Spelling suggestions: "subject:"champs aléatoire dde markov."" "subject:"champs aléatoire dde darkov.""
1 |
Impact du choix de la fonction de perte en segmentation d'images et application à un modèle de couleursPoirier, Louis-François January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Champs aléatoires markoviens arborescents de distributions marginales PoissonCôté, Benjamin 16 August 2024 (has links)
Pour une bonne modélisation mathématique de l'occurrence de phénomènes aléatoires, part fondamentale de la discipline actuarielle, il est nécessaire d'employer des distributions multivariées permettant de capturer adéquatement les relations de dépendance présentes entre les phénomènes. Celles qu'offrent les champs aléatoires markoviens, une famille de modèle probabilistes graphiques, répondent à ce besoin, les relations de dépendance qu'elles introduisent se calquant à un arbre ou à un graphe. Les champs aléatoires markoviens misent ainsi sur les riches possibilités de topologies d'arbres et de graphes pour offrir cette même richesse en termes de dépendance. Une nouvelle famille de champs aléatoires markoviens arborescents, c'est-à-dire se basant sur des arbres, est proposée. Les membres de cette famille se distinguent par le fait qu'ils ont des distributions marginales fixes de Poisson, « fixes » dans le sens que la dépendance introduite n'a pas d'impact sur elles. Des distribution marginales fixes sont inhabituelles pour un champ aléatoire markovien, bien que généralement désirables pour fins de modélisation. Cette caractéristique est possible par l'encapsulation, dans les arêtes de l'arbre, de la dynamique de propagation induite par l'opérateur d'amincissement binomial. Cela mène également à une représentation stochastique intuitive des champs aléatoires markoviens de la famille, à des méthodes simples de simulation et à des expressions analytiques pour leur fonction de masses de probabilités conjointe et leur fonction génératrice de probabilités conjointe, notamment. Quantités importantes dans un contexte actuariel, la somme des composantes du champ aléatoire markovien, interprétable comme le nombre total d'événement s'étant produits, et les contributions individuelles de ces composantes sont étudiées en profondeur. Cette analyse passe notamment par l'établissement d'ordres stochastiques. À cet effet, un nouvel ensemble partiellement ordonné est défini pour comparer des arbres aux topologies différentes selon la distribution qu'ils induisent pour la somme, ce qui est, à notre connaissance, novateur dans le contexte de modèles pobabilistes graphiques. Est offerte une comparaison de cet ensemble partiellement ordonné avec quelques autres en lien avec la théorie spectrale des graphes. / For adequate mathematical modeling of random phenomena's occurrences, it is necessary to employ multivariate distributions that appropriately capture the existing dependence relations between those phenomena. The multivariate distributions granted by Markov random fields, a family of probabilistic graphical models, answer to this need, by encrypting the dependence scheme they introduce on a tree or a graph. Markov random fields thus leverage on the rich possibilities of tree shapes and graph shapes to provide these possibilities in terms of dependence schemes. We propose a new family of tree-based Markov random fields, characterized by their Poisson marginal distributions. The marginal distributions are also fixed, meaning they are not affected by the introduced dependence. This fixedness is uncommon for Markov random fields, while being desirable for modeling purposes. It is obtained from the encapsulation, in the edges of the tree, of the propagation dynamic induced by the binomial thinning operator. This leads to an intuitive stochastic representation of Markov random fields from the proposed family, simple methods of simulation, and analytic expressions for their joint probability mass function and their joint probability generating function, notably. Important quantities in an actuarial context are the sum of the components of the Markov random field, interpreted as the total number of occurring phenomena, and the individual contributions of these components. They are thoroughly studied, notably via the use of stochastic order relations. We incidently design a new partially ordered set (poset) of trees, in order to compare trees of different shapes based on the distribution of the sum they respectively convey. To our knowledge, this approach is innovative in the context of probabilistic graphical models. We provide comparisons of the newly defined poset with some other posets of trees fetched from spectral graph theory.
