• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using Visible and Near Infrared Diffuse Reflectance Spectroscopy to Characterize and Classify Soil Profiles

Wilke, Katrina Margarette 2010 August 1900 (has links)
Visible and near infrared diffuse reflectance spectroscopy (VisNIR-DRS) is a method being investigated for quantifying soil properties and mapping soil profiles. Because a VisNIR-DRS system mounted in a soil penetrometer is now commercially available for scanning soil profiles in situ, methodologies for using scans to map soils and quantify soil properties are needed. The overall goal of this research is to investigate methodologies for collecting and analyzing VisNIR-DRS scans of intact soil profiles to identify soil series. Methodologies tested include scanning at variable versus uniform moistures, using individual versus averaged spectra, boosting an intact spectral library with local samples, and comparing quantitative and categorical classifications of soil series. Thirty-two soil cores from two fields, representing three soil series, were extracted and scanned every 2.5 cm from the soil surface to 1.5 m or to the depth of parent material at variable field moist conditions and at uniform moist condition. Laboratory analyses for clay, sand, and silt were performed on each horizon. Soil series were classified using partial least squares regression (PLS) and linear discriminant analysis (LDA). A Central Texas intact spectral library (n=70 intact cores) was used for PLS modeling, alone and boosted with the two fields. Because whole-field independent validation was used, relative percent difference (RPD) values were used to compare model performance. Wetting soils to uniform moisture prior to scanning improved prediction accuracy of total clay and RPD improved by 53 percent. Averaging side-by-side scans of the same soil profile improved prediction accuracy of RPD by 10 percent. When creating calibration models, boosting a library with local samples improved prediction accuracy of clay content by 80 and 34 percent for the two fields. Principal component plots provided insight on the spectral similarities between these datasets. Overall, using PLS alone performed the same as LDA at predicting soil series. Most importantly, results of this project reiterate the importance of fully-independent calibration and validation for assessing the true potential of VisNIR-DRS. Using VisNIR-DRS is an effective way for in situ characterization and classification of soil properties.
2

Characterization of mouse models of seasonal coronaviruses to evaluate vaccine efficacy

