ramirez, Daniel Marcelo January 2013 (has links)
This thesis describes the development of novel fluorescent and photocaged lipids, and their application as tools to probe the morphological effects of ceramide (Cer)-mediated membrane reorganization in supported lipid bilayers. Cer is a sphingolipid found in eukaryotic cells that plays a key role in regulating biological processes such as apoptosis, cell-to-cell communication, differentiation and some types of pathogenesis. Sphingolipid and cholesterol-rich lipid rafts in the plasma membrane are thought to be the point of origin for many of this lipid second messenger’s effects. Cer is formed in the exoplasmic leaflet of the plasma membrane via the enzymatic hydrolysis of sphingomyelin. The compositional complexity of biological membranes has prompted the adoption of simpler model systems to study the effects of Cer generation. When it is directly incorporated into model membranes, Cer segregates into highly ordered domains with physical properties that are distinct from those of the surrounding fluid environments. However, enzymatic generation of Cer induces complex and dynamic membrane heterogeneity that is difficult to interpret and reconcile with its direct incorporation. Here I describe the synthesis of 4-nitrobenzo-2-oxa-1,3-diazol-7-yl (NBD)-labelled cholesterol (Chol) and Cer analogs, and their use as probes in model membranes exhibiting liquid-disordered (Ld) and liquid-ordered (Lo) phase coexistence. The Chol probes reproduce the modest enrichment of Chol in Lo membrane domains as well as the Cer-induced displacement of cholesterol. One of the NBD Chol probes is used to provide direct visualization of Chol redistribution during enzymatic Cer generation, and assists in identifying new features as Cer-rich regions. The NBD-labelled Cer quantifies membrane order using orientational order parameter measurements derived from polarized total internal reflection fluorescence microscopy (pTIRFM) images. The probe reports on changes in membrane order upon enzymatic generation of Cer, and indicates a significant increase in the molecular order of Ld membrane regions that is consistent with the redistribution of Chol into these areas. The probe also identifies de novo Cer-rich domains as areas of particularly high molecular order. In the final project area, 6-Bromo-7-hydroxycoumarin-4-ylmethyl (Bhc)-caged Cers are shown to release Cer rapidly and efficiently upon irradiation with near-visible UV light. The caged lipids are then incorporated into supported membranes and photolyzed to release Cer with a high degree of spatial and temporal control. Controlled Cer generation is then used to drive protein-ganglioside clustering in lipid bilayers.
34

Insulin and Ketones: Their Roles in Brain Mitochondrial Function

Carr, Sheryl Teresa 01 May 2017 (has links)
The prevalence of both Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) is increasing worldwide, and the trends are unfortunately expected to continue. AD has recently been tied with mitochondrial dysfunction and insulin resistance, creating a mechanistic tie between AD and T2DM. Unfortunately, insulin resistance is often increased with aging and therefore, all individuals are at risk of brain mitochondrial dysfunction. Without proper mitochondrial function, the brain will degenerate, causing impaired cognitive function and reduced quality of life. The purpose of this study is two-fold: first, to understand the role of ceramides in insulin-induced brain mitochondrial dysfunction, and; second, to understand how ketones can restore brain mitochondrial function in aged brains. To evaluate the role of insulin resistance and ceramides in brain mitochondrial function, we induced hyperinsulinemia in ApoE4 mice. In addition to insulin, one group received myriocin injections to inhibit ceramide biosynthesis. We observed significant increases in brain ceramides in the insulin-treated group, which correlated with disrupted brain mitochondrial function. However, the group receiving myriocin alone, and, importantly, myriocin with insulin, had normal lipid profiles and normal mitochondrial bioenergetics. Altogether, these findings support the hypothesis of the key role of ceramides in insulin resistance-induced mitochondrial dysfunction within the brain. Next, young adult (5 months old) and old (28 months old) rats were assigned to either standard chow diets or very-low-carbohydrate, high-fat, ketogenic diets for 4 weeks. Following the treatment period, we analyzed brain mitochondrial function and oxidative stress. We found that the old rats fed the ketogenic diet had improved mitochondrial function in comparison to the old rats consuming standard rodent chow. In addition, the old rats fed a standard diet had significantly higher levels of oxidative stress than the aged rats on the very-low-carbohydrate, high-fat diet. These findings revealed that ketones can protect brain mitochondrial function in aging. Collectively, these results suggest that insulin resistance has a role in the development of brain mitochondrial dysfunction due to ceramide accumulation, while ketones can help mitigate some of the negative consequences of aging, perhaps some due to insulin resistance, on brain mitochondrial function.
35

