Spelling suggestions: "subject:"characterisation,"" "subject:"haracterisation,""
281 |
Designing functional magnetic nanoparticles with flame spray pyrolysis for bio-applicationsLi, Dan, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2009 (has links)
Magnetic nanoparticles (MNPs) hold great promise in the fields of biology and medicine. The synthesis of functional MNPs with precisely controlled crystallographic, physicochemical, and magnetic properties on a large scale still remains the challenge today. This thesis reports the exploration of liquid-fed flame spray pyrolysis (FSP) in the synthesis of functional MNPs, their surface modifications, and potential bio-applications. Superparamagnetic and ferromagnetic maghemite (γ-Fe2O3) nanoparticles, and silica-coated maghemite (SiO2/γ-Fe2O3) nanocomposites were synthesised using FSP. The size of γ-Fe2O3 was controllable from 6 to 53 nm, with morphology evolving from a disordered near-spherical shape to fully ordered 2-D hexagonal/octagonal platelet. The saturation magnetisation (Ms) increased from 21 to 74 emu/g with increasing particle size, up to 13 nm when Ms approached the bulk γ-Fe2O3 characteristics. In the case of SiO2/γ-Fe2O3, three distinct morphologies, namely the single segregated γ-Fe2O3 core- SiO2 shell, transitional mixed morphologies, and multi γ-Fe2O3 cores embedded in submicron SiO2 shell, were obtained. The core size, composite size, and morphology of γ- Fe2O3 were tunable by varying %SiO2 loading and the use of a quartz tube enclosure during flame synthesis. The magnetic behaviour correlated well with the crystal microstructure. Following the core particle design, protein adsorption-desorption behaviour on FSP-madeMNPs was studied. Bovine serum albumin (BSA) adsorption was found to follow the Langmuir isotherm, with high binding capacities (150−348 mg BSA/g particle) and fast association constants. Electrostatically governed BSA orientations were proposed for different particle-buffer systems. The adsorbed BSA was effectively recovered by pH-shift using K2HPO4. Subsequently, terminal amine, aldehyde, carboxylic, epoxy, mercapto and maleimide functionality were anchored onto the FSP-made γ-Fe2O3 particles. These versatile functional groups led to conjugation of active trypsin. The immobilised trypsin exhibited superior durability with >60% residual activity after one week, and excellent reusability for >5 cycles. The trypsin-conjugated MNPs are promising carriers in proteomics, demonstrating good substrate specificity with equivalent or better sequence coverage compared to free trypsin in insulin and BSA digestion. In another application, a refined silanisation procedure simultaneously reduced γ-Fe2O3 to Fe3O4, and generated thiol enriched surface for matrix metalloproteinase-2 (MMP-2) conjugation. The highly active MMP-2-conjugated MNPs could potentially enhance the interstitial transport of macromolecule/nanoparticles in drug delivery.
|
282 |
A Preliminary Exploration of Memory Controller Policies on Smartphone WorkloadsNarancic, Goran 26 November 2012 (has links)
This thesis explores memory performance for smartphone workloads. We design a Video Conference Workload (VCW) to model typical smartphone usage. We describe a trace-based methodology which uses a software implementation to mimic the behaviour of specialised hardware accelerators. Our methodology stores dataflow information from the original application to maintain the relationships between requests.
We first study seven address mapping schemes with our VCW, using a first-ready, first-come-first-served (FR-FCFS) memory scheduler. Our results show the best performing scheme is up to 82% faster than the worst. The VCW is memory intensive, with up to 86.8% bandwidth utilisation using the best performing scheme. We also test a Web Browsing and a set of computer vision workloads. Most are not memory intensive, with utilisation under 15%.
Finally, we compare four schedulers and find that the FR-FCFS scheduler using the Write Drain mode [8] performed the best, outperforming the worst scheduler by 6.3%.
