• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dual-spray Synthesis and Reactions

Rashid, Shaan January 2017 (has links)
By using two electrospray emitters containing different solutions (“dual-spray”) we have recently conducted in-source hydrogen/deuterium exchange (HDX) reactions and synthesized organometallic species. For dual-spray HDX reactions, peptide and protein solutions were electrosprayed through one emitter and the deuterating agent D2O through the secondary electrospray emitter. Clear shifts in isotope distributions indicated hydrogen-deuterium exchange occurring within the ion source. By ion mobility, simultaneous deuterium exchange for two isobaric species, the oxytocin monomer and dimer, was observed. Lysozyme has a linear relation between the charge state and the average number of exchanges, indicating that lysozyme becomes increasingly unfolded as the charge state increases. Based on deuterium uptake data and the lack of a temperature dependence, the dual-spray HDX reaction is thought to occur mostly in the gas phase. Tris(2,2’-bipyridine)ruthenium(II) and similar complexes containing the 1,10-phenanthroline ligand were formed by spraying a ligand solution and the ruthenium trichloride solution through two independent ESI emitters. This was confirmed by comparing ion mobility drift time, mass spectra, and CID fragmentation with the reference standard compounds. Tris(2,2’-bipyridine)iron(II), tris(1,10-phenantroline)iron(II) and mixed ligand complexes of iron(II) formed by dual-spray showed two additional hydrogens bonded to the complex. By CID, these unique gas phase complexes showed similar initial ligand loss to the reference standards however the secondary ligand loss showed dissimilar dissociation channels and energetics. Using DFT calculations, geometry optimizations for the [Fe(phen)3 + 2H]2+ complex and its fragment ions were done. After the initial ligand loss, the additional hydrogens are believed to transfer to the central iron atom. The relative energy of the dissociation channels showed good agreement with experimental breakdown curves.
2

Ion energy loss at maximum stopping power in a laser-generated plasma

Cayzac, Witold 02 December 2013 (has links) (PDF)
In the frame of this thesis, a new experimental setup for the measurement of the energy loss of carbon ions at maximum stopping power in a hot laser-generated plasma has been developed and successfully tested. In this parameter range where the projectile velocity is of the same order of magnitude as the thermal velocity of the plasma free electrons, large uncertainties of up to 50% are present in the stopping-power description. To date, no experimental data are available to perform a theory benchmarking. Testing the different stopping theories is yet essential for inertial confinement fusion and in particular for the understanding of the alpha-particle heating of the thermonuclear fuel. Here, for the first time, precise measurements were carried out in a reproducible and entirely characterized beam-plasma configuration. It involved a nearly fully-stripped ion beam probing a homogeneous fully-ionized plasma. This plasma was generated by irradiating a thin carbon foil with two high-energy laser beams and features a maximum electron temperature of 200 eV. The plasma conditions were simulated with a two-dimensional radiative hydrodynamic code, while the ion-beam charge-state distribution was predicted by means of a Monte-Carlo code describing the charge-exchange processes of projectile ions in plasma. To probe at maximum stopping power, high-frequency pulsed ion bunches were decelerated to an energy of 0.5 MeV per nucleon. The ion energy loss was determined by a time-of-flight measurement using a specifically developed chemical-vapor-deposition diamond detector that was screened against any plasma radiation. A first experimental campaign was carried out using this newly developed platform, in which a precision better than 200 keV on the energy loss was reached. This allowed, via the knowledge of the plasma and of the beam parameters, to reliably test several stopping theories, either based on perturbation theory or on a nonlinear T-Matrix formalism. A preliminary analysis suggests that the energy deposition at maximum stopping power is significantly smaller than predicted, particularly, by perturbation approaches.
