• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 20
  • 14
  • 5
  • 5
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 129
  • 129
  • 129
  • 34
  • 26
  • 25
  • 18
  • 18
  • 17
  • 16
  • 15
  • 15
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Quantitative cerebral blood flow measurement with Multi Exposure Speckle Imaging

Parthasarathy, Ashwin Bharadwaj 05 October 2010 (has links)
Cerebral blood flow (CBF) measures are central to the investigation of ischemic strokes, spreading depressions, functional and neuronal activation. Laser Speckle Contrast Imaging (LSCI) is an optical imaging technique that has been used to obtain CBF measures in vivo at high spatial and temporal resolutions, by quantifying the localized spatial blurring of backscattered coherent light induced by blood flow. Despite being widely used for biomedical applications, LSCI's critical limitations such as its tendency to underestimate large flow changes and its inability to accurately estimate CBF through a thinned skull have not been overcome. This dissertation presents a new Multi Exposure Speckle Imaging (MESI) technique that combines a new instrument and mathematical model to overcome these limitations. Additionally, in a pilot clinical study, an adapted neurosurgical microscope was used to obtain intra-operative LSCI images of CBF in humans. The MESI instrument accurately estimates experimental constants by imaging backscattered speckles over a wide range of the camera's exposure durations. The MESI mathematical model helps account for light that has scattered from both static and moving particles. In controlled flow experiments using tissue simulating phantoms, the MESI technique was found to estimate large changes in flow accurately and the estimates of flow changes were found to be unaffected by the presence of static particles in these phantoms. In an in vivo experiment in which the middle cerebral artery in mice was occluded to induce ~100% reduction in CBF, not only was the reduction in CBF accurately estimated by the MESI technique but these estimates of CBF changes were found to be unaffected by the presence of a thinned skull. The validity of statistical models used to derive the MESI mathematical model was confirmed using in vivo dynamic light scattering (DLS) measurements of CBF in mice. The MESI technique's potential to estimate absolute values of CBF in vivo was demonstrated by comparing CBF estimates obtained using the MESI technique to DLS measurements. The MESI technique's ability to measure CBF changes quantitatively through a thinned skull makes it particularly useful in chronic and long term studies leading to the development of better, more accurate stroke models. / text
82

NONINVASIVE NEAR-INFRARED DIFFUSE OPTICAL MONITORING OF CEREBRAL HEMODYNAMICS AND AUTOREGULATION

Cheng, Ran 01 January 2013 (has links)
Many cerebral diseases are associated with abnormal cerebral hemodynamics and impaired cerebral autoregulation (CA). CA is a mechanism to maintain cerebral blood flow (CBF) stable when mean arterial pressure (MAP) fluctuates. Evaluating these abnormalities requires direct measurements of cerebral hemodynamics and MAP. Several near-infrared diffuse optical instruments have been developed in our laboratory for hemodynamic measurements including near-infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS), hybrid NIRS/DCS, and dual-wavelength DCS flow-oximeter. We utilized these noninvasive technologies to quantify CBF and cerebral oxygenation in different populations under different physiological conditions/manipulations. A commercial finger plethysmograph was used to continuously monitor MAP. For investigating the impact of obstructive sleep apnea (OSA) on cerebral hemodynamics and CA, a portable DCS device was used to monitor relative changes of CBF (rCBF) during bilateral thigh cuff occlusion. Compared to healthy controls, smaller reductions in rCBF and MAP following cuff deflation were observed in patients with OSA, which might result from the impaired vasodilation. However, dynamic CAs quantified in time-domain (defined by rCBF drop/MAP drop) were not significantly different between the two groups. We also evaluated dynamic CA in frequency-domain, i.e., to quantify the phase shifts of low frequency oscillations (LFOs) at 0.1 Hz between cerebral hemodynamics and MAP under 3 different physiological conditions (i.e., supine resting, head-up tilt (HUT), paced breathing). To capture dynamic LFOs, a hybrid NIRS/DCS device was upgraded to achieve faster sampling rate and better signal-to-noise. We determined the best hemodynamic parameters (i.e., CBF, oxygenated and total hemoglobin concentrations) among the measured variables and optimal physiological condition (HUT) for detecting LFOs in healthy subjects. Finally, a novel dual-wavelength DCS flow-oximeter was developed to monitor cerebral hemodynamics during HUT-induced vasovagal presyncope (VVS) in healthy subjects. rCBF was found to have the best sensitivity for the assessment of VVS among the measured variables and was likely the final trigger of VVS. A threshold of ~50% rCBF decline was observed which can completely separate subjects with or without presyncope, suggesting its potential role for predicting VVS. With further development and applications, NIRS/DCS techniques are expected to have significant impacts on the evaluation of cerebral hemodynamics and autoregulation.
83