|
283 |
Microscopic Characterisation of Solar Cells : An Electron Microscopy Study of Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4 Solar CellsWätjen, Jörn Timo January 2013 (has links)
The sun provides us with a surplus of energy convertible to electricity using solar cells. This thesis focuses on solar cells based on chalcopyrite (CIGSe) as well as kesterite (CZTS(e)) absorber layers. These materials yield record efficiencies of 20.4 % and 11.1 %, respectively. Especially for CZTS(e), the absorber layers often do not consist of one single desired phase but can exhibit areas with deviating material properties, referred to as secondary phases. Furthermore, several material layers are required for a working solar cell, each exhibiting interfaces. Even though secondary phases and interfaces represent a very small fraction of the solar cell they can have a profound influence on the over-all electrical solar cell characteristics. As such, it is crucial to understand how secondary phases and interfaces influence the local electrical characteristics. Characterising secondary phases and interfaces is challenging due to their small sample volume and relatively small differences in composition amongst others. This is where electronmicroscopy, especially transmission electron microscopy, offers valuable insight to material properties on the microscopic scale. The main challenge is, however, to link these material properties to the corresponding electrical characteristics of a solar cell. This thesis uses electron beam induced current imaging and introduces a new method for JV characterisation of solar cells on the micron scale. Combining microscopic structural and electrical characterisation techniques allowed identifying and characterising local defects found in the absorber layer of CIGS solar cells after thermal treatment. Furthermore, CZTSe solar cells in this thesis exhibited a low photo-current density which is traced to the formation of a current blocking ZnSe secondary phase at the front contact interface. The electron microscopy work has contributed to an understanding of the chemical stability of CZTS and has shown the need for an optimised back contact interface in order to avoid chemical decomposition reactions and formation of detrimental secondary phases. With this additional knowledge, a comprehensive picture of the material properties from the macroscopic down to the microscopic level can be attained throughout all required material layers.
|
284 |
ASSESSMENT OF THE WEAR AND CORROSION BEHAVIOUR OF TITANIUM CARBIDE-STAINLESS STEEL COMPOSITESChukwuma Candidus, Onuoha 17 June 2013 (has links)
Ceramic metal composites, or cermets, currently have widespread applications in the chemical, automotive and oil and gas sectors, due to their combination of high wear resistance, and aqueous corrosion resistance. In the present study, a family of novel titanium carbide (TiC)-stainless steel cermets has been produced as potential materials for use as erosion and corrosion resistant materials. The development of the TiC-stainless steel cermets is based on a simple melt infiltration technique, with the stainless steel “binder” contents varied from 5 to 30 vol.%, using the austenitic grades 304L and 316L, and the martensitic grade 410L. These materials have subsequently been evaluated for their wear and corrosion response, as well as characterisation of their basic mechanical properties and microstructure.
Results from wear and corrosion studies show an improvement in wear and corrosion resistance of the cermets at lower steel binder content . / The original abstract from thesis is below. Ceramic metal composites, or cermets, currently have widespread applications in the chemical, automotive and oil and gas sectors, due to their combination of high wear resistance, and aqueous corrosion resistance. In the present study, a family of novel titanium carbide (TiC)-stainless steel cermets has been produced as potential materials for use as erosion and corrosion resistant materials. The development of the TiC-stainless steel cermets is based on a simple melt infiltration technique, with the stainless steel “binder” contents varied from 5 to 30 vol.%, using the austenitic grades 304L and 316L, and the martensitic grade 410L. These materials have subsequently been evaluated for their wear and corrosion response, as well as characterisation of their basic mechanical properties and microstructure.
Reciprocating wear tests involved a ball-on-flat geometry (using a WC-Co counter face sphere), with loads varied from 20 to 80 N, for up to 120 minutes. The wear tracks were assessed using a high-resolution optical profilometer, in order to determine the wear volume. The specific wear rate of the cermets was found to increase with both the applied load and the steel binder content. To investigate the morphology of worn surfaces, scanning electron microscopy (SEM), and associated energy dispersive x-ray spectroscopy (EDS) were used, in order to fully understand the operative wear mechanisms. A transition from two- to three-body abrasive wear was observed, together with the formation of a oxygen-rich tribolayer, indicating that adhesive wear was also occurring on the cermets.
In order to assess the electrochemical behaviour of the cermets in a simulated seawater environment, the samples were evaluated using potentiodynamic, cyclic and potentiostatic polarisation tests, with basic corrosion parameters and rates subsequently determined through Tafel extrapolation and weight loss measurement. Each stage of electrochemical assessment was then evaluated by characterising the corroded surfaces and solution using SEM, EDS and inductively coupled plasma optical emission spectrometry. Microstructural observations using SEM images revealed significant degradation of the samples, with steel binder preferentially dissolved while TiC remained relatively unaffected. The corrosion rate of the cermets increases with steel binder content, which is attributed to the preferential dissolution of the binder.