|
3 |
Knowledge-based image segmentation using sparse shape priors and high-order MRFs / Segmentation d’images avec des a priori de forme parcimonieux et des champs de Markov aléatoires d’ordre supérieurXiang, Bo 28 November 2013 (has links)
Nous présentons dans cette thèse une approche nouvelle de la segmentation d’images, avec des descripteurs a priori utilisant des champs de Markov d’ordre supérieur. Nous représentons le modèle de forme par un graphe de distribution de points qui décrit les informations a priori des invariants de pose grâce à des cliques L1 discrètes d’ordre supérieur. Chaque clique de triplet décrit les variations statistiques locales de forme par des mesures d’angle,ce qui assure l’invariance aux transformations globales (translation, rotation et échelle). L’apprentissage d’une structure de graphe discret d’ordre supérieur est réalisé grâce à l’apprentissage d’un champ de Markov aléatoire utilisant une décomposition duale, ce qui renforce son efficacité tout en préservant sa capacité à rendre compte des variations.Nous introduisons la connaissance a priori d’une manière innovante pour la segmentation basée sur un modèle. Le problème de la segmentation est ici traité par estimation statistique d’un maximum a posteriori (MAP). L’optimisation des paramètres de la modélisation- c’est à dire de la position des points de contrôle - est réalisée par le calcul d’une fonction d’énergie globale de champs de Markov (MRF). On combine ainsi les calculs statistiques régionaux et le suivi des frontières avec la connaissance a priori de la forme.Les descripteurs invariants sont estimés par des potentiels de Markov d’ordre 2, tandis que les caractéristiques régionales sont transposées dans un espace de caractéristiques et calculées grâce au théorème de la Divergence.De plus, nous proposons une nouvelle approche pour la segmentation conjointe de l’image et de sa modélisation ; cette méthode permet d’obtenir une segmentation plus fine lorsque la délimitation précise d’un objet est recherchée. Un modèle graphique combinant l’information a priori et les informations de pixel est développé pour réaliser l’unité des modules "top-down" et "bottom-up". La cohérence entre l’image et sa modélisation est assurée par une décomposition qui associe les parties du modèle avec la labellisation de chaque pixel.Les deux champs de Markov d’ordre supérieur considérés sont optimisés par les algorithmes de l’état de l’art. Les résultats prometteurs dans les domaines de la vision par ordinateur et de l’imagerie médicale montrent le potentiel de cette méthode appliquée à la segmentation. / In this thesis, we propose a novel framework for knowledge-based segmentation using high-order Markov Random Fields (MRFs). We represent the shape model as a point distribution graphical model which encodes pose invariant shape priors through L1 sparse higher order cliques. Each triplet clique encodes the local shape variation statistics on the angle measurements which inherit invariance to global transformations (i.e. translation,rotation and scale). A sparse higher-order graph structure is learned through MRF training using dual decomposition, producing boosting efficiency while preserving its ability to represent the shape variation.We incorporate the prior knowledge in a novel framework for model-based segmentation.We address the segmentation problem as a maximum a posteriori (MAP) estimation in a probabilistic framework. A global MRF energy function is defined to jointly combine regional statistics, boundary support as well as shape prior knowledge for estimating the optimal model parameters (i.e. the positions of the control points). The pose-invariant priors are encoded in second-order MRF potentials, while regional statistics acting on a derived image feature space can be exactly factorized using Divergence theorem. Furthermore, we propose a novel framework for joint model-pixel segmentation towardsa more refined segmentation when exact boundary delineation is of interest. Aunified model-based and pixel-driven integrated graphical model is developed to combine both top-down and bottom-up modules simultaneously. The consistency between the model and the image space is introduced by a model decomposition which associates the model parts with pixels labeling. Both of the considered higher-order MRFs are optimized efficiently using state-of the-art MRF optimization algorithms. Promising results on computer vision and medical image applications demonstrate the potential of the proposed segmentation methods.
|
4 |
Extraction et caractérisation du mouvement cardiaque en imagerie scanner multibarrette.Simon, Antoine 12 December 2005 (has links) (PDF)
L'analyse de la cinétique cardiaque est d'un grand intérêt diagnostique dans la lutte contre les pathologies cardio-vasculaires. Deux méthodes sont proposées afin de réaliser une estimation du mouvement du cœur à partir de séquences dynamiques de volumes tridimensionnels acquises en imagerie scanner multibarrette. Ces méthodes reposent toutes deux sur une mise en correspondance, réalisée dans un cadre markovien et suivant un schéma multirésolution. La première méthode, estimant les correspondances entre des surfaces pré-segmentées, est dépendante de la cohérence temporelle de cette segmentation. La seconde méthode estime les correspondances entre, d'une part, la surface segmentée et, d'autre part, le volume de données original correspondant à l'instant suivant. L'estimation du mouvement et la segmentation sont alors réalisés, sur toute la séquence, au cours d'un unique processus. Les deux méthodes proposées sont validées sur données simulées et sur données réelles.