Segmentation et extraction de caractéristiques des vaisseaux sanguins cérébraux à l'aide de l'IRM / Segmenting and characteristic extraction of cerebral blood vessels in MRI

Bizeau, Alexandre January 2017 (has links)
Le couplage neuro-vasculaire est un domaine grandissant. Ce dernier étudie les effets de l’activité cérébrale sur le comportement du flux sanguin cérébral (cerebral blood flow, CBF) et sur le flux des vaisseaux sanguins. Avec l’aide de l’imagerie par résonance magnétique (IRM), il est possible d’obtenir des images comme les images pondérées par susceptibilité (susceptibility weighted imaging, SWI) pour voir les veines ou bien avec des images de temps de vol par angiographie (time-of-flight magnetic resonance angiography, TOF MRA) pour imager les artères. Ces images permettent d’avoir une représentation structurelle des vaisseaux dans le cerveau. Ce mémoire présente une méthode permettant la segmentation des vaisseaux sanguins à partir d’images structurelles afin d’en extraire les caractéristiques. En utilisant le masque de segmentation, il est possible de calculer le diamètre des vaisseaux ainsi que leur longueur. Avec l’aide de tels outils de segmentation automatique, nous avons conduit une étude permettant d’analyser le comportement des vaisseaux sanguins lors d’activités neuronales. Grâce à une stimulation visuelle, nous avons fait l’acquisition de deux images; la première dite au repos et la seconde avec stimulation. Nous avons pu comparer le diamètre dans chacune des images et ainsi obtenir la vasodilatation en millimètre, mais également en pourcentage, et cela pour chaque voxel. Nous avons également calculé la distance entre le site d’activation et un voxel pour observer l’amplitude de la vasodilatation en fonction de la distance. Tout ceci permet d’avoir une meilleure compréhension du système vasculaire du cerveau humain. / Abstract : The neurovascular coupling is a growing field; it studies the effects of cerebral activity on the behaviour of cerebral blood flow (CBF) and the blood vessels themselves. With the help of magnetic resonance imaging (MRI), it is possible to obtain images such as susceptibility weighted imaging (SWI) to see the veins or time-of-flight magnetic resonance angiography (TOF MRA) to visualize the arteries. These images allow having a structural representation of vessels in the brain. This thesis presents a method to segment blood vessels from structural images and extract their features. Using the segmentation mask, it is possible to calculate the diameter of the vessels as well as their length. With the help of such automatic segmentation tools, we conducted a study to analyze the behaviour of blood vessels during neuronal activities. Due to visual stimulation, we have acquired two images; one at rest and the other with stimulation. We compare the diameter in each of the images and obtain vasodilation in millimeters, but also as a percentage in each voxel. We also calculated the distance between the activation site and each voxel to see the magnitude of the vasodilation function of the distance. All this provides a better understanding of the vascular system of the human brain.
84

Innervation sympathique et hémodynamique cérébrale chez le rat / Sympathetic innervation and cerebral hemodynamics in the rat