|
285 |
EXAMINATION OF GEOLOGICAL INFLUENCE ON MACHINE EXCAVATION OF HIGHLY STRESSED TUNNELS IN MASSIVE HARD ROCKVilleneuve, MARLENE 27 September 2008 (has links)
A combined geological and rock mechanics approach to tunnel face behaviour prediction, based on improved understanding of brittle fracture processes during TBM excavation, was developed to complement empirical design and performance prediction for TBM tunnelling in hard rock geological conditions. A major challenge of this research was combining geological and engineering terminology, methods, and objectives to construct a unified Geomechanical Characterisation Scheme. The goal of this system is to describe the spalling sensitivity of hard, massive, highly stressed crystalline rock, often deformed by tectonic processes. Geological, lab strength testing and TBM machine data were used to quantify the impact of interrelated geological factors, such as mineralogy, grain size, fabric and the heterogeneity of all these factors at micro and macro scale, on spalling sensitivity and to combine these factors within a TBM advance framework. This was achieved by incorporating aspects of geology, tectonics, mineralogy, material strength theory, fracture process theory and induced stresses.
Three main approaches were used to verify and calibrate the Geomechanical Characterisation Scheme: geological and TBM data collection from tunnels in massive, highly-stressed rock, interpretation of published mineral-specific investigations of rock yielding processes, and numerical modelling the rock yielding processes in simulated strength tests and the TBM cutting process. The TBM performance investigation was used to identify the mechanism behind the chipping processes and quantify adverse conditions for chipping, including tough rock conditions and stress induced face instability. The literature review was used to identify the critical geological parameters for rock yielding processes and obtain strength and stiffness values for mineral-specific constitutive models. A texture-generating algorithm was developed to create realistic rock analogues and to provide user control over geological characteristics such as mineralogy, grain size and fabric.
This methodology was applied to investigate the TBM chipping process to calibrate the Geomechanical Characterisation Scheme. A Chipping Resistance Factor was developed to combine the quantified geological characteristic factors and laboratory strength values to predict conditions with high risk of poor chipping performance arising from tough rock. A Stress-Related Chip Potential Factor was developed to estimate conditions with high risk of advance rate reduction arising from stress-induced face instability. / Thesis (Ph.D, Geological Sciences & Geological Engineering) -- Queen's University, 2008-09-25 23:58:58.071
|
286 |
New methodologies and scenarios for evaluating tidal current energy potentialSankaran Iyer, Abhinaya January 2012 (has links)
Transition towards a low carbon economy raises concerns of loss of security of supply with high penetrations of renewable generation displacing traditional fossil fuel based generation. While wind and wave resources are increasingly forecastable, they are stochastic in nature. The tidal current resource, although variable has the advantage of being deterministic and truly predictable. With the first Crown Estate leasing round complete for wave and tidal current energy, plans are in place to install 1000 MW of tidal capacity in the Pentland Firth and Orkney waters. The aim of the work presented in this thesis is to examine the role tidal current energy can realistically play in the future electricity mix. To achieve this objective it was first necessary to develop new methodologies to capture the temporal and spatial variability of tidal current dynamics over long timescales and identify metrics relevant in a tidal energy context. These methodologies were developed for project scale resource characterisation, and provided a basis for development of a national scale dataset. The creation of project and national scale tidal datasets capture spatial and temporal variability at a level beyond previous insight, as demonstrated in case studies of three important early stage tidal current energy development sites. The provision of a robust national scale dataset enabled the development of realistic scenarios for the growth of the tidal current energy sector in UK waters. Assessing the various scenarios proposed indicates that first-generation technology solutions have the potential to generate up to 31 TWh/yr (over 8% of 2009 UK electricity demand). However, only 14 TWh/yr can be sensibly generated after incorporating realistic economic and environmental limitations proposed in this study. The preceding development of methodologies, datasets and scenarios enabled statistical analysis of the matching characteristics of future tidal energy generation potential with the present UK electricity demand and trends of electricity usage. This analysis demonstrated that the UK tidal current energy resource is much more in phase than has previously been understood, highlighting the flaws in previous studies suggesting that a combined portfolio of sites around the UK can deliver firm power. As there is negligible firm production, base-load contribution is insignificant. However, the time-series generated from this analysis identifies the role tidal current energy can play in meeting future energy demand and offer significant benefit for the operation of the electricity system as part of an integrated portfolio.