Lebner, Tyler 29 February 2024 (has links)
INTRODUCTION: Seasonal human coronaviruses (HCoV) are endemic to the human population, regularly infecting and reinfecting humans while typically causing asymptomatic to mild respiratory infections. The human coronavirus OC43 (HCoV-OC43) is one of the most common causes of the common cold but can lead to fatal pneumonia in children and the elderly. However, no vaccines or antiviral treatments are available against this virus. Animal models available to study HCoV-OC43 and test antiviral counter measures do not accurately recapitulate the respiratory symptoms and physiopathology observed in humans. These limitations impede our understanding of HCoV-OC43 pathogenesis and the development of efficient antiviral therapies or vaccines. Objective: Animal models are crucial for enhancing our understanding of HCoV-OC43 pathophysiology and pathogenesis, and to enable the development of vaccines or therapeutics. In this study, we tested the susceptibility of various mice models to HCoV-OC43 infection and identified type-I interferon signaling as an immune barrier that restricts HCoV-OC43 infection in mice. Utilizing mice defective for type-I interferon signaling (IFNAR -/ -mice), we established virological and histopathological readouts that could assist in identifying avenues for this model to be used for vaccines and therapeutic evaluations. Methods: C57BL/6, IFNAR -/-, and IFNAR -/- mice treated with anti-IFN-λ (antibodies blocking type-III Interferon cytokines) were infected with different doses of HCoV-OC43. Nasal passages and lung tissues were analyzed at different time points during the course of the infection. Focus forming assay and RT-qPCR were utilized to determine viral titers and loads in the lung, respectively. Tissues were stained with Hematoxylin and eosin for histopathological evaluation and immunohistochemistry was performed for quantification of HCoV-OC43 spike protein via image analysis. Whole slide images were generated using a Vectra PolarisTM whole slide scanner and digital analysis with area quantification (AQ) was completed using HALOTM v3.5.3.2577 The region of interests included the olfactory and respiratory epithelium of the nasal cavity. Algorithms to quantify the spike protein were designed specifically for each slide. Signal intensity was selected by pixel pigmentation and using the real-time tuning function in HALOTM v3.5.3.2577 allowing capture of accurate biological signal. Statistical analysis was conducted using GraphPad PrismTM 9.5.1. Results: IFNAR -/- mice intranasally inoculated with HCoV-OC43 displayed greater viral antigen in the olfactory epithelium compared to C57BL/6 mice at three-and-five days post infection. IFNAR -/- mice also displayed mild histopathological manifestations in the respiratory epithelium compared to infected C57BL/6 wild-type mice. Minor histological characteristics seen in the IFNAR -/- mice were characterized by mild rhinitis with neutrophilic and mononuclear influx including edema at the level of the respiratory epithelium, scarce numbers of denuded olfactory epithelium, and mild squamous metaplasia at the level of the respiratory epithelium. No differences in lung viral loads were observed between the two models throughout the infection course, suggesting that additional immune barriers or absence of specific human factors prevent viral dissemination to the lower respiratory tract in mice. Interestingly, treatment of IFNAR -/- mice with antibodies targeting type III interferon cytokines increased viral replication in the olfactory epithelium and extended viral dissemination to the respiratory epithelium of the nasal cavity compared to control IFNAR -/- mice. Altogether, our findings indicate that IFNAR -/- mice represent a potential mouse model of HCoV-OC43 infection, albeit viral replication is restricted to the nasal cavity. More research is needed to identify additional immune barriers, including type III interferon signaling, restricting viral replication in the mouse respiratory epithelium. Conclusion: Combining virological, molecular biology, and histopathological techniques, our study identify type I and III interferon signaling as restriction mechanisms of HCoV-OC43 replication in the mouse nasal cavity. Our work highlights IFNAR -/- mice as a potential model to study early HCoV-OC43 pathogenesis, and open avenues for developing advanced mouse models enabling the evaluation of vaccine candidates. / 2026-02-28T00:00:00Z
3

Uso de concreto permeável na drenagem urbana : análise da viabilidade técnica e do impacto ambiental