Revel, Aurélia 06 December 2011 (has links)
Ce travail avait pour but de déterminer, chez le rat vigil, le rôle de l’innervation sympathique dans le contrôle de l’hémodynamique cérébrale 1/ au cours d’une période d’activité normale d’environ 4 heures, et 2/ lors d’une augmentation aiguë de la pression artérielle (PA) induite par un stress émotionnel (jet d’air). Les débits sanguins dans les artères carotides internes (DSCa) ont été mesurés grâce à des sondes Doppler chroniquement implantées, chez des rats intacts ou ayant subi l’exérèse unilatérale du ganglion cervical supérieur. Le stress induit une élévation brusque et importante de la PA qui s’accompagne d’une hyperémie et d’une vasodilatation beaucoup plus marquées du côté dénervé que du côté innervé. Dans les conditions de base, l’analyse spectrale révèle une augmentation de la variabilité du DSCa du côté dénervé. La cohérence entre les deux DSCa, qui fournit un index de corrélation linéaire dans le domaine fréquentiel, a été calculée avant (cohérence ordinaire) et après élimination mathématique de l’influence de la PA (cohérence partielle). Les cohérences ordinaire et partielle sont diminuées par la sympathectomie unilatérale dans une bande de fréquences comprises entre 0,01 et 0,1 Hz. Ceci suggère un rôle modulateur important de l’innervation sympathique vis-à-vis de ces fluctuations lentes des DSCa. Ces résultats montrent que chez le rat vigil, l’innervation sympathique exerce un rôle protecteur de la circulation cérébrale face aux augmentations de PA au cours du stress émotionnel. Par ailleurs, cette innervation module des fluctuations spontanées lentes du débit sanguin cérébral qui ne sont pas directement reliées aux fluctuations de la PA. / The goal of the present work was to determine, in conscious rats, the role of the sympathetic innervation in the control of cerebral hemodynamics 1/ during a baseline period lasting ~4 h, and 2/ during an acute increase in blood pressure (BP) evoked by an emotional stressor (jet of air). Blood flows in internal carotid arteries (CaBF) were recorded with Doppler flow probes chronically implanted in intact rats and in rats that underwent unilateral excision of the superior cervical ganglion. Stress induced a large and brisk increase in BP which was accompanied by hyperemia and vasodilatation that were much stronger on the denervated than on the intact side. Spectral analysis demonstrated an overall enhancement of CaBF variability on the denervated side. Coherence between the two CaBFs, which provides an index of linear correlation in the frequency domain, was computed before (ordinary coherence) and after (partial coherence) mathematically eliminating the influence of BP. Both ordinary and partial coherences were lowered by unilateral sympathectomy in the 0.01-0.1 Hz frequency range, which suggests an important modulatory role for sympathetic innervation with respect to these slow CaBF fluctuations. These results indicate that in the conscious rat, sympathetic innervation plays a protective role of the cerebral circulation in the face of stress-induced increases in BP. On the other hand, this innervation modulates slow, spontaneous fluctuations of cerebral blood flow which are not directly related to BP fluctuations.
85

Biomarcadores de ressonância magnética e performance cognitiva em estenose carotídea assintomática / Magnetic resonance biomarkers and cognitive performance in asymptomatic carotid stenosis