3

Mesures de rendements isobariques et isotopiques des produits de fission lourds sur le spectomètre de masse Lohengrin

Bail, Adeline 27 May 2009 (has links)
Les rendements de fission sont des données importantes pour les applications nucléaires ainsi que pour les modèles théoriques qui cherchent à reproduire ces distributions. Les rendements des produits de fission légers pour de nombreux noyaux ont été mesurés par le passé sur le spectromètre Lohengrin. Mais la méthode expérimentale utilisée, détection par chambre à ionisation, ne permet pas la séparation des isotopes pour les produits de fission lourds. Pour valider la méthode dans cette région et compléter les bibliothèques, les rendements isobariques de l’235U(nth,f), du 239Pu(nth,f) et du 241Pu(nth,f) ont été mesurés. La mise en place d’un nouveau dispositif de détection gamma sur le spectromètre a permis de déterminer les rendements isotopiques du 239Pu(nth,f). De plus les distributions en charge ionique et en énergie cinétique des produits de fission ont été étudiées, et ont mis en évidence la présence d'isomères nanosecondes pour certains de ces noyaux. / In spite of the huge amount of fission yield data available in different libraries, more accurate values are still needed for nuclear energy applications and to improve our understanding of the fission process. Thus measurements of fission yields were performed at the mass spectrometer Lohengrin at the Institut Laue-Langevin in Grenoble, France. The mass separator Lohengrin is situated at the research reactor of the institute and permits the placement of an actinide layer in a high thermal neutron flux. It separates fragments according to their atomic mass, kinetic energy and ionic charge state by the action of magnetic and electric fields. Coupling with a high resolution ionization chamber the experiment was used to investigate the mass and isotopic yields in the light mass region. Almost all fission yields of isotopes from Th to Cf have been measured at Lohengrin with this method. It has been extended in this work to the heavy mass region for the reactions 235U(nth,f), 239Pu(nth,f) and 241Pu(nth,f). For these higher masses an isotopic separation is no longer possible. That is why a new method was undertaken with the reaction 239Pu(nth,f) to determine the isotopic yields by gamma spectrometry. During these experiments the ionic charge state and kinetic energy distributions have been measured. Nanosecond isomers have been discovered for some nuclei thanks to a non gaussian charge state distribution. The kinetic energy distributions present very interesting structures which have been also discussed.
4

Ion energy loss at maximum stopping power in a laser-generated plasma / Dépôt d'énergie des ions à pouvoir d'arrêt maximal dans un plasma généré par laser

Cayzac, Witold 02 December 2013 (has links)
Dans le cadre de cette thèse, un nouveau dispositif expérimental pour la mesure du dépôt d'energie d'ions carbone au maximum du pouvoir d'arrêt dans un plasma généré par laser a été développé et testé avec succès. Dans ce domaine de paramètres où la vitesse du projectile est de l'ordre de grandeur de la vitesse thermique des électrons libres du plasma, l'incertitude théorique sur le pouvoir d'arrêt peut atteindre 50%. Or à l'heure actuelle, aucune donnée expérimentale ne permet de vérifier et de tester les différentes prédictions. Une discrimination des théories existantes du pouvoir d'arrêt est cependant essentielle pour la Fusion par Confinement Inertiel et particulièrement pour comprendre le chauffage du combustible par les particules alpha dans la phase d'allumage. Pour la première fois, des mesures précises du dépôt d'énergie des ions ont été effectuées dans une configuration expérimentale reproductible et entièrement caractérisée. Celle-ci consiste en un faisceau d'ions entièrement ionisé interagissant avec un plasma entièrement ionisé et homogène. Le plasma a été généré par l'irradiation d'une cible mince de carbone avec deux faisceaux laser à haute énergie et présente une température électronique maximale of 200 eV. Les paramètres