|
5 |
Champs aléatoires de Markov cachés pour la cartographie du risque en épidémiologieAzizi, Lamiae 13 December 2011 (has links) (PDF)
La cartographie du risque en épidémiologie permet de mettre en évidence des régionshomogènes en terme du risque afin de mieux comprendre l'étiologie des maladies. Nousabordons la cartographie automatique d'unités géographiques en classes de risque commeun problème de classification à l'aide de modèles de Markov cachés discrets et de modèlesde mélange de Poisson. Le modèle de Markov caché proposé est une variante du modèle dePotts, où le paramètre d'interaction dépend des classes de risque.Afin d'estimer les paramètres du modèle, nous utilisons l'algorithme EM combiné à une approche variationnelle champ-moyen. Cette approche nous permet d'appliquer l'algorithmeEM dans un cadre spatial et présente une alternative efficace aux méthodes d'estimation deMonte Carlo par chaîne de Markov (MCMC).Nous abordons également les problèmes d'initialisation, spécialement quand les taux de risquesont petits (cas des maladies animales). Nous proposons une nouvelle stratégie d'initialisationappropriée aux modèles de mélange de Poisson quand les classes sont mal séparées. Pourillustrer ces solutions proposées, nous présentons des résultats d'application sur des jeux dedonnées épidémiologiques animales fournis par l'INRA.
|
6 |
Analyse statique et dynamique de cartes de profondeurs : application au suivi des personnes à risque sur leur lieu de vie / Static and dynamic analysis of depth maps : application to the monitoring of the elderly at their living placeCormier, Geoffroy 10 November 2015 (has links)
En France, les chutes constituent la première cause de mortalité chez les plus de 75 ans, et la seconde chez les plus de 65 ans. On estime qu'elle engendre un coût de 1 à 2 milliards d'euros par an pour la société. L'enjeu humain et socio-économique est colossal, sachant que le risque de chute est multiplié par 20 après une première chute, que le risque de décès est multiplié par 4 dans l'année qui suit une chute, que les chutes concernent 30% des personnes de plus de 65 ans et 50% des personnes de plus de 85 ans, et que l'on estime que d'ici 2050, plus de 30% de la population sera âgée de plus de 65 ans. Cette thèse propose un dispositif de détection de présence au sol se basant sur l'analyse de cartes de profondeurs acquises en temps réel, ainsi qu'une amélioration du dispositif proposé utilisant également un capteur thermique. Les cartes de profondeurs et les images thermiques nous permettent de nous affranchir des conditions d'illumination de la scène observée, et garantissent l'anonymat des personnes qui évoluent dans le champ de vision du dispositif. Cette thèse propose également différentes méthodes de détection du plan du sol dans une carte de profondeurs, le plan du sol constituant une référence géométrique nécessaire au dispositif proposé. Une enquête psychosociale a été réalisée, qui nous a permis d'évaluer l'acceptabilité a priori dudit dispositif. Cette enquête a démontré sa bonne acceptabilité, et a fourni des préconisations quant aux points d'amélioration et aux écueils à éviter. Enfin, une méthode de suivi d'objets dans une carte de profondeurs est proposée, un objectif à plus long terme consistant à mesurer l'activité des individus observés. / In France, fall is the first death cause for people aged 75 and more, and the second death cause for people aged 65 and more. It is considered that falls generate about 1 to 2 billion euros health costs per year. The human and social-economical issue is crucial, knowing that for the mentioned populations, fall risk is multiplied by 20 after a first fall; that the death risk is multiplied by 4 in the year following a fall; that per year, 30% of the people aged 65 and more and 50% of the people aged 85 and more are subject to falls; and that it is estimated that more than 30% of the French population whill be older than 65 years old by 2050. This thesis proposes a ground lying event detection device which bases on the real time analysis of depth maps, and also proposes an improvement of the device, which uses an additional thermal sensor. Depth maps and thermal images ensure the device is independent from textures and lighting conditions of the observed scenes, and guarantee that the device respects the privacy of those who pass into its field of view, since nobody can be recognized in such images. This thesis also proposes several methods to detect the ground plane in a depth map, the ground plane being a geometrical reference for the device. A psycho-social inquiry was conducted, and enabled the evaluation of the a priori acceptability of the proposed device. This inquiry demonstrated the good acceptability of the proposed device, and resulted in recommendations on points to be improved and on pitfalls to avoid. Last, a method to separate and track objects detected in a depth map is proposed, the measurement of the activity of observed individuals being a long term objective for the device.