Höltz, Fabiano da Costa January 2011 (has links)
Nos dias atuais todas as grandes metrópoles enfrentam inúmeros problemas devidos, muitas vezes, a um deficiente planejamento urbano onde se inclui certo descaso com a proteção do meio ambiente. Um aspecto importante é a desordenada expansão urbana, que têm crescido com o passar dos anos. Este fator poderá comprometer a saúde do meio ambiente. Mencionase também o descaso da população com os recursos hídricos, o solo e a vegetação. Dentro deste enfoque, o tradicional sistema de drenagem, baseado em um rápido afastamento do excesso pluvial, contribui para um aumento nos volumes escoados e vazões de pico e uma redução no tempo do escoamento, fazendo com que os hidrogramas de cheia sejam mais críticos, aumentando-se, assim, a freqüência e a gravidade das inundações. Pesquisas apontam uma grande relação entre os índices de permeabilidade com a densidade habitacional. Essencialmente, o concreto permeável é um pavimento de concreto estrutural, com um grande volume de vazios interconectados (15 a 35%). Como o concreto convencional, é feito de uma mistura de cimento, agregados graúdos e água. Contendo pouca ou nenhuma areia, resulta em uma estrutura celular porosa que permite que a água passe facilmente. Em países desenvolvidos houve um aumento de interesse na sua utilização, para um controle mais efetivo das águas do escoamento superficial. Dependendo das normas locais e das características do meio, o pavimento e sua sub-base podem ter capacidade suficiente de infiltração para eliminar a necessidade de outras obras de drenagem. O objetivo deste trabalho consistiu no desenvolvimento de um concreto permeável para utilização em grandes áreas. Pretendeu-se englobar um entendimento de suas propriedades e um desenvolvimento de diversos traços. Para tanto se formularam e caracterizaram diferentes traços de concreto permeável, estudando as dificuldades para fabricação em campo e analisando as possibilidades de aplicação e as possíveis repercussões na drenagem. Os resultados de resistência à compressão foram, em média, de 8 MPa e os de permeabilidade, mais variados, ficaram numa faixa de 100 a 1000l/min./m2. Para um uso eficaz desse concreto, deve-se avaliar a capacidade de percolação do solo abaixo do pavimento. / Nowadays, all major cities often face many problems due to a poor town planning, which also includes certain disregard towards protecting the environment. Another important aspect is the disorderly urban expansion, which has grown over the years. This factor may compromise the health of the environment. It can also be mentioned the population’s neglect with water, soil and vegetation. Within this approach, the traditional drainage system, based on a rapid removal of excess rain, contributes to an increase in drained volume and peak flow and a reduction in the time of the flow, causing the flood hydrographs to be more critical, increasing, thus, the frequency and severity of floods. Research indicates a strong relationship between rates of permeability with the density of housing. Essentially, the concrete is a permeable structural concrete pavement with a large volume of interconnected voids (15 to 35%). As conventional concrete, it is made from a mixture of cement, coarse aggregates and water. Containing little or no sand, it results in a sporous cell structure that allows water to pass easily. In developed countries there has been an increased interest in its use, in order to obtain a more effective control of the runoffs. Depending on local rules and characteristics of the environment, pavement and its sub-base may have enough capacity to eliminate infiltration which excludes the need for other drainage works. The aim of this paper is the development of a permeable concrete to be used in large areas. It aims to encompass an understanding of its properties and development of its various traits. Hence, have been formulated and characterized different traces of permeable concrete, studying the difficulties of manufacturing it in the field and analyzing its possible applications and its possible impact on drainage. The results of compressive strength were on average of 8 MPa and the permeability, more varied, were in the range of 100 to 1000l/min./m2. For an efficient use of this concrete, we should evaluate the ability of soil percolation below the pavement.
4