du plasma ont été simulés à l'aide d'un code hydrodynamique radiatif bi-dimensionel, tandis que la distribution de charge du faisceau d'ions a été estimée avec un code Monte-Carlo qui décrit les processus d'échange de charge des ions dans le plasma. Pour sonder le plasma au maximum du pouvoir d'arrêt, un faisceau d'ions pulsé à haute fréquence a été freiné à une énergie de 0.5 MeV par nucléon. Le dépôt d'énergie des ions a été déterminé via une mesure de temps de vol à l'aide d'un détecteur à base de diamant produit par dépôt chimique en phase vapeur, protégé contre les radiations émises par le plasma. Une première campagne expérimentale a été conduite pour exploiter le nouveau dispositif, dans laquelle le dépôt d'énergie a été mesuré avec une précision inférieure à 200 keV. Cela a permis, grâce à la connaissance des paramètres du plasma et du faisceau d'ions, de tester différentes théories de pouvoir d'arrêt de manière fiable. Une analyse préliminaire des résultats montre que le dépôt d'énergie au maximum du pouvoir d'arrêt est plus faible qu'il n'a été prédit par la plupart des théories, et en particulier par les théories des perturbations. / In the frame of this thesis, a new experimental setup for the measurement of the energy loss of carbon ions at maximum stopping power in a hot laser-generated plasma has been developed and successfully tested. In this parameter range where the projectile velocity is of the same order of magnitude as the thermal velocity of the plasma free electrons, large uncertainties of up to 50% are present in the stopping-power description. To date, no experimental data are available to perform a theory benchmarking. Testing the different stopping theories is yet essential for inertial confinement fusion and in particular for the understanding of the alpha-particle heating of the thermonuclear fuel. Here, for the first time, precise measurements were carried out in a reproducible and entirely characterized beam-plasma configuration. It involved a nearly fully-stripped ion beam probing a homogeneous fully-ionized plasma. This plasma was generated by irradiating a thin carbon foil with two high-energy laser beams and features a maximum electron temperature of 200 eV. The plasma conditions were simulated with a two-dimensional radiative hydrodynamic code, while the ion-beam charge-state distribution was predicted by means of a Monte-Carlo code describing the charge-exchange processes of projectile ions in plasma. To probe at maximum stopping power, high-frequency pulsed ion bunches were decelerated to an energy of 0.5 MeV per nucleon. The ion energy loss was determined by a time-of-flight measurement using a specifically developed chemical-vapor-deposition diamond detector that was screened against any plasma radiation. A first experimental campaign was carried out using this newly developed platform, in which a precision better than 200 keV on the energy loss was reached. This allowed, via the knowledge of the plasma and of the beam parameters, to reliably test several stopping theories, either based on perturbation theory or on a nonlinear T-Matrix formalism. A preliminary analysis suggests that the energy deposition at maximum stopping power is significantly smaller than predicted, particularly, by perturbation approaches. / Im Rahmen dieser Arbeit wurde ein neuer experimentelle Aufbau für die Messung des Energieverlusts von Kohlenstoff-Ionen bei maximalem Bremsvermögen in einem lasererzeugtem Plasma entwickelt und getestet. In diesem Parameterbereich, wo die Projektilgeschwindigkeit nah der thermischen Geschwindigkeit der Plasmaelektronen liegt, weist die theoretische Beschreibung des Bremsvermögens erheblichen Unsicherheiten bis 50% auf. Ausserdem sind bisher keine experimentellen Daten verfügbar, um die theoretischen Vorhersagen zu testen. Eine Bewertung der verschiedenen Theorien des Bremsvermögens ist jedoch von grosser Bedeutung für die Trägheitsfusion und insbesondere für das Verständnis der Heizung des Fusionsbrennstoffs mittels Alpha-Teilchen. Zum ersten Mal wurden präzisen Messungen in einer