Ferreira, Ana Paula Afonso Camargo 08 October 2018 (has links)
Introdução: As doenças cerebrovasculares constituem-se um sério problema de saúde, e dados sobre sua prevalência mundial são alarmantes. A doença aterosclerótica dos vasos cervicais é um importante fator etiológico de isquêmica cerebral, por mecanismos que envolvem fenômenos embólicos e hipofluxo cerebral. Enquanto o manejo dos pacientes com estenose carotídea sintomática geralmente requer procedimentos cruentos como a endarterectomia e a angioplatia com stent carotídeo, não estão bem definidos o espectro clínico e o manejo adequado dos pacientes com estenoses carotídeas ditas assintomáticas (sem evidência de evento cerebrovascular ipsilateral). Neste contexto, é possível que a presença de déficits cognitivos e as alterações estruturais e funcionais na ressonância magnética cerebral possam ser úteis para a estratificação e o manejo destes pacientes. Objetivos: constitui objetivo principal do presente estudo investigar associações entre biomarcadores de ressonância magnética e desempenho cognitivo, em sujeitos com estenose carotídea assintomática unilateral. Métodos: foram incluídos na pesquisa 13 voluntários, com diagnóstico de doença aterosclerótica assintomática unilateral com comprometimento >= 70% da luz do vaso, recrutados nos ambulatórios de neurologia e cirurgia vascular, do Hospital das Clínicas, da Faculdade de Medicina de Ribeirão Preto - FMRP/ USP. Participaram do grupo controle 13 voluntários, sem antecedentes de doenças cerebrovasculares. A avaliação neuropsicológica consistiu na aplicação do Subteste Dígitos (WAIS); Trail Making Test; Stroop Test; Teste das Figuras Complexas de Rey; provas de fluência verbal fonêmica e categoria semântica; e o Mini Exame do Estado Mental, edições 1 e 2. Para a composição da avaliação de neuroimagem por ressonância magnética, foram inclusas: (1) imagens FLAIR (fluid attenuated inversion recovery) para avaliação de carga de lesão de substância branca; (2) imagens de ASL (arterial spin labeling), ponderadas em perfusão sanguínea, para quantificação do fluxo sanguíneo cerebral; e (3) imagens baseadas no contraste BOLD (blood oxygenation level dependent), em repouso, para avaliação da conectividade funcional. Análises estatísticas foram realizadas pelo Stata 15.1, em que as variáveis foram testadas para normalidade usando o teste de normalidade de Shapiro-Wilk. O teste t de amostras independentes e o teste U de Mann-Whitney foram utilizados para analisar as diferenças entre os grupos. As diferenças hemisféricas na carga de WMH foram testadas pelo teste t pareado, ou Wilcoxon. Testes Chi-squared ou Teste Exato de Fisher foram utilizados na análise de variáveis categóricas. Os coeficientes decorrelação de Pearson ou Spearman foram utilizados para explorar correlações entre escores cognitivos, volume de substância branca, carga de WMH, CBF e conectividade funcional. Resultados: O volume de substância branca (SB) em pacientes com estenose carotídea assintomática mostrou-se marcadamente reduzido, enquanto hiperintensidade de sinal em SB esteve significativamente aumentada em relação a indivíduos controles (p < 0,01). O hemisfério ipsilateral à estenose assintomática grave apresentou carga mais expressiva de lesão em SB (p = 0,01). Neste contexto, a presença de estenose assintomática esteve independentemente associada à hiperintensidade de SB. Análises de CBF não revelaram diferenças entre os grupos clínicos e controle, embora o CBF tenha sido associado ao desempenho das funções cognitivas em todos os domínios avaliados por este estudo. Não foram identificadas diferenças de fluxo sanguíneo global em territórios das artérias cerebrais anterior, média e posterior, entre sujeitos com estenose de artéria carótida assintomática e controles. Pacientes apresentaram prejuízos de conectividade em redes cerebrais de repouso (RSBNs), especialmente frontotemporal, saliência e rede atencional dorsal, em