Uso de concreto permeável na drenagem urbana : análise da viabilidade técnica e do impacto ambiental

Höltz, Fabiano da Costa January 2011 (has links)
Nos dias atuais todas as grandes metrópoles enfrentam inúmeros problemas devidos, muitas vezes, a um deficiente planejamento urbano onde se inclui certo descaso com a proteção do meio ambiente. Um aspecto importante é a desordenada expansão urbana, que têm crescido com o passar dos anos. Este fator poderá comprometer a saúde do meio ambiente. Mencionase também o descaso da população com os recursos hídricos, o solo e a vegetação. Dentro deste enfoque, o tradicional sistema de drenagem, baseado em um rápido afastamento do excesso pluvial, contribui para um aumento nos volumes escoados e vazões de pico e uma redução no tempo do escoamento, fazendo com que os hidrogramas de cheia sejam mais críticos, aumentando-se, assim, a freqüência e a gravidade das inundações. Pesquisas apontam uma grande relação entre os índices de permeabilidade com a densidade habitacional. Essencialmente, o concreto permeável é um pavimento de concreto estrutural, com um grande volume de vazios interconectados (15 a 35%). Como o concreto convencional, é feito de uma mistura de cimento, agregados graúdos e água. Contendo pouca ou nenhuma areia, resulta em uma estrutura celular porosa que permite que a água passe facilmente. Em países desenvolvidos houve um aumento de interesse na sua utilização, para um controle mais efetivo das águas do escoamento superficial. Dependendo das normas locais e das características do meio, o pavimento e sua sub-base podem ter capacidade suficiente de infiltração para eliminar a necessidade de outras obras de drenagem. O objetivo deste trabalho consistiu no desenvolvimento de um concreto permeável para utilização em grandes áreas. Pretendeu-se englobar um entendimento de suas propriedades e um desenvolvimento de diversos traços. Para tanto se formularam e caracterizaram diferentes traços de concreto permeável, estudando as dificuldades para fabricação em campo e analisando as possibilidades de aplicação e as possíveis repercussões na drenagem. Os resultados de resistência à compressão foram, em média, de 8 MPa e os de permeabilidade, mais variados, ficaram numa faixa de 100 a 1000l/min./m2. Para um uso eficaz desse concreto, deve-se avaliar a capacidade de percolação do solo abaixo do pavimento. / Nowadays, all major cities often face many problems due to a poor town planning, which also includes certain disregard towards protecting the environment. Another important aspect is the disorderly urban expansion, which has grown over the years. This factor may compromise the health of the environment. It can also be mentioned the population’s neglect with water, soil and vegetation. Within this approach, the traditional drainage system, based on a rapid removal of excess rain, contributes to an increase in drained volume and peak flow and a reduction in the time of the flow, causing the flood hydrographs to be more critical, increasing, thus, the frequency and severity of floods. Research indicates a strong relationship between rates of permeability with the density of housing. Essentially, the concrete is a permeable structural concrete pavement with a large volume of interconnected voids (15 to 35%). As conventional concrete, it is made from a mixture of cement, coarse aggregates and water. Containing little or no sand, it results in a sporous cell structure that allows water to pass easily. In developed countries there has been an increased interest in its use, in order to obtain a more effective control of the runoffs. Depending on local rules and characteristics of the environment, pavement and its sub-base may have enough capacity to eliminate infiltration which excludes the need for other drainage works. The aim of this paper is the development of a permeable concrete to be used in large areas. It aims to encompass an understanding of its properties and development of its various traits. Hence, have been formulated and characterized different traces of permeable concrete, studying the difficulties of manufacturing it in the field and analyzing its possible applications and its possible impact on drainage. The results of compressive strength were on average of 8 MPa and the permeability, more varied, were in the range of 100 to 1000l/min./m2. For an efficient use of this concrete, we should evaluate the ability of soil percolation below the pavement.
5