reproduzierbaren und vollständig bekannten Strahl-Plasma Einstellung durchgeführt. Sie besteht in einem vollionisierten Ionenstrahl, der mit einem homogenen und vollionisierten Plasma wechselwirkt. Das Plasma wurde von der Bestrahlung einer dünnen Kohlenstofffolie mit zwei hochenergetischen Laserstrahlen erzeugt, und weist eine maximale Elektronentemperatur von 200 eV auf. Die Plasmaparameter wurden mithilfe eines zweidimensionalen radiativen hydrodynamischen Codes simuliert, während die Ladungsverteilung des Ionenstrahls wurde mit einem Monte-Carlo Code berechnet, der die Umladungsprozesse von Projektilionen im Plasma beschreibt. Um das Plasma bei maximalem Bremsvermögen zu untersuchen, wurde ein hoch-Frequenz gepulster Ionenstrahl zu einer Energie von 0.5 MeV pro Nukleon heruntergebremst. Der Ionenenergieverlust wurde mit der Flugzeitsmethode mit einem gegen Plasmastrahlung abgeschirmten CVD-Diamant-Detektor gemessen. Eine erste experimentelle Kampagne wurde mit dem neuen Aufbau durchgeführt, in der eine Messungspräzision besser als 200 keV auf dem Energieverlust erreicht wurde. Dies ermöglichte, mit der Kenntnis der Plasma- und Strahlparameter, mehreren Bremsvermögen-Theorien zuverlässig zu testen und zu vergleichen. Eine vorläufige Datenanalyse zeigt, dass die Energiedeposition bei maximalem Bremsvermögen ist kleiner, als insbesondere von den störungstheoretischen Ansätzen vorhergesagt wurde.
5

Elastische Rückstoßatomspektrometrie leichter Elemente mit Subnanometer-Tiefenauflösung

Kosmata, Marcel 29 February 2012 (has links) (PDF)
In der vorliegenden Arbeit wird erstmals das QQDS-Magnetspektrometer für die höchstauflösende Ionenstrahlanalytik leichter Elemente am Helmholtz-Zentrum Dresden-Rossendorf umfassend vorgestellt. Zusätzlich werden sowohl alle auf die Analytik Einfluss nehmenden Parameter untersucht als auch Methoden und Modelle vorgestellt, wie deren Einfluss vermieden oder rechnerisch kompensiert werden kann. Die Schwerpunkte dieser Arbeit gliedern sich in fünf Bereiche. Der Erste ist der Aufbau und die Inbetriebnahme des QQDS-Magnetspektrometers, der zugehörige Streukammer mit allen Peripheriegeräten und des eigens für die höchstauflösende elastische Rückstoßanalyse entwickelten Detektors. Sowohl das umgebaute Spektrometer als auch der im Rahmen dieser Arbeit gebaute Detektor wurden speziell an experimentelle Bedingungen für die höchstauflösende Ionenstrahlanalytik leichter Elemente angepasst und erstmalig auf einen routinemäßigen Einsatz hin getestet. Der Detektor besteht aus zwei Komponenten. Zum einen befindet sich am hinteren Ende des Detektors eine Bragg-Ionisationskammer, die zur Teilchenidentifikation genutzt wird. Zum anderen dient ein Proportionalzähler, der eine Hochwiderstandsanode besitzt und direkt hinter dem Eintrittsfenster montiert ist, zur Teilchenpositionsbestimmung im Detektor. Die folgenden zwei Schwerpunkte beinhalten grundlegende Untersuchungen zur Ionen-Festkörper-Wechselwirkung. Durch die Verwendung eines Magnetspektrometers ist die Messung der Ladungszustandsverteilung der herausgestreuten Teilchen direkt nach einem binären Stoß sowohl möglich als auch für die Analyse notwendig. Aus diesem Grund werden zum einen die Ladungszustände gemessen und zum anderen mit existierenden Modellen verglichen. Außerdem wird ein eigens entwickeltes Modell vorgestellt und erstmals im Rahmen dieser Arbeit angewendet, welches den ladungszustandsabhängigen Energieverlust bei der Tiefenprofilierung berücksichtigt. Es wird gezeigt, dass ohne die Anwendung dieses Modells die Tiefenprofile nicht mit den quantitativen Messungen mittels konventioneller Ionenstrahlanalytikmethoden und mit der Dickenmessung mittels Transmissionselektronenmikroskopie übereinstimmen, und damit falsche Werte liefern würden. Der zweite für die Thematik wesentliche Aspekt der Ionen-Festkörper-Wechselwirkung, sind die Probenschäden und -modifikationen, die während einer Schwerionen-bestrahlung auftreten. Dabei wird gezeigt, dass bei den hier verwendeten Energien sowohl elektronisches Sputtern als auch elektronisch verursachtes Grenzflächendurchmischen