Spelling suggestions: "subject:"deterium."" "subject:"deuterium.""
251 |
Thin Film Combinatorial Synthesis of Advanced Scintillation MaterialsPeak, Jonathan Daniel 01 December 2010 (has links)
The development and application of a combinatorial sputtering thin film technique to screen potential scintillation material systems was investigated. The technique was first benchmarked by exploring the binary lutetium oxide-silicon oxide material system, which successfully identified the luminescence phases of the system, Lu2SiO5 (LSO) and Lu2Si2O7 (LPS). The second application was to optimize the activator concentration in cerium doped LSO. The successfully optimized cerium concentration in the thin film LSO of 0.34 atomic percent was much greater than the standard cerium concentration in single crystal LSO. This lead to an intensive study based on temperature dependent steady-state and lifetime photoluminescence spectroscopy to understand the different concentration quenching mechanisms involved in the bulk single crystal versus the thin film LSO. The results were used to develop configuration coordinate models which were employed to explain the observed concentration dependent behavior. The nature of single crystal LSO:Ce concentration quenching was determined to be due to radiative energy transfer, and ultimately self-absorption. For the thin films it was found self-absorption was not a dominant factor due to the thin dimension of the film and also its nano-crystalline nature. Instead, the photoluminescence excitation and emission spectra as a function of concentration demonstrated the concentration quenching behavior was due to an increase in defect-mediated non-radiative transitions with increasing cerium. The final application of the thin film screening technique was the exploration of the ternary Lu2O3-SiO2-Al2O3 material system doped with cerium. It was found that the presence of aluminum and silicon hindered LSO and Al5Lu3O12 (LuAG) emission, respectively. However, the presence of aluminum was found to increase LPS emission intensity. The percent of aluminum in the LPS phase was estimated at 2.5 atomic percent.
|
252 |
Mixed metal oxide - noble metal catalysts for total oxidation of volatile organic compounds and carbon monoxideFerrandon, Magali January 2001 (has links)
CO, volatile organic compounds, and polyaromatics areubiquitous air pollutants that give rise to deleterious healthand environmental effects. Such compounds are emitted, forinstance, by the combustion of wood, particularly fromsmall-scale heating appliances. Total catalytic oxidation isconsidered to be an effective approach in controlling theseemissions, however, some problems remain such as thenon-availability of catalysts with low-cost, high activity andstability in prevailing conditions. Hence, this thesis aims atthe development of oxidation catalysts and improvedunderstanding of their behaviour. The catalytic activity was evaluated for the oxidation of amixture of CO, naphthalene (or ethylene), and methane inpresence of carbon dioxide, water, oxygen and nitrogen. Variouscharacterisation techniques, including Temperature-ProgrammedReduction and Oxidation, BET-Surface Area Analysis, X-RayDiffraction, X-Ray Photoelectron Spectroscopy, RamanSpectroscopy and Scanning and Transmission Electron Microscopywere used. In the first part of this thesis, catalysts based on metaloxides (MnOx, CuO) and/or a low amount of noble metals (Pt, Pd)supported on alumina washcoat were selected. It was shown thatPt and Pd possessed a superior catalytic activity to that ofCuO and MnOxfor the oxidation of CO, C10H8and C2H4, while for the oxidation of CH4, CuO was largely more active than noble metals,and MnOxas active as Pd and Pt. Some mixed metaloxide-noble metal catalysts showed decreased activity comparedto that of noble metals, however, a higher noble metal loadingor a successive impregnation with noble metals led to positivesynergetic effects for oxidation. Deactivation of the catalysts by thermal damage and sulphurpoisoning is addressed in the second part of the dissertation.An alumina washcoat was found to be well anchored to themetallic support after thermal treatment at 900°C due tothe growth of alumina whiskers. The sintering of the washcoatwas accelerated after high temperature treatments in thepresence of metal catalysts. In addition, alumina was found toreact with