• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 109
  • 8
  • 4
  • Tagged with
  • 138
  • 138
  • 20
  • 16
  • 14
  • 13
  • 12
  • 12
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Microstructures and multifunctional microsystems based on highly crosslinked polymers

Singamaneni, Srikanth 02 July 2009 (has links)
The work elucidates the novel physical and thermal properties of thin and ultra-thin films of crosslinked polymer and organized microstructures with a special emphasis on surface and interfacial effects and the structure-property relationships. Two major crosslinked polymer coatings have been thoroughly investigated: polymer microstructures fabricated by multi-laser interference lithography (IL), and plasma polymer coatings. We unveiled intriguing thermal properties of plasma polymer films originating from their physical state and exploiting the same for the design of ultrasensitve chemical sensors. A novel paradigm of surface coatings, single and bi-component periodic, porous crosslinked polymeric structures, has been introduced and thoroughly studied. Surface, interfacial, and mechanical properties of these novel class crosslinked polymer coatings clearly demonstrate the enormous potential of the IL microstructures as organized multicomponent polymer systems. When subjected to external or internal stresses the periodic porous structures can exhibit a sudden and dramatic pattern transformation resulting in remarkable change in the photonic, phononic and mechanical properties of these structures. Furthermore, the confinement of these instabilities to localized regions results in complex hierarchical structures. The two polymer coatings (plasma polymers and IL microstructures) with complementary attributes (such as periodic structure, vertical stratification, residual internal stresses, and high surface and interface tunability) enabled us to understand and design novel multifunctional polymer coatings.
132

A fiber optic polarimeter for use in chemical analysis

Hamner, Vincent N. 08 June 2009 (has links)
Polarimetry, as applied to chemical analysis, deals with the determination of the extent and direction that an optically active chemical species will rotate incident linearly polarized light. Although well developed for physical sensing, the technique of fiber optic polarimetry for chemical sensing remains in its infancy. This thesis is concerned with the design and development of an optical fiber polarimeter which measures the optical rotation of linearly polarized light that occurs in a sensing region between two multi-mode optical fibers. Over short distances, the polarization preserving capabilities of large-core multi-mode optical fibers were investigated. Polarimetric analyses were performed using sucrose and quinine hydrochloride. The instrument has a resolution of 0.08·, and is an excellent platform for an LC or FIA detector. Its more intriguing future lies in evanescent field sensor applications and studies of chiroptical surface interactions. / Master of Science
133

Analysis and preliminary characterization of a MEMS cantilever-type chemical sensor

Arecco, Daniel 11 May 2004 (has links)
This Thesis relates to the continually advancing field of microelectromechanical systems (MEMS). With MEMS technology, there are many different areas of concentration available for research. This Thesis addresses analysis and preliminary characterization of a cantilever-type MEMS chemical sensor for detection of chemicals and organic components operating at room temperature (20˚C and sea level pressure of 1 atm). Such sensors can be useful in a wide variety of applications. There currently exist several different types of MEMS chemical sensors. Each is based on a different detection method, e.g., capacitive, thermal, resistive, etc., and is used for specific tasks. Out of all currently available detection methods, the most common is the gravimetric method. The gravimetric sensor works by absorbing the chemical in a special material, usually a polymer, which alters the overall mass of the sensing element that can then be measured, or detected, to identify the chemical absorbed. One of the more exciting developments in the field of gravimetric chemical MEMS has been with the advancement of cantilever-type sensors. These cantilevers are small and usually on the order of only about 300 m in length. In order to utilize the gravimetric method, a cantilever is coated with a polymer that allows an analyte to bond to it and change its mass, which in turn changes the resonant frequency of the cantilever. The change in frequency can then be measured and analyzed and from it, the amount of absorbed mass can be calculated. Current research in the cantilever-type resonating sensors for the detection of hydrogen is developing measurement capabilities of 1 ppm (part-per-million). In this Thesis number of sample cantilevers were qualitatively assessed and their dimensional geometry measured. Based on these measurements, frequency data were obtained. In addition, the overall uncertainty in the resonant frequency results was calculated and the contributing factors to this uncertainty were investigated. Experimental methods that include laser vibrometry, optoelectronic laser interferometric microscopy (OELIM), and atomic force microscopy (AFM), were utilized to measure the frequency responses of the samples. The analytically predicted natural frequencies were compared to the experimental data to determine correlation subject to the uncertainty analysis. Parametric analyses involving chemical absorption processes were also conducted. Such analyses considered different parameters, e.g., damping and stiffness as well as changes in their values, to determine contributions they make to the quality of the frequency data and the effect they have on sensitivity of the MEMS cantilever-type chemical sensors. Once these parametric analyses were completed, it was possible to estimate the sensitivity of the cantilever, or the ability for the cantilever to detect frequency shifts due to absorption of the target chemical. Results of the parametric analyses of the fundamental resonant frequency were then correlated with the sensitivity results based on the chemical absorption. This Thesis correlates many results and ideas and probes problems revolving around the analysis and characterization of a MEMS cantilever-type chemical sensor.
134