relação aos controles (p-FDR < 0,01). A performance cognitiva de pacientes com estenose carotídea foi inferior ao grupo controle, para todas as medidas, com diferenças significativas em domínios mnemônicos, atencionais e funções executivas (p<0.05), estes relacionados com RSBNs. Conclusões: Nós identificamos anormalidades pré-clínicas no volume de SB, CBF, conectividade funcional e no desempenho cognitivo de pacientes com estenose carotídea assintomática. Biomarcadores de neuroimagem na RM, combinados à avaliação cognitiva têm um grande potencial para identificação de pacientes com estenose carotídea assintomática sob risco elevado de AVC e declínio cognitivo. / Background: Cerebrovascular diseases are an important health problem worldwide with high prevalence, mortality and morbidity. Among its etiological subtypes, atherosclerotic disease involving the carotid artery is strongly associated with ischemic stroke due to arterial embolism and hemodynamic compromise. The management of symptomatic carotid stenosis generally requires carotid endarterectomy or stenting. Nevertheless, the management of asymptomatic carotid stenosis and patient selection for these procedures is still largely debated. It is possible that the presence of cognitive impairment, alterations on functional and structural magnetic resonance imaging (MRI) biomarkers of cerebrovascular disease could help the stratification and management of these patients. Objetives: to investigate the association between MRI biomarker of cerebrovascular disease and cognitive function in patient with unilateral asymptomatic carotid stenosis. Methods: we evaluated 13 patients with unilateral carotid stenosis >= 70% recruited from a tertiary academic outpatient clinic in Brazil and 13 control subjects without carotid stenosis or history of cerebrovascular diseases paired by age and sex. The neuropsycological evaluation included the WAIS, Trail Making Test; Stroop Test; Rey complex figures test; verbal fluency and categorical semantic fluency; and the minimental state 1 and 2. The MRI evaluation included: (1) FLAIR evaluation of white matter (WM) burden; (2) ASL evaluation of cerebral blood flow (CBF); (3) resting-state BOLD for evaluation of functional connectivity. Statistical analyses were performed with the Stata 15.1 package. Normality of the distribution of the variables was assessed with the Shapiro-Wilk test. We also used the student t test, Mann-whytney test, Chi-squared test and Fisher exact test as appropriate for univariate analyses. Pearson and Spearman correlation coefficients were used to explore the correlations among cognitive performance scores, WM volume, burden of WM hyperintensities, CBF and brain functional connectivity. Results: the global WM volume was markedly reduced and the global WM hyperintensity was significantly increased within the ipsilateral hemisphere in patients with unilateral carotid stenosis, when compared to controls (p < 0,01). CBF evaluated by ASL was associated with cognitive function but it was not significantly different between patients and controls within the arterial territories of the major intracranial arteries. Patients with carotid stenosis showed marked compromise of the brain connectivity within the frontotemporal, attentional and salience networks when compared to controls (p-FDR < 0,01). The cognitive performance was inferior for patients with unilateral carotid stenosis compared to controls in several cognitivedomains including executive function, attention and mnemonic domains. Conclusions: patients with asymptomatic carotid stenosis have high frequency of pre-clinical abnormalities on structural and functional MRI biomarkers and cognitive impairment. Evaluation of cognitive function, structural and functional MRI biomarkers of cerebrovascular disease may have a role to improve patient stratification and selection for interventions among patients with unilateral carotid stenosis.
86

