• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 1
  • Tagged with
  • 97
  • 20
  • 20
  • 15
  • 14
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The Role of Receptors for Advanced Glycation End-Products (RAGE) and Ceramide in Cardiovascular Disease

Nelson, Michael Bruce 01 March 2015 (has links) (PDF)
Type 2 diabetes and cigarette smoke exposure are associated with an increased risk of cardiovascular complications. The role of advanced glycation end-products (AGEs) is already well-established in numerous comorbidities including cardiomyopathy. Given the role of AGEs and their receptor, RAGE, in activating inflammatory pathways, we sought to determine whether ceramides could be a mediator of RAGE-induced altered heart mitochondrial function. Using an in vitro model, we treated H9C2 cardiomyocytes with carboxy-methyl lysine-BSA, followed by mitochondrial respiration assessment. We found that mitochondrial respiration was significantly impaired in AGE-treated cells, but not when co-treated with myriocin, an inhibitor of de novo ceramide biosynthesis. Moreover, we exposed WT and RAGE KO mice to side-stream cigarette smoke and found reduced mitochondrial respiration in the left ventricle myocardium from WT mice, but the RAGE KO mice were protected from this effect. Finally, conditional over-expression of RAGE in the lungs of mice also elicited a robust increase in left ventricular ceramides. Altogether, these findings suggest a RAGE-ceramide axis as an important contributor to cardiomyopathy.
62

Simulations of Skin Barrier Function: Free Energies of Hydrophobic and Hydrophilic Transmembrane Pores in Ceramide Bilayers

Anwar, Jamshed, Notman, R., Noro, M.G., den Otter, W.K., Briels, W.J. January 2008 (has links)
No / Transmembrane pore formation is central to many biological processes such as ion transport, cell fusion, and viral infection. Furthermore, pore formation in the ceramide bilayers of the stratum corneum may be an important mechanism by which penetration enhancers such as dimethylsulfoxide (DMSO) weaken the barrier function of the skin. We have used the potential of mean constraint force (PMCF) method to calculate the free energy of pore formation in ceramide bilayers in both the innate gel phase and in the DMSO-induced fluidized state. Our simulations show that the fluid phase bilayers form archetypal water-filled hydrophilic pores similar to those observed in phospholipid bilayers. In contrast, the rigid gel-phase bilayers develop hydrophobic pores. At the relatively small pore diameters studied here, the hydrophobic pores are empty rather than filled with bulk water, suggesting that they do not compromise the barrier function of ceramide membranes. A phenomenological analysis suggests that these vapor pores are stable, below a critical radius, because the penalty of creating water-vapor and tail-vapor interfaces is lower than that of directly exposing the strongly hydrophobic tails to water. The PMCF free energy profile of the vapor pore supports this analysis. The simulations indicate that high DMSO concentrations drastically impair the barrier function of the skin by strongly reducing the free energy required for pore opening. / EPSRC
63

Osteoarthritis and Cartilage Insult: Elucidation of Molecular Interplay and Attempted Interventions

Rose, Brandon James 30 March 2022 (has links)
Osteoarthritis (OA) is a common and incapacitating joint disease beginning with breakdown of articular cartilage and extending into subchondral bone. At present, the processes through which the disease occurs are poorly understood, and interventions are limited to pain relief and eventual joint replacement. OA is commonly associated with obesity and corresponding pathologies, and as OA is demonstrably not a product of passive erosion of cartilage over time or under increased loads there must needs be some other mechanistic link between the two conditions. We hypothesize that the production of ceramides, a hallmark of the insulin resistance syndrome underlying many obesity-related conditions, acts to induce OA through its pro-inflammatory and pro-apoptotic activities, as well as directly inhibiting intracellular mediators of cartilage production and homeostasis. We demonstrate in Wistar rats that a high-fat, high-sugar (HFHS) diet successfully induces OA and that downregulation of ceramide synthesis through intraperitoneal myriocin administration does not prevent this degradation, and that myriocin in conjunction with a standard chow diet actually induces OA. Alteration in OA biomarkers in this study are discussed. We then tested the efficacy of a topical regimen of wogonin, an anti-inflammatory, anti-oxidative, and potentially analgesic compound in a surgical destabilization model (DMM) of OA in mice and demonstrate its disease modifying anti-OA properties. We further test the efficacy of this compound on the HFHS model previously established and find it successfully ameliorated the morphology and biomarker changes associated with OA; based on this data we hypothesize that inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is the most relevant physiological target of wogonin in a HFHS-induced OA model. Lastly and separately, we seek to clarify conflicting data regarding secondhand smoke (SHS), which observational studies suggest having either deleterious or beneficial effects to preexisting OA. In the first controlled study on the subject we model we demonstrate in a murine DMM model that SHS accelerates cartilage degradation and patterns of biomarker expression characteristic of OA, eliminating the question of any potential benefits of SHS to articular cartilage.
64