CuO, particularly in presence of noble metals at900°C, to form inactive CuAl2O4. However, MnOxcatalyst benefits from the more active Mn3O4phase at high temperature, which makes it asuitable active catalyst for the difficult oxidation of CH4. Pt sintering was delayed when mixed with CuO,thus giving more thermally resistant catalyst. The mixed metaloxide-noble metal catalysts showed higher activity afterpre-sulphation of the catalysts with 1000 ppm SO2in air at 600°C or during activitymeasurement in presence of 20 ppm SO2in the gas mixture, compared to single componentcatalysts. In some cases, the activities of the mixed catalystswere promoted by pre-sulphation due to the presence of sulphatespecies. Thermal stabilisation of the catalytic componentsand thealumina by promotion of La in the washcoat is discussed in thethird section. The stabilising effect of La at high temperatureis also compared to that of Ce added in the catalysts for otherpurposes. Due to its better dispersion, La contributed to thethermal stabilisation of the alumina washcoat and its activecomponents to a higher extent than Ce did. La provided a betterdispersion and a higher saturation of metal oxides in thealumina support, and at the same time stabilised the activityof the catalysts by preventing undesirable solid-phasereactions between metal oxide and alumina. In addition, La wasfound to enhance the dispersion and the oxygen mobility of CeO2. Cu-Ce interactions were found to promotesubstantially the CO oxidation due to an increase of thestability and reducibility of Cu species. Synergetic effectswere also found between Ce and La in the washcoat of CuO-Ptcatalyst, which facilitated the formation of reduced Pt and CeO2, thus enhancing significantly the catalyticactivity compared to that of a Pt only catalyst. The last part was an attempt to demonstrate the potential ofa catalyst equipped with a pre-heating device in a full-scalewood-fired boiler for minimising the high emissions during thestart-up phase. During the first ten minutes of the burningcycle a significant reduction of CO and hydrocarbons wereachieved. <b>Keywords</b>: wood combustion, catalysts, total oxidation,manganese, copper, platinum, palladium, lanthanum, cerium, CO,VOC, methane, deactivation, thermal stability, sulphurdioxide.
|
253 |
Synthèse par ammonolyse et étude des propriétés de luminescence dans des oxynitrures de structure apatite dopés au cérium ou à l'europiumThomas, Sébastien 14 December 2012 (has links) (PDF)
Les oxynitrures dopés terre rare présentent des propriétés intéressantes pour un usage en tant que luminophore pour LEDs blanches. Une nouvelle famille de luminophores dopés Eu2+ ou Ce3+ avec un réseau hôte oxynitrure de structure apatite a été étudiée : La8+xSr2-x(Si/Ge)6NyO26+x/2-3/2y. L'ammonolyse d'un précurseur oxyde de structure apatite a été utilisée comme technique générale de nitruration. Elle a permis de diminuer substantiellement la température de nitruration en comparaison avec la méthode classique par réaction à l'état solide sous atmosphère mixte N2/H2. Les différentes luminescences des luminophores obtenus ont été étudiées et corrélées à la structure cristalline à l'aide de différentes techniques de caractérisation.La structure apatite présente notamment la particularité de proposer plusieurs sites anioniques pour l'introduction de l'azote ainsi que deux sites cationiques pour les ions terre rare activateurs. L'utilisation de nombreuses techniques de caractérisation (IR, Raman, RMN, diffraction des neutrons) a permis d'obtenir des informations sur la position de l'azote. En parallèle, la comparaison des propriétés optiques avec celles de composés réduits sous Ar/H2 a permis d'attribuer les émissions aux différents sites cristallins disponibles dans la structure. Des mesures de rendement quantique ainsi que des tentatives d'optimisation des propriétés de luminescence ont été effectuées.
|
254 |
Formation Of Zirconium Diboride And Other Metal Borides By Volume Combustion Synthesis And Mechanochemical ProcessAkgun, Baris 01 February 2008 (has links) (PDF)
The aim of this study was to produce zirconium diboride (ZrB2) and other metal borides such as lanthanum hexaboride (LaB6) and cerium hexaboride (CeB6) by magnesiothermic reduction (reaction of metal oxide, boron oxide and magnesium) using volume combustion synthesis (VCS) and mechanochemical process (MCP).