|
7 |
Recalage déformable à base de graphes : mise en correspondance coupe-vers-volume et méthodes contextuelles / Graph-based deformable registration : slice-to-volume mapping and context specific methodsFerrante, Enzo 03 May 2016 (has links)
Les méthodes de recalage d’images, qui ont pour but l’alignement de deux ou plusieurs images dans un même système de coordonnées, sont parmi les algorithmes les plus anciens et les plus utilisés en vision par ordinateur. Les méthodes de recalage servent à établir des correspondances entre des images (prises à des moments différents, par différents senseurs ou avec différentes perspectives), lesquelles ne sont pas évidentes pour l’œil humain. Un type particulier d’algorithme de recalage, connu comme « les méthodes de recalage déformables à l’aide de modèles graphiques » est devenu de plus en plus populaire ces dernières années, grâce à sa robustesse, sa scalabilité, son efficacité et sa simplicité théorique. La gamme des problèmes auxquels ce type d’algorithme peut être adapté est particulièrement vaste. Dans ce travail de thèse, nous proposons plusieurs extensions à la théorie de recalage déformable à l’aide de modèles graphiques, en explorant de nouvelles applications et en développant des contributions méthodologiques originales.Notre première contribution est une extension du cadre du recalage à l’aide de graphes, en abordant le problème très complexe du recalage d’une tranche avec un volume. Le recalage d’une tranche avec un volume est le recalage 2D dans un volume 3D, comme par exemple le mapping d’une tranche tomographique dans un système de coordonnées 3D d’un volume en particulier. Nos avons proposé une formulation scalable, modulaire et flexible pour accommoder des termes d'ordre élevé et de rang bas, qui peut sélectionner le plan et estimer la déformation dans le plan de manière simultanée par une seule approche d'optimisation. Le cadre proposé est instancié en différentes variantes, basés sur différentes topologies du graph, définitions de l'espace des étiquettes et constructions de l'énergie. Le potentiel de notre méthode a été démontré sur des données réelles ainsi que des données simulées dans le cadre d’une résonance magnétique d’ultrason (où le cadre d’installation et les stratégies d’optimisation ont été considérés).Les deux autres contributions inclues dans ce travail de thèse, sont liées au problème de l’intégration de l’information sémantique dans la procédure de recalage (indépendamment de la dimensionnalité des images). Actuellement, la plupart des méthodes comprennent une seule fonction métrique pour expliquer la similarité entre l’image source et l’image cible. Nous soutenons que l'intégration des informations sémantiques pour guider la procédure de recalage pourra encore améliorer la précision des résultats, en particulier en présence d'étiquettes sémantiques faisant du recalage un problème spécifique adapté à chaque domaine.Nous considérons un premier scénario en proposant un classificateur pour inférer des cartes de probabilité pour les différentes structures anatomiques dans les images d'entrée. Notre méthode vise à recaler et segmenter un ensemble d'images d'entrée simultanément, en intégrant cette information dans la formulation de l'énergie. L'idée principale est d'utiliser ces cartes estimées des étiquettes sémantiques (fournie par un classificateur arbitraire) comme un substitut pour les données non-étiquettées, et les combiner avec le recalage déformable pour améliorer l'alignement ainsi que la segmentation.Notre dernière contribution vise également à intégrer l'information sémantique pour la procédure de recalage, mais dans un scénario différent. Dans ce cas, au lieu de supposer que nous avons des classificateurs arbitraires pré-entraînés à notre disposition, nous considérons un ensemble d’annotations précis (vérité terrain) pour une variété de structures anatomiques. Nous présentons une contribution méthodologique qui vise à l'apprentissage des critères correspondants au contexte spécifique comme une agrégation des mesures de similarité standard à partir des données annotées, en utilisant une adaptation de l’algorithme « Latent Structured Support Vector Machine ». / Image registration methods, which aim at aligning two or more images into one coordinate system, are among the oldest and most widely used algorithms in computer vision. Registration methods serve to establish correspondence relationships among images (captured at different times, from different sensors or from different viewpoints) which are not obvious for the human eye. A particular type of registration algorithm, known as graph-based deformable registration methods, has become popular during the last decade given its robustness, scalability, efficiency and theoretical simplicity. The range of problems to which it can be adapted is particularly broad. In this thesis, we propose several extensions to the graph-based deformable registration theory, by exploring new application scenarios and developing novel methodological contributions.Our first contribution is an extension of the graph-based deformable registration framework, dealing with the challenging slice-to-volume registration problem. Slice-to-volume registration aims at registering