Studies on intestinal absorption and skin-improving effects of dietary sphingolipids / スフィンゴ脂質の消化管吸収と皮膚改善効果に関する研究

Ohta, Kazushi 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(農学) / 甲第23940号 / 農博第2489号 / 新制||農||1090(附属図書館) / 学位論文||R4||N5375(農学部図書室) / 京都大学大学院農学研究科応用生物科学専攻 / (主査)教授 菅原 達也, 教授 佐藤 健司, 教授 松井 徹 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
65

Stereoselektive Synthese von lipophilen Inositolen und Ceramiden

Munick, Michael 09 April 2007 (has links) (PDF)
Die Arbeit umfasst die Synthese von lipophilen Inositolen und Glycerollipiden, welche auf ihre Raftophilie getestet wurden. Des weiteren wurden eine Reihe neuer Ceramide synthetisiert und diese in Bioassays auf ihre Wirksamkeit gegenüber diversen Krankheiten wie Influenza getestet.
66

Mechanisms of Multivesicular Body Biogenesis and Exosome Release / Biogenese multivesikulärer Endosomen und Mechanismen der Exosomenfreizetzung

Hsu, Chieh 08 February 2010 (has links)
No description available.
67

Stereoselektive Synthese von lipophilen Inositolen und Ceramiden

Munick, Michael 22 January 2007 (has links)
Die Arbeit umfasst die Synthese von lipophilen Inositolen und Glycerollipiden, welche auf ihre Raftophilie getestet wurden. Des weiteren wurden eine Reihe neuer Ceramide synthetisiert und diese in Bioassays auf ihre Wirksamkeit gegenüber diversen Krankheiten wie Influenza getestet.
68

Role of Ceramide-1-Phosphate as a Specific and Potent Activator of Group IVA Cytosolic Phospholipase A2 Alpha

Subramanian, Preeti 01 January 2007 (has links)
Eicosanoids are potent mediators of inflammatory response whose role has been well established in inflammatory disorders. Release of arachidonic acid by group IVA cytosolic phospholipase A2 α (cPLA2α) is the initial rate limiting step for the production of eicosonoids in response to inflammatory mediators. Previous findings from our laboratory have demonstrated that cPLA2α is directly activated by the emerging bioactive sphingolipid, ceramide-1-phosphate (C1P). In this study, we have developed a modified Triton X-100/phosphatidylcholine (PC) mixed micelle assay which was utilized to determine the kinetics and specificity of this lipid-enzyme interaction. Using this assay, the activity of the enzyme increased in a dose dependent manner with increasing amount of C1P in the mixed micelle and the stoichiometry of this interaction was found to be 2 molecules of C1P to achieve full activation. This activation was found to be lipid specific as other phospholipids such as PE, PS, PA, DAG, and S1P had insignificant effect on cPLA2α activity. Furthermore, based on previous studies we hypothesized that the specific interaction site for C1P was localized to the cationic β-groove (R57, K58, R59) of the C2 domain of cPLA2α. In this regard, mutants of this region of cPLA2α were generated ((R57A/K58A/R59A), (R57A/R59A), (K58A/R59A), (R57A/K58A), (R57A), (K58A), and (R59A)) and examined for C1P affinity by surface plasmon resonance (SPR). The triple, the double mutants, and the single mutant (R59A) demonstrated significantly reduced affinity for C1P containing vesicles compared to wild-type cPLA2α. Examining these five mutants for enzymatic activity demonstrated significant reduction in the ability of C1P to increase the Vmax of the reaction and significantly decreased the dissociation constant (KSA) of the reaction as compared to the wild-type enzyme. The mutational effect was specific for C1P as all of the cationic mutants of cPLA2α demonstrated normal basal activity as well as normal affinities for PC and PtdIns(4,5)P2 compared to wild-type cPLA2α. Finally, we demonstrated these amino acids were critical for translocation of cPLA2α in A549 lung adenocarcinoma cells in response to inflammatory agonists like A23187 and IL-1β. Lastly, we also demonstrated the mechanistic difference between activation of cPLA2α by the two anionic lipids, C1P and PI(4,5)P2.
69