|
287 |
Etude de l'intégration du collage direct cuivre/oxyde pour l'élaboration d'une architecture 3D-SIC / Study of the integration of copper/oxide direct bonding for the development of a 3D-SIC architectureBeilliard, Yann 02 April 2015 (has links)
Cette thèse s'inscrit dans le contexte de l'intégration tridimensionnelle des dispositifs électroniques. Parmi les différentes techniques permettant d'assembler à la fois mécaniquement et électriquement les puces empilées, le collage direct de surfaces mixtes Cu-SiO2 représente l'option la plus prometteuse à ce jour. En effet, cette méthode permet d'atteindre la densité d'interconnexions de 106/cm² visée par l'industrie, tout en offrant une faible résistivité de contact et une excellente fiabilité. L'objectif de ce travail est de démontrer la compatibilité du procédé de collage direct hybride Cu-SiO2 avec des intégrations et des architectures proches de circuits réels. Dans ce but, des véhicules de tests intégrant des structures de cuivre à deux et quatre niveaux d'interconnexions ont été conçus spécifiquement. De plus, des simulations par éléments finis du procédé collage direct ont été développées au sein du logiciel Abaqus. Dans un premier temps, le procédé de collage direct puce-à-plaque en 200 et 300 mm est validé. Des caractérisations morphologiques et électriques montrent que cette méthode d'assemblage ne dégrade pas l'intégrité et les performances de structures de tests à deux niveaux par rapport à une intégration plaque-à-plaque. Par ailleurs, des tests de cyclage thermique confirment l'excellente robustesse mécanique des empilements. La deuxième partie de cette thèse s'intéresse à la caractérisation de la morphologie, des performances électriques et de la fiabilité de structures de tests à quatre niveaux d'interconnexions. Dans ce cas, l'architecture plaque-à-plaque en 200 mm des véhicules de tests se veut proche d'une intégration industrielle. Les diverses observations par microscopie électronique à balayage et en transmission indiquent une excellente qualité de collage des interfaces Cu/Cu et SiO2/SiO2. Par ailleurs, les mécanismes de formation des cavités nanométriques à l'interface Cu/Cu et le phénomène de diffusion du cuivre dans la silice sont investigués. Les caractérisations électriques révèlent des rendements de fonctionnement supérieurs à 95 % ainsi que des écarts types inférieurs à 3 % après recuit à 200 ou 400 °C. Enfin, les études de fiabilité incluant des tests de stockage en chaleur humide, de cyclage thermique, de stockage en température et d'électromigration attestent de la résistance à la corrosion et de la robustesse mécanique de cette intégration. Pour finir, les simulations par éléments finis indiquent que les interactions cohésives à l'interface de collage, combinées à la dilatation thermique du cuivre pendant le recuit, assistent significativement le processus de collage de surfaces de cuivre incurvées par sur-polissage. En outre, la déformation plastique macroscopique du cuivre semble avoir un effet néfaste sur le processus de scellement en freinant la propagation de l'onde de collage. / The context of this work is the three-dimensional integration of electronic devices. Among the various techniques allowing to assemble both mechanically and electrically stacked chips, the direct bonding of Cu-SiO2 mixed surfaces is the most promising option to date. Thanks to this method, the interconnection density of 106/cm² aimed by the industry is achievable, while providing a low contact resistivity and excellent reliability. The objective of this study is to demonstrate the compatibility of the direct hybrid bonding Cu-SiO2 process with integrations and architectures that mimic real circuits. For this purpose, test vehicles incorporating two-layer and four-layer copper test structures have been specifically designed. Furthermore, finite element simulations of the direct bonding process have been developed within the Abaqus software. First, the 200 and 300 mm chip-to-wafer direct bonding process is validated. Morphological and electrical characterizations show that this stacking method does not deteriorate the integrity and performances of two-layer test structures with respect to a wafer-to-wafer integration. Furthermore, thermal cycling tests confirm the excellent mechanical strength of the bonded dies. The second part of this work focuses on morphological, electrical and reliability characterizations of four-layer test structures. In this case, the 200 mm wafer-to-wafer architecture of the test vehicles is close to an industrial integration. The various observations conducted with scanning and transmission electron microscopy indicate an excellent bonding quality of Cu/Cu and SiO2/SiO2 interfaces. Furthermore, the formation mechanisms of cavities at the Cu/Cu interface and the copper diffusion phenomenon in the silica are investigated. Electrical characterizations show functional yields above 95 % and standard deviations below 3 % after annealing at 200 or 400 °C. Finally, reliability studies including unbiased HAST, thermal cycling, temperature storage and électromigration test prove the resistance to corrosion and the mechanical robustness of this integration. Finally, the finite element simulations indicate that the cohesive interactions at the bonding interface, combined with the thermal expansion of the copper during the annealing, significantly assist the bonding process of copper surfaces with a dishing effect. In addition, the macroscopic plastic deformation of the copper appears to have a detrimental effect on the sealing of the interface by slowing the propagation of the bonding wave.