a 2D image within a 3D volume, i.e. we seek a mapping function which optimally maps a tomographic slice to the 3D coordinate space of a given volume. We introduce a scalable, modular and flexible formulation accommodating low-rank and high order terms, which simultaneously selects the plane and estimates the in-plane deformation through a single shot optimization approach. The proposed framework is instantiated into different variants based on different graph topology, label space definition and energy construction. Simulated and real-data in the context of ultrasound and magnetic resonance registration (where both framework instantiations as well as different optimization strategies are considered) demonstrate the potentials of our method.The other two contributions included in this thesis are related to how semantic information can be encompassed within the registration process (independently of the dimensionality of the images). Currently, most of the methods rely on a single metric function explaining the similarity between the source and target images. We argue that incorporating semantic information to guide the registration process will further improve the accuracy of the results, particularly in the presence of semantic labels making the registration a domain specific problem.We consider a first scenario where we are given a classifier inferring probability maps for different anatomical structures in the input images. Our method seeks to simultaneously register and segment a set of input images, incorporating this information within the energy formulation. The main idea is to use these estimated maps of semantic labels (provided by an arbitrary classifier) as a surrogate for unlabeled data, and combine them with population deformable registration to improve both alignment and segmentation.Our last contribution also aims at incorporating semantic information to the registration process, but in a different scenario. In this case, instead of supposing that we have pre-trained arbitrary classifiers at our disposal, we are given a set of accurate ground truth annotations for a variety of anatomical structures. We present a methodological contribution that aims at learning context specific matching criteria as an aggregation of standard similarity measures from the aforementioned annotated data, using an adapted version of the latent structured support vector machine (LSSVM) framework.
|
8 |
Champs aléatoires de Markov cachés pour la cartographie du risque en épidémiologie / Hidden Markov random fields for risk mapping in epidemiologyAzizi, Lamiae 13 December 2011 (has links)
La cartographie du risque en épidémiologie permet de mettre en évidence des régionshomogènes en terme du risque afin de mieux comprendre l’étiologie des maladies. Nousabordons la cartographie automatique d’unités géographiques en classes de risque commeun problème de classification à l’aide de modèles de Markov cachés discrets et de modèlesde mélange de Poisson. Le modèle de Markov caché proposé est une variante du modèle dePotts, où le paramètre d’interaction dépend des classes de risque.Afin d’estimer les paramètres du modèle, nous utilisons l’algorithme EM combiné à une approche variationnelle champ-moyen. Cette approche nous permet d’appliquer l’algorithmeEM dans un cadre spatial et présente une alternative efficace aux méthodes d’estimation deMonte Carlo par chaîne de Markov (MCMC).Nous abordons également les problèmes d’initialisation, spécialement quand les taux de risquesont petits (cas des maladies animales). Nous proposons une nouvelle stratégie d’initialisationappropriée aux modèles de mélange de Poisson quand les classes sont mal séparées. Pourillustrer ces solutions proposées, nous présentons des résultats d’application sur des jeux dedonnées épidémiologiques animales fournis par l’INRA. / The analysis of the geographical variations of a disease and their representation on a mapis an important step in epidemiology. The goal is to identify homogeneous regions in termsof disease risk and to gain better insights into the mechanisms underlying the spread of thedisease. We recast the disease mapping issue of automatically classifying geographical unitsinto risk classes as a clustering task using a discrete hidden Markov model and Poisson classdependent distributions. The designed hidden Markov prior is non standard and consists of avariation of the Potts model where the interaction parameter can depend on the risk classes.The model parameters are estimated using an EM algorithm and the mean field approximation. This provides a way to face the intractability of the standard EM in this spatial context,with a computationally efficient alternative to more intensive simulation based Monte CarloMarkov Chain (MCMC) procedures.We then focus on the issue of dealing with very low risk values and small numbers of observedcases and population sizes. We address the problem of finding good initial parameter values inthis context and develop a new initialization strategy appropriate for spatial Poisson mixturesin the case of not so well separated classes as encountered in animal disease risk analysis.We illustrate the performance of the proposed methodology on some animal epidemiologicaldatasets provided by INRA.