eintreten. Das elektronische Sputtern kann durch geeignete Strahlparameter für die meisten Proben ausreichend minimiert werden. Dagegen ist der Einfluss der Grenzflächendurchmischung meist signifikant, so dass dieser analysiert und in der Auswertung berücksichtigt werden muss. Schlussfolgernd aus diesen Untersuchungen ergibt sich für die höchstauflösende Ionenstrahlanalytik leichter Elemente am Rossendorfer 5-MV Tandembeschleuniger, dass die geeignetsten Primärionen Chlor mit einer Energie von 20 MeV sind. In Einzelfällen, wie zum Beispiel der Analyse von Bor, muss die Energie jedoch auf 6,5 MeV reduziert werden, um das elektronische Sputtern bei der notwendigen Fluenz unterhalb der Nachweisgrenze zu halten. Der vierte Schwerpunkt ist die Untersuchung von sowohl qualitativen als auch quantitativen Einflüssen bestimmter Probeneigenschaften, wie beispielsweise Oberflächenrauheit, auf die Form des gemessenen Energiespektrums beziehungsweise auf das analysierte Tiefenprofil. Die Kenntnis der Rauheit einer Probe an der Oberfläche und an den Grenzflächen ist für die Analytik unabdingbar. Als Resultat der genannten Betrachtungen werden die Einflüsse von Probeneigenschaften und Ionen-Festkörper-Wechselwirkungen auf die Energie- beziehungsweise Tiefenauflösung des Gesamtsystems beschrieben, berechnet und mit der konventionellen Ionenstrahlanalytik verglichen. Die Möglichkeiten der höchstauflösenden Ionenstrahlanalytik werden zudem mit den von anderen Gruppen veröffentlichten Komplementärmethoden gegenübergestellt. Der fünfte und letzte Schwerpunkt ist die Analytik leichter Elemente in ultradünnen Schichten unter Berücksichtigung aller in dieser Arbeit vorgestellten Modelle, wie die Reduzierung des Einflusses von Strahlschäden oder die Quantifizierung der Elemente im dynamischen Ladungszustandsnichtgleichgewicht. Es wird die Tiefenprofilierung von Mehrschichtsystemen, bestehend aus SiO2-Si3N4Ox-SiO2 auf Silizium, von Ultra-Shallow-Junction Bor-Implantationsprofilen und von ultradünnen Oxidschichten, wie zum Beispiel High-k-Materialien, demonstriert. / In this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two compo-nents. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a high-resistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during heavy ion irradiation. It is shown that the used energies occur both electronic sputtering and electronically induced interface mixing. Electronic sputtering is minimised by using optimised beam parameters. For most samples the effect is below the detection limit for a fluence sufficient for the analysis. However, the influence of interface mixing is so strong that it has to be included in the analysis of the layers of the depth profiles. It is concluded from these studies that at the Rossendorf 5 MV tandem accelerator chlorine ions with an energy of 20 MeV deliver the best results. In some cases, such as the analysis of boron, the energy must be reduced to 6.5 MeV in order to retain the electronic sputtering below the detection limit. The fourth focus is the study of the influence of specific sample properties, such as surface roughness, on the shape of a measured energy spectra and respectively on the analysed depth profile. It is shown that knowledge of the roughness of a sample at the surface and at the interfaces for the analysis is needed. In addition, the contribution parameters limiting the depth resolution are calculated and compared with the conventional ion beam analysis. Finally, a comparison is made between the high-resolution ion beam analysis and complementary methods published by other research groups. The fifth and last focus is the analysis of light elements in ultra thin layers. All models presented in this thesis to reduce the influence of beam damage are taken into account. The dynamic non-equilibrium charge state is also included for the quantification of elements. Depth profiling of multilayer systems is demonstrated for systems consisting of SiO2-Si3N4Ox-SiO2 on silicon, boron implantation profiles for ultra shallow junctions and ultra thin oxide layers, such as used as high-k materials.