Production of ZrB2 by VCS in air occurred with the formation of side products, Zr2ON2 and Mg3B2O6 in addition to MgO. Formation of Zr2ON2 was prevented by conducting VCS experiments under argon atmosphere. Wet ball milling was applied before leaching for easier removal of Mg3B2O6. Leaching in 5 M HCl for 2.5 hours was found to be sufficient for removal of MgO and Mg3B2O6. By MCP, 30 hours of ball milling was enough to produce ZrB2 where 10% of excess Mg and B2O3 were used. MgO was easily removed when MCP products were leached in 1 M HCl for 30 minutes. Complete reduction of ZrO2 could not be achieved in either production method because of the stability of ZrO2. Hence, after leaching VCS or MCP products, final product was composed of ZrB2 and ZrO2.
Formation of LaB6 and CeB6 were very similar to each other via both methods. Mg3B2O6 appeared as a side product in the formation of both borides by VCS. After wet ball milling, products were leached in 1 M HCl for 15 hours and pure LaB6 or CeB6 was obtained. As in ZrB2 production, 30 hours of ball milling was sufficient to form these hexaborides by MCP. MgO was removed after leaching in 1 M HCl for 30 minutes and the desired hexaboride was obtained in pure form.
|
255 |
Mixed metal oxide - noble metal catalysts for total oxidation of volatile organic compounds and carbon monoxideFerrandon, Magali January 2001 (has links)
<p>CO, volatile organic compounds, and polyaromatics areubiquitous air pollutants that give rise to deleterious healthand environmental effects. Such compounds are emitted, forinstance, by the combustion of wood, particularly fromsmall-scale heating appliances. Total catalytic oxidation isconsidered to be an effective approach in controlling theseemissions, however, some problems remain such as thenon-availability of catalysts with low-cost, high activity andstability in prevailing conditions. Hence, this thesis aims atthe development of oxidation catalysts and improvedunderstanding of their behaviour.</p><p>The catalytic activity was evaluated for the oxidation of amixture of CO, naphthalene (or ethylene), and methane inpresence of carbon dioxide, water, oxygen and nitrogen. Variouscharacterisation techniques, including Temperature-ProgrammedReduction and Oxidation, BET-Surface Area Analysis, X-RayDiffraction, X-Ray Photoelectron Spectroscopy, RamanSpectroscopy and Scanning and Transmission Electron Microscopywere used.</p><p>In the first part of this thesis, catalysts based on metaloxides (MnO<sub>x</sub>, CuO) and/or a low amount of noble metals (Pt, Pd)supported on alumina washcoat were selected. It was shown thatPt and Pd possessed a superior catalytic activity to that ofCuO and MnO<sub>x</sub>for the oxidation of CO, C<sub>10</sub>H<sub>8</sub>and C<sub>2</sub>H<sub>4</sub>, while for the oxidation of CH<sub>4</sub>, CuO was largely more active than noble metals,and MnO<sub>x</sub>as active as Pd and Pt. Some mixed metaloxide-noble metal catalysts showed decreased activity comparedto that of noble metals, however, a higher noble metal loadingor a successive impregnation with noble metals led to positivesynergetic effects for oxidation.</p><p>Deactivation of the catalysts by thermal damage and sulphurpoisoning is addressed in the second part of the dissertation.An alumina washcoat was found to be well anchored to themetallic support after thermal treatment at 900°C due tothe growth of alumina whiskers. The sintering of the washcoatwas accelerated after high temperature treatments in thepresence of metal catalysts. In addition, alumina was found toreact with CuO, particularly in presence of noble metals at900°C, to form inactive CuAl<sub>2</sub>O<sub>4</sub>. However, MnO<sub>x</sub>catalyst benefits from the more active Mn<sub>3</sub>O<sub>4</sub>phase at high temperature, which makes it asuitable active catalyst for the difficult oxidation of CH<sub>4</sub>. Pt sintering was delayed when mixed with CuO,thus giving more thermally resistant catalyst. The mixed metaloxide-noble metal catalysts showed higher activity afterpre-sulphation of the catalysts with 1000 ppm SO<sub>2</sub>in air at 600°C or during activitymeasurement in presence of 20 ppm SO<sub>2</sub>in the gas mixture, compared to single componentcatalysts. In some cases, the activities of the mixed catalystswere promoted by pre-sulphation due to the presence of sulphatespecies.