Rolle der Kaliumkanäle und des cGMP bei der Dilatation der perfundierten A. cerebri media der Ratte auf Azidose

Vogt, Johannes Andreas 15 September 2003 (has links)
Die Azidose gehört zu den stärksten dilatatorischen Stimuli zerebraler Arterien. Obwohl schon 1890 von Roy und Sherrington beschrieben, sind die Faktoren, die die Vasodilatation zerebraler Arterien auf Azidose vermitteln, bis heute nicht bekannt. Untersuchungen über die Rolle des schnell flüchtigen Bioradikals Stickstoffmonoxid (NO) haben gezeigt, daß NO bei der azidotischen Vasodilatation zerebraler Arterien als Modulator agiert. Darüber hinaus nimmt NO in der neurovaskulären Kopplung, d.h. bei der Vermittlung der regionalen Blutflußantwort nach neuronaler Stimulation, eine permissive Funktion ein. Die Vasodilatation auf Azidose wurde in der vorliegenden Arbeit als Modellstimulus zur Untersuchung der NO-abhängigen Dilatation zerebraler Arterien verwendet. Dabei wurde die Rolle der Kaliumkanäle und die Funktion des cGMP an der Vasodilatation auf Azidose mittels spezifischer Inhibitoren untersucht. Die Experimente erfolgten an der isolierten und perfundierten A. cerebri media der Ratte. Bei der Untersuchung der Signaltransduktion von NO auf Ebene des cGMP wurde eine ausgeprägte Abhängigkeit der azidotischen Vasodilatation von cGMP beobachtet. Durch Restitution des basalen cGMP-Spiegels nach vorheriger Inhibition der löslichen Guanylatzyklase wurde gezeigt, daß NO über cGMP bei der Vermittlung dieser Reaktion als Modulator wirkt. Unter Blockade der einzelnen Kaliumkanalfamilien konnte eine Beteiligung der KCa an der Vasodilatation auf Azidose sowie am Gefäßtonus unter Ruhebedingungen beobachtet werden. Für eine Beteiligung der KATP, der KV und der Kir an diesen Reaktionen wurden dagegen keine Hinweise gefunden. Ebenso sprechen die Untersuchungen unter Blockade der Na+/K+-ATPase gegen eine Beteiligung dieses Enzyms an der Azidosereaktivität zerebraler Arterien. Um ein mögliches Zusammenwirken der Kaliumkanäle zu erfassen, wurde die Vasodilatation auf Azidose unter Blockade von jeweils zwei Kaliumkanaltypen untersucht. Unter Hemmung der KCa und der KATP, sowie unter Hemmung der BKCa und der KATP wurde keine Vasodilatation mehr auf Azidose beobachtet. Die Ergebnisse sprechen dafür, daß die Vasodilatation der A. cerebri media auf Azidose durch BKCa und KATP in redundanter Weise vermittelt wird. Dabei scheinen KCa die Funktion der KATP vollständig substituieren zu können. Die Resultate dieser Arbeit bilden den Ausgangspunkt für derzeit laufenden Untersuchungen über die funktionelle Modulation der KATP und der BKCa durch das NO/cGMP-System. Weiterhin bilden die vorliegenden Untersuchungen eine wichtige Grundlage zur Überprüfung der zentralen Rolle der KCa und der KATP auf weitere, durch das NO/cGMP-System modulierten Stimuli, wie z.B. der funktionellen Stimulation. Die in dieser Arbeit vorgestellten Experimente wurden mit Mitteln der Deutschen Forschungsgemeinschaft (SFB 507), der Hermann und Lilly Schilling Stiftung, sowie der Humboldt Universität zu Berlin gefördert. / Acidosis is one of the most potent vasodilators in the cerebral circulation. Although first described 1890 by Roy and Sherrington the mechanisms of vasodilation to acidosis are still unknown. Experimental data show, that nitric oxide (NO) is a modulator but not a mediator of cerebral arterial pH reactivity. NO also acts as a modulator of neurovascular coupling in the rat somatosensory cortex. We used the experimental in vitro model of the isolated and perfused middle cerebral artery (MCA) to elucidate the general mechanisms of NO-modulated dilations. The present study was performed to clarify the role of cGMP and potassium channels for mediation of acidosis-induced dilation of cerebral arteries. The results indicate, that vasodilation to acidosis is mediated by cGMP. Restoring the basal cGMP-level we could demonstrate a permissive role of cGMP in the vasodilation to acidosis. We could also show that KCa are active under resting conditions and are able to contribute to the relaxation of the MCA to acidosis. Other potassium channels like KATP, Kir, KV and the Na+/K+ATPase appeared not to be involved in the process of dilation to acidosis. After administration of a selective inhibitor of KATP in addition to an inhibitor of KCa the relaxation to acidosis was completely abolished. Simultaneous application of selective inhibitors of KATP and BKCa also prevented from vasodilation to acidosis. These results indicate, that relaxation to acidosis is mediated by activation of KATP and BKCa. This potassium channels seem to have a redundant activity, in such a way that KCa could substitute for KATP. The present findings are a starting point for further studies concerning the modulation of KATP and BKCa by the NO/cGMP-System. This studies are a basis for coming experiments to determine the role of KATP and BKCa in the neurovascular coupling.
87

CALIBRATED SHORT TR RECOVERY MRI FOR RAPID MEASUREMENT OF BRAIN-BLOOD PARTITION COEFFICIENT AND CORRECTION OF QUANTITATIVE CEREBRAL BLOOD FLOW