6

Elastische Rückstoßatomspektrometrie leichter Elemente mit Subnanometer-Tiefenauflösung

Kosmata, Marcel 21 December 2011 (has links)
In der vorliegenden Arbeit wird erstmals das QQDS-Magnetspektrometer für die höchstauflösende Ionenstrahlanalytik leichter Elemente am Helmholtz-Zentrum Dresden-Rossendorf umfassend vorgestellt. Zusätzlich werden sowohl alle auf die Analytik Einfluss nehmenden Parameter untersucht als auch Methoden und Modelle vorgestellt, wie deren Einfluss vermieden oder rechnerisch kompensiert werden kann. Die Schwerpunkte dieser Arbeit gliedern sich in fünf Bereiche. Der Erste ist der Aufbau und die Inbetriebnahme des QQDS-Magnetspektrometers, der zugehörige Streukammer mit allen Peripheriegeräten und des eigens für die höchstauflösende elastische Rückstoßanalyse entwickelten Detektors. Sowohl das umgebaute Spektrometer als auch der im Rahmen dieser Arbeit gebaute Detektor wurden speziell an experimentelle Bedingungen für die höchstauflösende Ionenstrahlanalytik leichter Elemente angepasst und erstmalig auf einen routinemäßigen Einsatz hin getestet. Der Detektor besteht aus zwei Komponenten. Zum einen befindet sich am hinteren Ende des Detektors eine Bragg-Ionisationskammer, die zur Teilchenidentifikation genutzt wird. Zum anderen dient ein Proportionalzähler, der eine Hochwiderstandsanode besitzt und direkt hinter dem Eintrittsfenster montiert ist, zur Teilchenpositionsbestimmung im Detektor. Die folgenden zwei Schwerpunkte beinhalten grundlegende Untersuchungen zur Ionen-Festkörper-Wechselwirkung. Durch die Verwendung eines Magnetspektrometers ist die Messung der Ladungszustandsverteilung der herausgestreuten Teilchen direkt nach einem binären Stoß sowohl möglich als auch für die Analyse notwendig. Aus diesem Grund werden zum einen die Ladungszustände gemessen und zum anderen mit existierenden Modellen verglichen. Außerdem wird ein eigens entwickeltes Modell vorgestellt und erstmals im Rahmen dieser Arbeit angewendet, welches den ladungszustandsabhängigen Energieverlust bei der Tiefenprofilierung berücksichtigt. Es wird gezeigt, dass ohne die Anwendung dieses Modells die Tiefenprofile nicht mit den quantitativen Messungen mittels konventioneller Ionenstrahlanalytikmethoden und mit der Dickenmessung mittels Transmissionselektronenmikroskopie übereinstimmen, und damit falsche Werte liefern würden. Der zweite für die Thematik wesentliche Aspekt der Ionen-Festkörper-Wechselwirkung, sind die Probenschäden und -modifikationen, die während einer Schwerionen-bestrahlung auftreten. Dabei wird gezeigt, dass bei den hier verwendeten Energien sowohl elektronisches Sputtern als auch elektronisch verursachtes Grenzflächendurchmischen eintreten. Das elektronische Sputtern kann durch geeignete Strahlparameter für die meisten Proben ausreichend minimiert werden. Dagegen ist der Einfluss der Grenzflächendurchmischung meist signifikant, so dass dieser analysiert und in der Auswertung berücksichtigt werden muss. Schlussfolgernd aus diesen Untersuchungen ergibt sich für die höchstauflösende Ionenstrahlanalytik leichter Elemente am Rossendorfer 5-MV Tandembeschleuniger, dass die geeignetsten Primärionen Chlor mit einer Energie von 20 MeV sind. In Einzelfällen, wie zum Beispiel der Analyse von Bor, muss die Energie jedoch auf 6,5 MeV reduziert werden, um das elektronische Sputtern bei der notwendigen Fluenz unterhalb der Nachweisgrenze zu halten. Der vierte