Uso de concreto permeável na drenagem urbana : análise da viabilidade técnica e do impacto ambiental

Höltz, Fabiano da Costa January 2011 (has links)
Nos dias atuais todas as grandes metrópoles enfrentam inúmeros problemas devidos, muitas vezes, a um deficiente planejamento urbano onde se inclui certo descaso com a proteção do meio ambiente. Um aspecto importante é a desordenada expansão urbana, que têm crescido com o passar dos anos. Este fator poderá comprometer a saúde do meio ambiente. Mencionase também o descaso da população com os recursos hídricos, o solo e a vegetação. Dentro deste enfoque, o tradicional sistema de drenagem, baseado em um rápido afastamento do excesso pluvial, contribui para um aumento nos volumes escoados e vazões de pico e uma redução no tempo do escoamento, fazendo com que os hidrogramas de cheia sejam mais críticos, aumentando-se, assim, a freqüência e a gravidade das inundações. Pesquisas apontam uma grande relação entre os índices de permeabilidade com a densidade habitacional. Essencialmente, o concreto permeável é um pavimento de concreto estrutural, com um grande volume de vazios interconectados (15 a 35%). Como o concreto convencional, é feito de uma mistura de cimento, agregados graúdos e água. Contendo pouca ou nenhuma areia, resulta em uma estrutura celular porosa que permite que a água passe facilmente. Em países desenvolvidos houve um aumento de interesse na sua utilização, para um controle mais efetivo das águas do escoamento superficial. Dependendo das normas locais e das características do meio, o pavimento e sua sub-base podem ter capacidade suficiente de infiltração para eliminar a necessidade de outras obras de drenagem. O objetivo deste trabalho consistiu no desenvolvimento de um concreto permeável para utilização em grandes áreas. Pretendeu-se englobar um entendimento de suas propriedades e um desenvolvimento de diversos traços. Para tanto se formularam e caracterizaram diferentes traços de concreto permeável, estudando as dificuldades para fabricação em campo e analisando as possibilidades de aplicação e as possíveis repercussões na drenagem. Os resultados de resistência à compressão foram, em média, de 8 MPa e os de permeabilidade, mais variados, ficaram numa faixa de 100 a 1000l/min./m2. Para um uso eficaz desse concreto, deve-se avaliar a capacidade de percolação do solo abaixo do pavimento. / Nowadays, all major cities often face many problems due to a poor town planning, which also includes certain disregard towards protecting the environment. Another important aspect is the disorderly urban expansion, which has grown over the years. This factor may compromise the health of the environment. It can also be mentioned the population’s neglect with water, soil and vegetation. Within this approach, the traditional drainage system, based on a rapid removal of excess rain, contributes to an increase in drained volume and peak flow and a reduction in the time of the flow, causing the flood hydrographs to be more critical, increasing, thus, the frequency and severity of floods. Research indicates a strong relationship between rates of permeability with the density of housing. Essentially, the concrete is a permeable structural concrete pavement with a large volume of interconnected voids (15 to 35%). As conventional concrete, it is made from a mixture of cement, coarse aggregates and water. Containing little or no sand, it results in a sporous cell structure that allows water to pass easily. In developed countries there has been an increased interest in its use, in order to obtain a more effective control of the runoffs. Depending on local rules and characteristics of the environment, pavement and its sub-base may have enough capacity to eliminate infiltration which excludes the need for other drainage works. The aim of this paper is the development of a permeable concrete to be used in large areas. It aims to encompass an understanding of its properties and development of its various traits. Hence, have been formulated and characterized different traces of permeable concrete, studying the difficulties of manufacturing it in the field and analyzing its possible applications and its possible impact on drainage. The results of compressive strength were on average of 8 MPa and the permeability, more varied, were in the range of 100 to 1000l/min./m2. For an efficient use of this concrete, we should evaluate the ability of soil percolation below the pavement.
6