|
9 |
Modélisation de scènes urbaines à partir de données aériennes / Urban scene modeling from airborne dataVerdie, Yannick 15 October 2013 (has links)
L'analyse et la reconstruction automatique de scène urbaine 3D est un problème fondamental dans le domaine de la vision par ordinateur et du traitement numérique de la géométrie. Cette thèse présente des méthodologies pour résoudre le problème complexe de la reconstruction d'éléments urbains en 3D à partir de données aériennes Lidar ou bien de maillages générés par imagerie Multi-View Stereo (MVS). Nos approches génèrent une représentation précise et compacte sous la forme d'un maillage 3D comportant une sémantique de l'espace urbain. Deux étapes sont nécessaires ; une identification des différents éléments de la scène urbaine, et une modélisation des éléments sous la forme d'un maillage 3D. Le Chapitre 2 présente deux méthodes de classifications des éléments urbains en classes d'intérêts permettant d'obtenir une compréhension approfondie de la scène urbaine, et d'élaborer différentes stratégies de reconstruction suivant le type d'éléments urbains. Cette idée, consistant à insérer à la fois une information sémantique et géométrique dans les scènes urbaines, est présentée en détails et validée à travers des expériences. Le Chapitre 3 présente une approche pour détecter la 'Végétation' incluses dans des données Lidar reposant sur les processus ponctuels marqués, combinée avec une nouvelle méthode d'optimisation. Le Chapitre 4 décrit à la fois une approche de maillage 3D pour les 'Bâtiments' à partir de données Lidar et de données MVS. Des expériences sur des structures urbaines larges et complexes montrent les bonnes performances de nos systèmes. / Analysis and 3D reconstruction of urban scenes from physical measurements is a fundamental problem in computer vision and geometry processing. Within the last decades, an important demand arises for automatic methods generating urban scenes representations. This thesis investigates the design of pipelines for solving the complex problem of reconstructing 3D urban elements from either aerial Lidar data or Multi-View Stereo (MVS) meshes. Our approaches generate accurate and compact mesh representations enriched with urban-related semantic labeling.In urban scene reconstruction, two important steps are necessary: an identification of the different elements of the scenes, and a representation of these elements with 3D meshes. Chapter 2 presents two classification methods which yield to a segmentation of the scene into semantic classes of interests. The beneath is twofold. First, this brings awareness of the scene for better understanding. Second, deferent reconstruction strategies are adopted for each type of urban elements. Our idea of inserting both semantical and structural information within urban scenes is discussed and validated through experiments. In Chapter 3, a top-down approach to detect 'Vegetation' elements from Lidar data is proposed using Marked Point Processes and a novel optimization method. In Chapter 4, bottom-up approaches are presented reconstructing 'Building' elements from Lidar data and from MVS meshes. Experiments on complex urban structures illustrate the robustness and scalability of our systems.
|
10 |
Modélisation de scènes urbaines à partir de données aeriennesVerdie, Yannick 15 October 2013 (has links) (PDF)
L'analyse et la reconstruction automatique de scène urbaine 3D est un problème fondamental dans le domaine de la vision par ordinateur et du traitement numérique de la géométrie. Cette thèse présente des méthodologies pour résoudre le problème complexe de la reconstruction d'éléments urbains en 3D à partir de données aériennes Lidar ou bien de maillages générés par imagerie Multi-View Stereo (MVS). Nos approches génèrent une représentation précise et compacte sous la forme d'un maillage 3D comportant une sémantique de l'espace urbain. Deux étapes sont nécessaires; une identification des différents éléments de la scène urbaine, et une modélisation des éléments sous la forme d'un maillage 3D. Le Chapitre 2 présente deux méthodes de classifications des éléments urbains en classes d'intérêts permettant d'obtenir une compréhension approfondie de la scène urbaine, et d'élaborer différentes stratégies de reconstruction suivant le type d'éléments urbains. Cette idée, consistant à insérer à la fois une information sémantique et géométrique dans les scènes urbaines, est présentée en détails et validée à travers des expériences. Le Chapitre 3 présente une approche pour détecter la 'Végétation' incluses dans des données Lidar reposant sur les processus ponctuels marqués, combinée avec une nouvelle méthode d'optimisation. Le Chapitre 4 décrit à la fois une approche de maillage 3D pour les 'Bâtiments' à partir de données Lidar et de données MVS. Des expériences sur des structures urbaines larges et complexes montrent les bonnes performances de nos systèmes.
|
Page generated in 0.1081 seconds