|
288 |
Using the singularity frequencies of guided waves to obtain a pipe's properties and detect and size notchesStoyko, Darryl 30 October 2012 (has links)
A survey of relevant literature on the topic of wave propagation and scattering in pipes is given first. This review is followed by a theoretical framework which is pertinent to wave propagation in homogeneous, isotropic, pipes. Emphasis is placed on approximate solutions stemming from a computer based, Semi-Analytical Finite Element (SAFE) formulation. A modal analysis of the dynamic response of homogeneous, isotropic pipes, when subjected to a transient ultrasonic excitation, demonstrates that dominant features, i.e., singularities in an unblemished pipe’s displacement Frequency Response Function (FRF) coincide with its cutoff frequencies. This behaviour is confirmed experimentally. A novel technique is developed to deduce such a pipe’s wall thickness and elastic properties from three cutoff frequencies. The resulting procedure is simulated numerically and verified experimentally. Agreement between the new ultrasonic procedure and traditional destructive tests is within experimental uncertainty. Then a hybrid-SAFE technique is used to simulate waves scattered by various open rectangular notches. The simulations show, for the first time, that singularities distinct from the unblemished pipe’s cutoff frequencies arise in a displacement FRF when an axisymmetric notch is introduced. They also suggest that the new singularities depend on the properties of the parent pipe and the finite element region but effects are local to a notch. It is demonstrated further that the difference between the frequency at which a singularity introduced by a notch occurs and the nearest corresponding unblemished pipe’s cutoff frequency is a function of the notch’s dimensions. By plotting contours of constant frequency differences, it is shown that it is usually possible to characterize the notch’s dimensions by using two modes. However, the frequency difference for a third mode may be also needed occasionally. The more general case of nonaxisymmetric notches is shown to be a straightforward extension of the axisymmetric case.
|
289 |
Hydrogeological characterisation of karst aquifers in semi-arid environments at the catchment scale – Example of the Western Lower Jordan ValleySchmidt, Sebastian 05 May 2014 (has links)
Ziel der Dissertation ist die hydrogeologische Charakterisierung von Karstgrundwasserleitern in der semi-ariden Klimazone, welche oftmals durch Übernutzung und anthropogene Verschmutz-ung bedroht sind. Trotz oft eingeschränkter Datenlage und einem unzureichenden Systemver-ständnis müssen quantitative und qualitative Faktoren, wie z.B. Grundwasserneubildungsrate, Aquiferparameter, Strömungs- und Stofftransportdynamik, Verschmutzungsempfindlichkeit und anthropogene Einflüsse quantifiziert werden. Jedoch können diese Gebiete auch günstige Eigenschaften für eine Charakterisierung, wie eine zeitlich eng begrenzte Impulsfunktion der Grundwasserneubildung durch intensive, kurze Niederschlagsereignisse sowie lange ungestörte Rezessionsperioden, aufweisen. Dies gilt für das in der Levante gelegene Untersuchungsgebiet. Die zeitliche und räumliche hydrologische Variabilität wurde durch ein ausgedehntes Messnetz hochaufgelöst erfasst. Zur Auswertung dieser Daten wurden konzeptionell korrekte, jedoch möglichst einfach anwendbare quantitative Verfahren und Modelle entwickelt und angewandt, was die Übertragbarkeit der Methoden auf weitere Trockengebiete ermöglicht.
Durch eine Zusammenstellung und Auswertung hydrochemischer Langzeitdaten konnte die natürliche Hintergrundkonzentration von Chlorid im Grundwasser für 33 Quelleinzugsgebiete ermittelt werden. Darauf aufbauend war es möglich, durch eine Chloridmassenbilanz sowohl den langjährige mittlere Anteil der Grundwasserneubildung am Niederschlag (25–50%) zu bestimmen, als auch den Abwasseranteil im Quellwasser anhand rezenter Proben zu quantifizieren (0–20%).