Schwerpunkt ist die Untersuchung von sowohl qualitativen als auch quantitativen Einflüssen bestimmter Probeneigenschaften, wie beispielsweise Oberflächenrauheit, auf die Form des gemessenen Energiespektrums beziehungsweise auf das analysierte Tiefenprofil. Die Kenntnis der Rauheit einer Probe an der Oberfläche und an den Grenzflächen ist für die Analytik unabdingbar. Als Resultat der genannten Betrachtungen werden die Einflüsse von Probeneigenschaften und Ionen-Festkörper-Wechselwirkungen auf die Energie- beziehungsweise Tiefenauflösung des Gesamtsystems beschrieben, berechnet und mit der konventionellen Ionenstrahlanalytik verglichen. Die Möglichkeiten der höchstauflösenden Ionenstrahlanalytik werden zudem mit den von anderen Gruppen veröffentlichten Komplementärmethoden gegenübergestellt. Der fünfte und letzte Schwerpunkt ist die Analytik leichter Elemente in ultradünnen Schichten unter Berücksichtigung aller in dieser Arbeit vorgestellten Modelle, wie die Reduzierung des Einflusses von Strahlschäden oder die Quantifizierung der Elemente im dynamischen Ladungszustandsnichtgleichgewicht. Es wird die Tiefenprofilierung von Mehrschichtsystemen, bestehend aus SiO2-Si3N4Ox-SiO2 auf Silizium, von Ultra-Shallow-Junction Bor-Implantationsprofilen und von ultradünnen Oxidschichten, wie zum Beispiel High-k-Materialien, demonstriert. / In this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two compo-nents. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a high-resistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during heavy ion irradiation. It is shown that the used energies occur both electronic sputtering and electronically induced interface mixing. Electronic sputtering is minimised by using optimised beam parameters. For most samples the effect is below the detection limit for a fluence sufficient for the analysis. However, the influence of interface mixing is so strong that it has to be included in the analysis of the layers of the depth profiles. It is concluded from these studies that at the Rossendorf 5 MV tandem accelerator chlorine ions with an energy of 20 MeV deliver the best results. In some cases, such as the analysis of boron, the energy must be reduced to 6.5 MeV in order to retain the electronic sputtering below the detection limit. The fourth focus is the study of the influence of specific sample properties, such as surface roughness, on the shape of a measured energy spectra and respectively on the analysed depth profile. It is shown that knowledge of the roughness of a sample at the surface and at the interfaces for the analysis is needed. In addition, the contribution parameters limiting the depth resolution are calculated and compared with the conventional ion beam analysis. Finally, a comparison is made between the high-resolution ion beam analysis and complementary methods published by other research groups. The fifth and last focus is the analysis of light elements in ultra thin layers. All models presented in this thesis to reduce the influence of beam damage are taken into account. The dynamic non-equilibrium charge state is also included for the quantification of elements. Depth profiling of multilayer systems is demonstrated for systems consisting of SiO2-Si3N4Ox-SiO2 on silicon, boron implantation profiles for ultra shallow junctions and ultra thin oxide layers, such as used as high-k materials.

Page generated in 0.0832 seconds