</p><p>Thermal stabilisation of the catalytic componentsand thealumina by promotion of La in the washcoat is discussed in thethird section. The stabilising effect of La at high temperatureis also compared to that of Ce added in the catalysts for otherpurposes. Due to its better dispersion, La contributed to thethermal stabilisation of the alumina washcoat and its activecomponents to a higher extent than Ce did. La provided a betterdispersion and a higher saturation of metal oxides in thealumina support, and at the same time stabilised the activityof the catalysts by preventing undesirable solid-phasereactions between metal oxide and alumina. In addition, La wasfound to enhance the dispersion and the oxygen mobility of CeO<sub>2</sub>. Cu-Ce interactions were found to promotesubstantially the CO oxidation due to an increase of thestability and reducibility of Cu species. Synergetic effectswere also found between Ce and La in the washcoat of CuO-Ptcatalyst, which facilitated the formation of reduced Pt and CeO<sub>2</sub>, thus enhancing significantly the catalyticactivity compared to that of a Pt only catalyst.</p><p>The last part was an attempt to demonstrate the potential ofa catalyst equipped with a pre-heating device in a full-scalewood-fired boiler for minimising the high emissions during thestart-up phase. During the first ten minutes of the burningcycle a significant reduction of CO and hydrocarbons wereachieved.</p><p><b>Keywords</b>: wood combustion, catalysts, total oxidation,manganese, copper, platinum, palladium, lanthanum, cerium, CO,VOC, methane, deactivation, thermal stability, sulphurdioxide.</p>
|
256 |
Synthesis and characterization methods of palladium-doped ceria-zirconia compoundsGraves-Brook, Melissa Kaye, January 2005 (has links)
Thesis (M.S.) -- Mississippi State University. Dave C. Swalm School of Chemical Engineering. / Title from title screen. Includes bibliographical references.
|
257 |
Synthèse solvothermale supercritique de nanostructures d'oxyde de cérium / Supercritical solvothermal synthesis of cerium oxide nanostructuresSlostowski, Cédric 07 December 2012 (has links)
La synthèse contrôlée de nanoparticules constitue toujours un enjeu majeur en science des matériaux (pour des applications telles que la catalyse par exemple) et la voie «fluides supercritiques» permet de répondre en partie à ce challenge. Dans ce contexte, ce travail de thèse a été consacré à l’élaboration de nanostructures d’oxyde de cérium aux caractéristiques contrôlées (tailles, morphologies, propriétés de surface,…) par synthèse solvothermale supercritique. A partir de l’étude de l’influence des paramètres opératoires du procédé sur les caractéristiques physico-chimiques des nanomatériaux obtenus, des mécanismes de formation et de fonctionnalisation de surface ont été proposés. D’un point de vue applicatif, ces poudres ont été caractérisées qualitativement et quantitativement vis-à-vis de la capture réversible du CO2. / The controlled synthesis of nanoparticles remains of key importance in materials science (for applications such as catalysis for instance) and “supercritical fluids” processes allow partially addressing this challenge. In this context, this PhD work has been dedicated to the synthesis of cerium oxide nanostructures with controlled characteristics (size, morphology, surface property,…) by supercritical solvothermal approaches. Through the study of the influence of process operating parameters on physicochemical characteristics of the synthesized materials, formation and surface modification mechanisms have been proposed. From an applicative point of view, powders have been submitted to qualitative and quantitative characterization towards CO2 capture.