Thalman, Scott William 01 January 2019 (has links)
The high prevalence and mortality of cerebrovascular disease has led to the development of several methods to measure cerebral blood flow (CBF) in vivo. One of these, arterial spin labeling (ASL), is a quantitative magnetic resonance imaging (MRI) technique with the advantage that it is completely non-invasive. The quantification of CBF using ASL requires correction for a tissue specific parameter called the brain-blood partition coefficient (BBPC). Despite regional and inter-subject variability in BBPC, the current recommended implementation of ASL uses a constant assumed value of 0.9 mL/g for all regions of the brain, all subjects, and even all species. The purpose of this dissertation is 1) to apply ASL to a novel population to answer an important clinical question in the setting of Down syndrome, 2) to demonstrate proof of concept of a rapid technique to measure BBPC in mice to improve CBF quantification, and 3) to translate the correction method by applying it to a population of healthy canines using equipment and parameters suitable for use with humans. Chapter 2 reports the results of an ASL study of adults with Down syndrome (DS). This population is unique for their extremely high prevalence of Alzheimer’s disease (AD) and very low prevalence of systemic cardiovascular risk factors like atherosclerosis and hypertension. This prompted the hypothesis that AD pathology would lead to the development of perfusion deficits in people with DS despite their healthy cardiovascular profile. The results demonstrate that perfusion is not compromised in DS participants until the middle of the 6th decade of life after which measured global CBF was reduced by 31% (p=0.029). There was also significantly higher prevalence of residual arterial signal in older participants with DS (60%) than younger DS participants (7%, p = 0.005) or non-DS controls (0%, p < 0.001). This delayed pattern of perfusion deficits in people with DS differs from observations in studies of sporadic AD suggesting that adults with DS benefit from an improved cardiovascular risk profile early in life. Chapter 3 introduces calibrated short TR recovery (CaSTRR) imaging as a rapid method to measure BBPC and its development in mice. This was prompted by the inability to account for potential changes in BBPC due to age, brain atrophy, or the accumulation of hydrophobic A-β plaques in the ASL study of people with DS in Chapter 2. The CaSTRR method reduces acquisition time of BBPC maps by 87% and measures a significantly higher BBPC in cortical gray matter (0.99±0.04 mL/g,) than white matter in the corpus callosum (0.93±0.05 mL/g, p=0.03). Furthermore, when CBF maps are corrected for BBPC, the contrast between gray and white matter regions of interest is improved by 14%. This demonstrates proof of concept for the CaSTRR technique. Chapter 4 describes the application of CaSTRR on healthy canines (age 5-8 years) using a 3T human MRI scanner. This represents a translation of the technique to a setting suitable for use with a human subject. Both CaSTRR and pCASL acquisitions were performed and further optimization brought the acquisition time of CaSTRR down to 4 minutes which is comparable to pCASL. Results again show higher BBPC in gray matter (0.83 ± 0.05 mL/g) than white matter (0.78 ± 0.04 mL/g, p = 0.007) with both values unaffected by age over the range studied. Also, gray matter CBF is negatively correlated with age (p = 0.003) and BBPC correction improved the contrast to noise ratio by 3.6% (95% confidence interval = 0.6 – 6.5%). In summary, the quantification of ASL can be improved using BBPC maps derived from the novel, rapid CaSTRR technique.
88

Social Phobia : The Family and the Brain

Tillfors, Maria January 2001 (has links)
<p>The present thesis investigated family history and neurobiology of social phobia. Social phobia is a disabling disorder characterized by a marked fear of scrutiny in a variety of social situations. By using a validated questionnaire, study I related family history of excessive social anxiety to social phobia and avoidant personality disorder in epidemiologically identified probands in the Swedish general population. A two- to threefold increased relative risk of social anxiety was observed for both diagnostic groups. Thus, having an affected family member is associated with approximately a doubled risk for both social phobia and avoidant personality disorder.</p><p>The neurobiological studies explored situational and anticipatory elicited anxiety by means of positron emission tomography and 15O-water. Study II examined the functional neuroanatomy of social anxiety provocation in social phobics and a healthy comparison group during a public speaking task. Social phobia symptomatology was associated with higher neural activity in the amygdaloid complex, i.e. "the alarm system" of the brain, and lower activity in the prefrontal cortex. Study III examined the neural correlates of anxiety elicited by the anticipation of public speaking in individuals with social phobia. Anticipatory anxiety was accompanied by enhanced regional cerebral blood flow in the dorsolateral prefrontal and inferior temporal cortices as well as in the amygdaloid-hippocampal region. Brain blood flow was lower in the temporal pole and in the cerebellum. These results suggest that social phobia has a neuroanatomical basis in a highly sensitive fear network centered in the amygdaloid-hippocampal region and encompassing the prefrontal cortex.</p>
89