Characterization of a thermostable sorbitol dehydrogenase from a novel subsurface bacterium, Caldiatribacterium inferamans SIUC1: Insights into structure and function

Jayasekara, Sandhya Kumudumali 01 December 2023 (has links) (PDF)
Subsurface microbes are extremophiles adapted to thrive in deep, resource-limited environments, performing crucial roles in a myriad of biogeochemical processes. The extremozymes they produce might play a pivotal role in catalyzing these processes. Identifying and characterizing those enzymes could contribute to the advancements in industrially important biocatalytic reactions. Among various enzymes, sorbitol dehydrogenases are enzymes that catalyze the reversible conversion of sorbitol into fructose in the presence of NAD+. In this study, we focus on the exploration of a sorbitol dehydrogenase (SDHSIUC1) derived from the novel strictly anaerobic, thermophilic, subsurface bacterium, Caldiatribacterium inferamans SIUC1, which is one of the first cultured members from the candidate phylum Atribacteria OP9. As SDHSIUC1 originated from a subsurface microbe, we hypothesized that the enzyme has industrially beneficial characteristics such as higher thermostability and can be used for bioindustry applications such as synthesis of rare sugars and chiral alcohols. We successfully cloned, expressed, and purified the functional SDHSIUC1 enzyme aerobically using E. coli BL21(DE3) and did biochemical assays to characterize its properties. Additionally, in combination with the findings of biochemical characterization, we applied in silico approaches such as molecular modeling and molecular docking to describe the functional mechanism of the enzyme. Initial phylogenetic tree analysis using a pool of 24 amino acid sequences showed that the closest relative for SDHSIUC1 is a Candidatus Caldiatribacterium californiense, which is an uncultured member of the Atribacteria phylum. Size exclusion chromatography and Native-PAGE suggested that SDHSIUC1 is a hexamer with a size of 225 kDa. Kinetic characterization of the SDHSIUC1 showed that the enzyme has a higher affinity for sorbitol and fructose in the presence of NAD+ and NADH, respectively. Furthermore, SDHSIUC1 enzyme is promiscuous as it could utilize other polyols (i.e., glycerol, xylitol, inositol), diols (i.e., butanediol), aldehydes (i.e., glycolaldehyde), and ketoses (i.e., sorbose) in the presence of NAD+/NADH cofactors. We observed a significant increase in enzyme activity in the presence of Zn2+, where other metal ions such as Mn2+ and Mg2+ also resulted in rate improvements. The enzyme is an alkaline dehydrogenase that prefers a higher pH above 8. The effect of temperature on SDHSIUC1 activity showed that it’s a thermophilic enzyme with activity at 85 ℃. The thermal denaturation points of the enzyme at 85 ℃ was increased when the enzyme was preincubated at 85 ℃ in the presence of Zn2+. Notably, the enzyme preincubated 25 min at 85 ℃ in the presence of Zn2+ prefers fructose conversion and ceased the sorbitol conversion. We identified the presence of a structural Zn2+ binding site in SDHSIUC1 in addition to a catalytic Zn2+ binding site. We speculated that the structural Zn2+ involves thermal stability of the enzyme. Hence, we mutated the cysteine with serine of potential structural Zn2+ binding site (Cys96, Cys99, Cys102, and Cys110). Indeed, the Inductively coupled plasma mass spectrometry (ICP-MS) analysis revealed the mutated enzyme contains a lower amount of Zn2+ relative to the native enzyme. The data revealed that the mutated enzyme has low melting temperature (78 ℃) relative to the native enzyme (92 ℃), suggesting that structural Zn2+ is key to enhance the thermal stability of the SDHSIUC1. Surprisingly, we observed that the mutant enzyme completely lost its activity. The data suggests the role of structural Zn2+ binding site on both the structural and functional stability of SDHSIUC1. In consistence with the in-vitro data, the preliminary computational modeling data suggest that the losing structural Zn2+ unstable the enzyme and we are conducting in depth in-silico study to unveil the mechanism(s). We envisioned that the mechanisms behind the thermal stability of SDHSIUC1 could be used as basic model to enhance thermostable protein for the industrial application (e.g., design thermostable plastic hydrolyzing enzymes). To further demonstrate the potential applications of the SDHSIUC1, we genome-integrated it into the industrially important microorganism Pseudomonas putida KT2440. The resulting strain exhibited significantly increased growth in the presence of sorbitol compared to the wild-type P. putida KT2440, highlighting the potential of this enzyme for industrial applications such as enabling sorbitol catabolism or establishing xylose reductase pathway in P. putida KT2440 (i.e., leverage xylitol dehydrogenase activity of SDHSIUC1). In summary, this study has uncovered a novel thermostable sorbitol dehydrogenase from a subsurface microbe, which could have potential applications in the bioindustry where thermostable sorbitol dehydrogenases are required for the application in food and beverage industry, pharmaceutical industry, biofuel production etc. as it would be advantageous for the industrial processes.
7

Characterizing Deformation, Damage Parameters, and Clay Composition in Fault Zones: Insights from the Chelungpu Thrust, Taiwan, and Mozumi Right Lateral Fault, Japan

Isaacs, Angela J. 01 May 2005 (has links)
The Chelungpu thrust fault, Taiwan, and the Mozumi right-lateral fault, Japan, provide an opportunity to characterize active faults in clastic sedimentary rocks and provide constraints to seismologic models. The northern Chelungpu fault has a 10-30 m wide primary damage zone characterized by dense fractures and chemical alteration. The southern Chelungpu fault has a 25-70 m wide primary damage zone characterized by dense fractures, alteration, intensely sheared rock, and secondary faults. The complexity of the damage zone, geochemistry, and clay mineralogy of the southern fault zone reflects its greater maturity (~1 Ma) relative to the northern fault zone (~46-100 Ka). A transition exists from smectite in exhumed fault core to illite-rich fault core at depth (200 - 1000 m) due to co-seismic fluid flow and radiated seismic energy. Clay composition plays a role in fault weakening. Microstructures in deformed Mozumi siltstone indicate syn-tectonic fluid pressurization and flow, and shear concentrated in sericite-rich matrix. Kaolinite and illite clays dominate the host rock and fault breccia; illite, smectite, and kaolinite dominate clay-rich fault breccia. Whole-rock geochemistry shows a depletion of most oxides in fault rocks relative to unaltered host rock (up to ~90%). Resistivity values are depressed by 0-50 ohm-m, and νp and νs are decreased by ~0.30 km/s and ~0.40 km/s across the main fault relative to wall rock, and an average of ~0.70 km/s and ~1.0 km/s relative to host rock, respectively. Calculated values of Young’s modulus and Poisson’s ratio of fault rocks range from 16.2 to 44.9 GPa and 0.263 to 0.393, respectively. The protolith has a calculated Young’s modulus of 55.4 GPa and a Poisson’s ratio of 0.242. Lowest values of Young’s modulus and highest values of Poisson’s ratio correspond to fault breccia with high fluid content, and are offset from the most altered and damaged fault rocks. Fluid-rich pockets, and thus alteration, apparently migrate through the fault zone and may facilitate creep on the Mozumi fault because these fluid rich rocks are unable to sustain the shear stresses needed for brittle failure. The Chelungpu and Mozumi faults illustrate the temporally dynamic and heterogeneous nature of active fault zones.
8