|
258 |
Parametros de rede e resistividade eletrica em solucoes solidas de ceria - itriaREY, JOSE F.Q. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:46:40Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:56:06Z (GMT). No. of bitstreams: 1
07610.pdf: 4151963 bytes, checksum: 44edae9437590a9401a9113766dec153 (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
259 |
Caracterização microestrutural e mecânica da liga 354.0 com adições de cério e zircônioBevilaqua, William Lemos January 2016 (has links)
Considerando as crescentes aplicações das ligas fundidas de alumínio-silício em altas temperaturas e seu importante papel relacionado a redução do consumo de combustíveis fósseis no setor automotivo, este trabalho de pesquisa tem como principal objetivo investigar os efeitos da adição combinada de cério e zircônio na microestrutura e propriedades mecânicas da liga 354.0, visando sua otimização em temperaturas de trabalho elevadas. Para atender a este objetivo, foram desenvolvidas três ligas experimentais com adições constantes de Ce (0,3%) e crescentes de Zr (0,16; 0,27 e 0,36% em peso). Observações microestruturais e medições de dureza foram realizadas em todas as etapas de processamento (condições bruto de fusão, solubilizado, envelhecido naturalmente e artificialmente) buscando caracterizar o efeito destes elementos e também otimizar as etapas de tratamento térmico. Adicionalmente, ensaios de tração foram executados a temperatura ambiente e também a 175, 210, 245 e 275 °C na condição T6. A análise microestrutural na condição bruto de fusão revela que as adições combinadas de Ce e Zr, levaram a formação de novas fases intermetálicas na matriz, além de influenciar de forma significativa a orientação da rede de partículas de silício, sendo estas características ainda remanescentes após o tratamento térmico de solubilização. Em relação a resposta das ligas modificadas nas condições T4 e T6, a adição de Ce e Zr conduz a comportamentos distintos em relação a cinética de endurecimento devido a reação Ce-Cu durante a solidificação das ligas, a qual reduz substancialmente a quantidade de cobre disponível para endurecimento por precipitação. Considerando o incremento de Zr na composição química das ligas, este tem apenas o efeito de endurecimento por solução sólida, não afetando de forma significativa o processo de envelhecimento. Os resultados obtidos dos ensaios de tração realizados em diferentes temperaturas mostraram um desempenho superior na condição T6, principalmente utilizando concentrações de 0,27%Zr em ensaios conduzidos a 210 °C, apresentando um aumento na tensão limite de resistência de aproximadamente 6,7% em relação a liga padrão. / In view of increasing in cast aluminum-silicon alloys for high temperature applications and it´s important role for reduce fuel consumption in automotive industry, the aim of this research is investigated the effects of cerium and zirconium additions upon the microstructure and mechanical properties 354 alloy, aiming to improve high temperature behavior. To this goal, was development three experimental alloys with fixed cerium (0.3%) and increasing zirconium content (0.16; 0.27 and 0.36 wt.%). Microstructural observations and hardness measurements were performed in all process steps (as cast, solutionized, natural and artificial aged), for characterize effects of these elements and also optimize the steps of heat treatment. In addition, tensile tests were performed at room temperature and also 175, 210, 245 e 275 °C in the T6 condition. Microstructural analysis as cast condition leads the formation of new intermetallic phases in the matrix, and significantly modification in silicon particle network, which are still remains characteristics after solution heat treatment. In regarding the response of modified alloys under T4 and T6 conditions, the addition of Ce and Zr leads to different behavior in hardening kinetics due to Ce-Cu reaction during alloys solidification, which substantially reduces amount available copper for precipitation hardening. In despite increase of Zr in the chemical composition of the alloys, considering an increase of zirconium content in alloys, the only effect is solid solution strengthening, does not affecting the age process. Tensile properties in different temperatures show an increase in T6 condition for modify alloys with 0.27 wt.%, particularly in 210 °C, exhibits an increase that 6.7% compared with the standard alloy.