Syntéza a hodnocení lidských 6-hydroxyceramidů / Synthesis and evaluation of human 6-hydroxyceramides

Majcher, Adam January 2020 (has links)
Title of the Master thesis: Synthesis and evaluation of human 6-hydroxyceramides Candidate: Adam Majcher Supervisor: PharmDr. Lukáš Opálka, Ph.D. Consultant: PharmDr. Andrej Kováčik, Ph.D. Charles University, Faculty of Pharmacy in Hradec Králové Skin Barrier Research Group, Department of Organic and Bioorganic Chemistry Ceramides (Cer), the members of sphingolipid family, occur in all human cells and play an important role in cell signaling. In high concentrations, Cer can also be found in the uppermost layer of epidermis called stratum corneum, along with free fatty acids and cholesterol (in equimolar ratio), where they form the intercellular multi-lamellar lipid matrix. The key function of stratum corneum is to ensure a permeability barrier, thus, to provide water and electrolyte homeostasis, and to prevent entry of harmful substances into the organism. Cer are composed of a sphingoid base and an acyl part derived from a long-chain fatty acid. Cer based on 6-hydroxysphingosine (H) are amongst the most unusual sphingolipids. In contrast to sphingosine-based Cer, 6-hydroxysphingosine-based Cer (H-Cer) are unique for the epidermis and, in addition, H-Cer are not typical for all mammals. Moreover, the function and biosynthesis of H-Cer in the skin is still not completely understood. Several...
36

Cigarette Smoke Increases Cardiomyocyte Ceramide Accumulation and Inhibits Mitochondrial Respiration

Tippetts, Trevor Stanley 01 June 2015 (has links) (PDF)
Cigarette smoking is a common and lethal worldwide habit, with considerable mortality stemming from its deleterious effects on heart function. While current theories posit altered blood lipids and fibrinogen metabolism as likely mediators, none have explored the role of the sphingolipid ceramide in exacerbating heart function with smoke exposure. Ceramide production is a consequence of cigarette smoke in the lung, and considering ceramide's harmful effects on mitochondrial function, we sought to elucidate the role of ceramide in mediating smoke-induced altered heart mitochondrial respiration. Lung cells were exposed to cigarette smoke extract and heart cells were exposed to the lung-cell conditioned medium. Adult male mice were exposed sidestream cigarette smoke for 8 weeks with dietary intervention and ceramide inhibition. Ceramides and heart cell or myocardial mitochondrial respiration were determined. Lung cell cultures revealed a robust response to cigarette smoke extract in both production and secretion of ceramides. Heart cells incubated with lung-cell conditioned medium revealed a pronounced inhibition of myocardial mitochondrial respiration, though this effect was mitigated with ceramide inhibition via myriocin. In vivo, heart ceramides increased roughly 600% in adult mice with long-term sidestream cigarette smoke exposure. This resulted in a significant ceramide-dependent reduction in left myocardial mitochondrial respiration, as heart mitochondria from the mice exposed to both smoke and myriocin injections respired normally. These results suggest ceramide to be an important mediator of altered myocardial mitochondrial function with cigarette smoke exposure. Thus, anti-ceramide therapies might be considered in the future to protect heart mitochondrial function with smoke exposure.
37

CHARACTERIZATION OF PHOSPHOINOSITIDE AND SPHINGOLIPID DOMAIN FORMATION IN MODEL MEMBRANES

Jiang, Zhiping 01 December 2010 (has links)
No description available.
38

Thermodynamic and Morphological Properties of Ceramide-1-Phosphate Model Monolayer Systems