Characterizing Protein-Protein Interactions of B0238.11, a Previously Uncharacterized Caenorhabditis elegans Intergenic Spacer Binding Protein

Omar, Syed A. A. 11 May 2012 (has links)
A protein, B0238.11, was identified in a yeast one-hybrid screen to bind to the ribosomal intergenic spacer region (IGS) of Caenorhabditis elegans. Proteins interacting with this region of the DNA have been implicated in ribosome biogenesis in other model organisms, so it is also possible that B0238.11 plays a role in RNA transcription by interacting with RNA polymerase I or other transcription machinery. Thus, the goal of this study was to further characterize the structure and function of B0238.11. I used yeast two-hybrid experiments to identify proteins that interact with B0238.11 within the nucleus. RPS-0, K04G2.2, DPY-4, EFT-3, PAL-1, and B0238.11, itself, were found to bind to B0238.11. Additionally, I analysed the amino acid sequence of B0238.11 using in silico bioinformatics methods to determine its structure and putative function and also to identify and characterize the other interacting proteins. I found that B0238.11 contains a high-mobility group box domain, which is also found in HMO1P in yeast and UBF in vertebrates. These other proteins also bind to the IGS, are known to form homodimers and have been implicated in the initiation of ribosomal RNA transcription. Here I scrutinize the validity of the interaction between each protein and B0238.11. I conclude that B0238.11 is likely to be a C. elegans homolog of UBF and present an updated interactome map for B0238.11. / Synopsis: I carried out yeast two-hybrid assay to find proteins interacting with B0238.11 (O16487_CAEEL). I found that this protein's DNA-binding profile and protein interaction profile mimic other HMG-box containing proteins UBF and HMO1P which are involved in ribosomal RNA transcription initiation. Acknowledgements: I would like to thank my supervisor, Dr. Teresa J. Crease, for not only giving me the opportunity to investigate an interesting topic in Molecular Biology, but also for her patient guidance, encouragement and sound advice. I feel extremely lucky to have a supervisor who cared so much about my work, who responded to my questions and queries so promptly, and was always available to discuss project and career related matters. I would also like to thank Dr. Todd Gillis and Dr. Terry Van Raay for their careful consideration of this project and timely constructive criticisms that helped shape my project. I would like to thank all the members of my committee for helping me see things from different perspectives and helping me develop and critical and mature understanding of the scientific process. I must also express my gratitude to Dr. Robin Floyd for allowing me to build upon his work and Dr. Marian Walhout, at the University of Massachusetts, for providing the Caenorhabditis elegans complimentary DNA library. A large part of this project would not have been possible without the people at the genomics facility in the Department of Integrative Biology, I commend their professionalism and punctuality in delivering results. Completing this work would have been all the more difficult were it not for the support and friendship provided by my peers Shannon Eagle, Tyler Elliott, Nick Jeffery, Joao Lima, Sabina Stanescu, Fatima Mitterboeck and Paola Pierossi. And finally, I would like to thank my parents and siblings Sara Omar and Ali Omar for their continued support through good times and bad, and letting me use their laptops when mine broke down.

Page generated in 0.4781 seconds