Anhand eines Speicher-Durchflussmodelles konnten sowohl Aquiferparameter im Einzugs-gebietsmaßstab als auch eine Tageszeitreihe der Grundwasserneubildung exemplarisch für die Auja-Quelle, die größte Süßwasserquelle im Unteren Jordantal, erfasst werden. Diese sowie weitere Quellen der Region sind durch ein „röhrengedrosseltes“ Abflussverhalten, d.h. eine Begrenzung der Quellschüttung, gekennzeichnet. Der hydrogeologisch komplexe Aquifer und das nichtlineare Systemverhalten bei Erreichen der maximalen Schüttung erfordern ein besonders angepasstes Modell, welches auch einen ausgeprägten hydraulischen Austausch zwischen den Karströhren und der geklüfteten Gesteinsmatrix berücksichtigen muss. Eine Reihe von Parametern konnte aus einer Rezessions- und Ereignis-Analyse der Abflussganglinie ermittelt werden. Das Speicher-Durchflussmodell benötigt lediglich sechs Kalibrierparameter und erlaubt eine sehr gute Simulation der Abflussganglinie. Die effektive Aquifer-Porosität wurde durch Kalibration ermittelt (ca. 2.4%). Über den simulierten 45-Jahres-Zeitraum führten die fünf niederschlagsreichsten Jahre zu einem Drittel der gesamten Grundwasserneubildung.
Die zeitlich hoch aufgelösten Quellmessungen ermöglichten eine Quantifizierung der hydraulischen Reaktionszeiten sowie der mittleren Verweilzeiten, der Durchbruchsdauer und der relativen Anteile der schnellen Fließkomponente nach Niederschlagsereignissen. Diese Daten dienen sowohl einer Abschätzung der schnellen Neubildungsprozesse (vor allem Fokussierung im Epikarst und schnelles präferentielles Fließen durch die Vadose Zone) als auch einer Beurteilung der Verschmutzungsempfindlichkeit der Karstquellen. Weiterhin konnte eine Zugehörigkeit der beiden, 3500 m voneinander entfernten, artesischen Jericho-Quellen Sultan und Duyuk zu einem gemeinsamen Röhren- und damit Karstsystem nachgewiesen werden.
|
290 |
Characterisation of airborne dust in a South African opencast iron ore mine : a pilot study / Rehan BadenhorstBadenhorst, Rehan January 2013 (has links)
The iron ore mining industry makes use of various processes that result in the release of airborne dust into
the surrounding atmosphere where workers are exposed, to produce a final product. The deposition in the
lung and toxicological influences of airborne dust can be determined by their physical- and chemical
characteristics. The Occupational Health and Safety Act (OHSA) regulations for hazardous chemical
substances have no current system of how the physical- and chemical properties of particulates originating
from specific areas will influence a worker‘s exposure and health, especially for ultrafine particles (UFP). It is
therefore imperative to characterise airborne dust containing micrometer and UFP size particles originating
from specific areas to determine if there are physical- and chemical characteristics that may or may not
have an influence on the workers‘ health.
Aim: This pilot study is aimed at the physical- and chemical characterisation of the airborne iron ore dust
generated at the process areas of an opencast iron ore mine. Method: Sampled areas included the
Primary-secondary crusher, Tertiary crusher, Quaternary crusher and Sifting house. Gravimetric sampling
was conducted through the use of static inhalable- and respirable samplers in conjunction with optical- and
condensation particle counters that were placed near airborne dust- emitting sources. Physical- and
chemical characterisation was done with the use of scanning electron microscopy (SEM) and energy
dispersive X-ray spectroscopy (EDS). Results: The results found in the study indicate high mass
concentration levels of inhalable dust at all four process areas, as well as high levels of respirable dust
found at the primary- secondary crusher area. Particle size distribution optical particle counter (OPC) results
indicate that the majority of particles at all four process areas are in the region of 0.3 μm in size.
Condensation particle counter (CPC) results integrated with OPC results indicate that at the primarysecondary
and Tertiary crushers the majority of particles are found to be in the size fraction <0.3 μm. SEM
analysis indicates that particle agglomeration largely occurs in the airborne iron ore dust. Particle splinters
originating from larger particle collisions and breakages are present in the airborne dust. EDS analysis
indicates that the elemental majority of the airborne iron ore dust consists of iron, oxygen, carbon,
aluminium, silicon, potassium and calcium. The elemental percentages differ from each process area where
an increase in iron and decrease in impurities can be seen as the ore moves through the beneficiation
process from the Primary-secondary crusher to the Sifting house. Conclusion: The results obtained from
the physical- and chemical properties of the airborne iron ore dust indicate high risk of over-exposure to the
respiratory system, as well as possible ultrafine particle systemic exposure, that may overwhelm the
physiological defense mechanisms of the human body and lead to reactive oxygen species (ROS) formation
and the development of pathologies such as siderosis, silicasiderosis and lung cancer. / MSc (Occupational Hygiene), North-West University, Potchefstroom Campus, 2014
|
Page generated in 0.1385 seconds