Conception, synthèse et évaluation de nouveaux inhibiteurs du transport de céramide : vers de nouveaux agents de sensibilisation des cellules cancéreuses chimiorésistantes / Conception, synthesis and evaluation of novel CERT mediated ceramide transport inhibitors, towards new sensitizing agents of chemoresistant cancer cells

Santos, Cécile 30 November 2015 (has links)
Au cours de leur métabolisme, les céramides, produits de novo au niveau du réticulum endoplasmique, sont transportés vers l'appareil de Golgi pour être convertis en sphingomyéline. Le mode principal de ce transport implique la protéine cytosolique CERT (CERamide Transfer). La surexpression de CERT, responsable d'un abaissement du taux intracellulaire en céramide pro-apoptotique, a été associée au phénomène de résistance aux agents chimiothérapeutiques de plusieurs lignées de cellules tumorales. L'inhibition de CERT permet de resensibiliser ces lignées cellulaires aux agents anti-cancéreux. Cependant, une seule famille d'inhibiteurs de CERT est connue à ce jour : les HPAs. A l'extrémité C-terminale de la protéine, le domaine START contient le site de liaison du céramide nécessaire à l'activité de transport de CERT. A partir de structures cristallographiques, une méthode d'identification de nouveaux ligands, combinant des outils in silico et in vitro, a été développée. La jaspine B, des analogues HPAs et des iminosucres ont été mis à jour en tant qu'antagonistes potentiels de CERT par cette méthode. Certains des composés identifiés ont été synthétisés et évalués in vitro. Des sondes fluorescentes de la jaspine B ont été conçues afin d'approfondir la compréhension de son mécanisme d'inhibition. En parallèle, un test de liaison in vitro HTR-FRET a été développé, permettant le criblage haut-débit de la Chimiothèque Nationale Essentielle. / During its metabolism, ceramides, produced de novo in the endoplasmic reticulum, are transported to the Golgi complex to be converted into sphingomyelin. The main way of this transport involves the cytosolic CERT protein (Ceramide Transfer). Overexpression of CERT, responsible for a diminution of intracellular level of proapoptotic ceramide, is associated with the phenomenon of resistance to chemotherapeutic agents in several tumor cell lines. The CERT inhibition allows to resensitize these cell lines to anticancer drugs. Yet, only a single family of inhibitors is known to date: HPAs. Located at the C-terminal region of the protein, the START domain contains the binding site of ceramide necessary for the transport activity of CERT. Based on crystallographic structures, a method for the identification of new CERT ligands, combining in silico and in vitro tools, was developed. Jaspine B, HPAs analogs and iminosugars were identified as potential antagonists using this method. Some of these compounds were synthesized and evaluated in vitro. Fluorescent probes of jaspine B were designed for a better understanding of it mechanism of action. In parallel, an in vitro HTR-FRET binding assay was developed, allowing the high-throughput screening of the National Essential Compound Library.
70

Sphingosine kinase 1 expression is involved in leukemogenesis and modulates cellular sphingolipid rheostat, which is a good predictive marker of daunorubicin sensitivity

祖父江, 沙矢加, SOBUE, Sayaka 25 March 2008 (has links)
名古屋大学博士学位論文 学位の種類:博士(医療技術学)(課程) 学位授与年月日:平成20年3月25日

Page generated in 0.0348 seconds