Hill, Alexandra 08 December 2010 (has links)
No description available.
39

Ceramide Kinase and Ceramide-1-Phosphate

Wijesinghe, Dayanjan 21 November 2008 (has links)
Ceramide-1-phosphate (C1P) is a bioactive lipid that has been implicated in many biological processes. Our laboratory has conclusively demonstrated its role in inflammation via activation of cPLA2α. The only known enzyme to date responsible for direct synthesis of C1P is ceramide kinase. Very little was known about this enzyme in terms of its enzyme kinetics and substrate specificity. As CERK is an enzyme that acts on membrane lipids, its kinetics cannot be studied using standard bulk dilutions methods. Thus we developed a surface dilution approach using Triton X 100 mixed micelles for studying the kinetics of CERK. We discovered that ceramide kinase has an affinity for naturally occurring long chain ceramides while ceramides containing shorter than 8 carbons are very poor substrates for the enzyme. Also of note is the discovery that there is no discrimination between the naturally occurring long chain ceramides leading to the conclusion that the preponderance of D-e-C16 C1P in cells are due to an availability effect. We also investigated the chain length specificity of interaction between C1P and cPLA2α. Our data indicate that cPLA2α is activated by C1P’s containing acyl chains longer than two carbons. The study showed C2 C1P as being unable to activate cPLA2α thus establishing a tool for the investigation of cPLA2α dependent and independent effects of C1P. In the course of the study we investigated the ethanol/dodecane delivery system as a means of safely delivering lipids to cells. Our data conclusively demonstrate that this delivery system successfully delivers lipids to the internal membranes where their biological action takes place and that at low lipid concentration (<1µM), is non toxic to cells. A significant technical hurdle in the study of C1P was the lack of accurate and reproducible method of quantitatively and qualitatively analyzing the lipid. Using a mass spectrometric approach we developed an accurate technique that now allows us to quantify the lipids in cells. Using this and radiolabeling studies we discovered evidence for production of C1P from S1P via an acyl transferase pathway. Further studies are currently being carried out to identify the enzyme/s responsible for this pathway.
40

Characterization of ceramide synthases (Cers) in mammalian cells

Park, Hyejung 13 May 2009 (has links)
This thesis describes the characterization of ceramide (Cer) biosynthesis by mammalian cells. The possibility that Cer undergo developmental changes was explored using mouse embryonic stem cells versus embryoid bodies by analysis of the Cer subspecies by liquid chromatography, electrospray ionization-tandem mass spectrometry (LC ESI-MS/MS) and of the transcript levels for enzymes involved in Cer biosynthesis by qRT-PCR. Cer of embroid bodies had higher proportions of very-long-chain fatty acids, which correlated with the relative expression of mRNA for the respective Cer synthases (CerS) and fatty acyl-CoA elongases, as well as changes in the fatty acyl-CoA's of the cells. Therefore, it is clear that Cer subspecies change during embryogenesis, possibly for functionally important reasons. One CerS isoform, CerS2, was studied further because it has the broadest tissue distribution and a remarkable fatty acyl-CoA specificity, utilizing longer acyl-chain CoAs (C20-C26) in vitro. The fatty acid chain selectivity was refined by analysis of the Cer from livers from CerS2 null mice, which displayed very little Cer with fatty acyl chains with 24 + 2 carbons. Another interesting structural variation was discovered in studies of cells treated with fumonisin B1 (FB1), which inhibits CerS. Under these conditions, cells in culture and animals accumulate substantial amounts of a novel sphingoid base that was identified as 1-deoxysphinganine. This compound arises from utilization of L-alanine instead of L-serine by serine palmitoyltransferase (SPT) based on the inability of LYB cells, which lack SPT, to make 1-deoxysphinganine. In the absence of FB1, 1-deoxysphinganine is primarily acylated to 1-deoxydihydroceramides. These are an underappreciated category of bioactive sphingoid bases and "ceramides" that might play important roles in cell regulation and disease. In summary, cells contain a wide variety of Cer subspecies that are determined by changes in expression of CerS, enzymes that produce co-substrates (such as fatty acyl-CoAs), and the types of amino acids utilized by SPT, the initial enzyme of de novo sphingolipid biosynthesis. One can envision how these changes might impact membranes structure as well as signaling by this family of highly bioactive compounds.

Page generated in 0.0504 seconds