Fear, Startle, and Fear-Potentiated Startle : Probing Emotion in the Human Brain

Pissiota, Anna January 2003 (has links)
<p>The present thesis explored the neurobiological basis of three aspects of defense behaviors in humans. Positron emission tomography methodology was used, and changes in regional cerebral blood flow (rCBF) were measured as an index of neural activity. Firstly, brain function was studied in a group of patients suffering from combat-related posttraumatic stress disorder, using a symptom provocation paradigm with combat sounds in order to elicit fear. Exposure to auditory trauma reminders relative to neutral sounds was associated with increased rCBF in sensorimotor areas, the cerebellar vermis, the periaqueductal gray matter, and the right amygdala, whereas decreased activity was observed in the retrosplenial area of the posterior cingulate cortex. Secondly, the neural circuitry mediating the acoustic startle response and its habituation was studied in a group of healthy subjects. During acoustic startle stimulation as compared to a resting condition, increased rCBF was found in a medial posterior area of the pons corresponding to the nucleus reticularis pontis caudalis. As a result of startle repetition, altered activity was found in the cerebellum, pointing to its involvement in startle habituation. Thirdly, neural activity associated with startle modulation by phobic fear was studied in a group of subjects with specific animal phobias during exposure to pictures of their feared and non-feared objects, paired and unpaired with acoustic startle stimuli. As a result of startle potentiation, increased rCBF was found in the left amygdaloid-hippocampal region, and medially in the affective division of the anterior cingulate cortex. In conclusion, these results provide evidence for the involvement of limbic and paralimbic brain areas during fear provocation and fear-potentiated startle and for a similar neurocircuitry underlying startle in humans and animals.</p>
90

Cardiopulmonary Resuscitation : Pharmacological Interventions for Augmentation of Cerebral Blood Flow

Johansson, Jakob January 2004 (has links)
<p>Cardiac arrest results in immediate interruption of blood flow. The primary goal of cardiopulmonary resuscitation (CPR) is to re-establish blood flow and hence oxygen delivery to the vital organs. This thesis describes different pharmacological interventions aimed at increasing cerebral blood flow during CPR and after restoration of spontaneous circulation (ROSC).</p><p>In a porcine model of cardiac arrest, continuous infusion of adrenaline generated higher cortical cerebral blood flow during CPR as compared to bolus administration of adrenaline. While bolus doses resulted in temporary peaks in cerebral blood flow, continuous infusion led to a sustained increase in this flow.</p><p>Administration of vasopressin resulted in higher cortical cerebral blood flow and a lower cerebral oxygen extraction ratio as compared to continuous infusion of adrenaline during CPR. In addition, vasopressin generated higher coronary perfusion pressure during CPR and increased the likelihood of achieving ROSC.</p><p>Parameters of coagulation and inflammation were measured after successful resuscitation from cardiac arrest. Immediately after ROSC, thrombin-antithrombin complex, a marker of thrombin generation, was elevated and eicosanoid levels were increased, indicating activation of coagulation and inflammation after ROSC. The thrombin generation was accompanied by a reduction in antithrombin. In addition, there was substantial haemoconcentration in the initial period after ROSC.</p><p>By administration of antithrombin during CPR, supraphysiological levels of antithrombin were achieved. However, antithrombin administration did not increase cerebral circulation or reduce reperfusion injury, as measured by cortical cerebral blood flow, cerebral oxygen extraction and levels of eicosanoids, after ROSC. </p><p>In a clinical study, the adrenaline dose interval was found to be longer than recommended in the majority of cases of cardiac arrest. Thus, the adherence to recommended guidelines regarding the adrenaline dose interval seems to be poor. </p>

Page generated in 0.0427 seconds