|
260 |
Obtenção e caracterização de pós Ce0,8La0,2O1,9 e Ce0,9Ca0,1O1,9 via síntese por combustão visando sua aplicação em SOFCScarabelot, Evandro Garske January 2016 (has links)
O dióxido de cério (CeO2), pode apresentar condutividade iônica e eletrônica (condutor misto) em temperaturas relativamente baixas (considerando a faixa de trabalho 1000°C de uma SOFC). Esta característica torna este material promissor para uso em células a combustível de óxido sólido (SOFC ou CCOS) assim como em catalisadores. Vale destacar que em altas temperaturas o dióxido de cério puro é um mau condutor iônico, contudo pode-se obter um aumento significativo com a substituição estrutural do íon cério (Ce+4) por outro íon metálico de menor valência (La+3 e Ca+2). O estudo proposto consiste em sintetizar óxido de cério dopado com lantânio e cálcio com características microestruturais e elétricas adequadas para uso em uma CCOS. Utilizando o método de síntese de combustão foi estudado a influência que o excesso de combustível (sacarose) pode proporcionar nas características finais dos pós cerâmicos. A caracterização dos pós foi realizada pelas técnicas de raios-X (DRX), área superficial especifica (BET), análise termogravimétrica (TGA), Microscopia Eletrônica de: Varredura (MEV) e Transmissão (MET), Microscopia de Calefação (MC) e por fim a análise elétrica por meio da Espectroscopia de Impedância Eletroquímica (EIE). Os principais resultados mostraram que a técnica de síntese por combustão é um método eficiente para obtenção de pós nanoparticulados, bem dispersos e com elevada homogeneidade. Observou-se ainda que a troca do tipo de dopante assim como o teor de combustível utilizado na síntese interfere diretamente nas propriedades microestruturais, físicas e elétricas dos compostos finais a base de céria dopada. As amostras apresentaram comportamento condutor em baixas temperaturas (500°C) o que viabiliza sua utilização como catalizadores e também em CCOS após tratamentos térmicos em atmosferas adequadas para aplicação como eletrodos ou eletrólitos. Os resultados também demonstram que a céria dopada com cálcio tem características que se torna viável a substituição do lantânio para uso em uma CCOS. / The cerium dioxide (CeO2) has ionic and electronic conductivity (mixed conductor) properties at relatively low temperatures (considering a working range of 1000°C for a SOFC). These characteristics make this material appropriate for use as anode in solid oxide fuel cells (SOFC or CCOS). It should be mentioned that pure cerium dioxide is a bad ionic conductor in high temperatures, but we have a significant increase with the structural substitution of the cerium ion (Ce+4) by another metal ion of lower valence (in its crystalline lattice). The proposed study consisted in the synthesis of ceria oxide with lanthanum and/ or calcium with microstructural and electrical characteristics, suitable for use in a CCOS. Using the combustion synthesis, the influence of excess of fuel (sucrose) on the final characteristics of the ceramic powder has been analyzed. The characterization of the powders was realized using X-ray (XRD), specific surface area (BET), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Electron Microscope Transmission (TEM), Microscope Heating (HSM) and Electrochemical Impedance Spectroscopy (EIS). The main results showed that the combustion synthesis technique is an efficient method to obtain nanoparticulate and well dispersed powders with high homogeneity. It was observed that the exchange of the dopant type as well as the fuel content used in the synthesis interferes directly in the microstructural, physical and electrical properties of the final compounds of ceria doped. Therefore, the calcium doped ceria has interesting characteristics for use in a CCOS.
|
Page generated in 0.022 seconds