Chemical microsystem based on integration of resonant microsensor and CMOS ASIC

Demirci, Kemal Safak 06 July 2010 (has links)
The main topic of this thesis is the development of a chemical microsystem based on integration of a silicon-based resonant microsensor and a CMOS ASIC for portable sensing applications. Cantilever and disk-shape microresonators have been used as mass-sensitive sensors. Based on the characteristics of the microresonators, CMOS integrated interface and control electronics have been implemented. The CMOS ASIC utilizes the self-oscillation method, which incorporates the microresonator in an amplifying feedback loop as the frequency determining element. In this manner, the ASIC includes a main feedback loop to sustain oscillation at or close to the fundamental resonance frequency of the microresonator. For stable oscillation, an automatic gain control loop regulates the oscillation amplitude by controlling the gain of the main feedback loop. In addition, an automatic phase control loop has been included to adjust the phase of the main feedback loop to ensure an operating point as close as possible to the resonance frequency, resulting in improved frequency stability. The CMOS chip has been interfaced to cantilever and disk-shape microresonators and short-term frequency stabilities as low as 3.4×10-8 in air have been obtained with a 1 sec gate time. The performance of the implemented microsystem as a chemical sensor has been evaluated experimentally with microresonators coated with chemically sensitive polymer films. With a gas-phase chemical measurement setup constructed in this work, chemical measurements have been performed and different concentrations of VOCs, such as benzene, toluene and m-xylene have been detected with limits of detection of 5.3 ppm, 1.2 ppm and 0.35 ppm, respectively. To improve the long-term stability in monitoring applications with slowly changing analyte signatures, a method to compensate for frequency drift caused by environmental disturbances has been implemented on the CMOS chip. This method uses a controlled stiffness modulation generated by a frequency drift compensation circuit to track the changes in the resonator's Q-factor in response to variations in the environmental conditions. The measured Q-factor is then used to compensate for the frequency drift using an initial calibration step. The feasibility of the proposed method has been verified experimentally by compensating for temperature-induced frequency drift during gas-phase chemical measurements.
135

Integrated optical fiber laser Raman sensor for cryogenic application

Luanje, Appolinaire Tifang, January 2008 (has links)
Thesis (M.S.)--Mississippi State University. Department of Physics and Astronomy. / Title from title screen. Includes bibliographical references.
136

Development of carbon nanotube-based gas and vapour sensors and supramolecular chemistry of carbon nano-materials

Hubble, Lee John January 2009 (has links)
[Truncated abstract] The scientific endeavours described within this thesis attempt to create novel solutions to current scientific, commercial and industrial downfalls, and contribute to the advancement of technologies in these areas. This has been achieved through the application of theoretical and experimental principles, entrenched in the domains of chemistry and physics, which have been harnessed to assist in the transformation from nanoscience to nanotechnology. These solutions range from unique supramolecular systems capable of selective-diameter enrichment of single-walled carbon nanotubes (SWCNTs), to the fabrication of low-cost, potentially remote deployable carbon nanotube-based gas and vapour sensors, and expand right through to the development of water-soluble fluoroionophoric sensors and manipulations of a molecular form of carbon in constructing all-carbon nano-architectures. For the advancement and successful integration of carbon nanotubes (CNTs) into commercial processes, the advent of scalable separation protocols based on their electronic properties is required. SWCNTs have been successfully solubilised using water-soluble p-phosphonated calix[n]arenes (n = 4, 6, 8) and 'extended arm' upper rim functionalised (benzyl, phenyl) p-sulfonated calix[8]arenes. Selective SWCNT diameter solubilisation has been demonstrated and subsequent preferential enrichment of SWCNTs with semiconducting or metallic electronic properties has been achieved. In addition, semiconducting nanotube-enriched supernatants (liquid) have been utilised to fabricate on/off field effect transistors (FET). These water-soluble supramolecular systems can be incorporated into post-growth purification protocols, with direct implications in areas such as carbon nano-electronics and device fabrication. In the current global environment there is a heightened level of public and governmental disquiet due to the reality of impending terrorist attacks. This is compounded by the inherent ease of manufacture and effectiveness of specific chemical warfare agents (CWAs) used in small-scale terrorist operations. ... Additional all-carbon structures are described with the formation of rings of helical SWCNT bundles through post-growth SWCNT modifications, and a variety of fibrous all-carbon structures, most notably novel square-geometry carbon nano-fibres (CNFs), through catalytic-chemical vapour deposition (C-CVD) synthesis strategies. The current requirement for entirely water-soluble fluorescent sensors is routinely documented in the literature. The autofluorescence properties of p-phenyl-sulfonated calix[8]arene are characterised and this water-soluble cavitand is surveyed as a metal cation sensor candidate. This particular system was found to exhibit a change in fluorescence response when exposed to divalent metal cations, and interactions with [UO2]2+, Pb2+, Co2+, and Cu2+ ions are discussed in detail. The system is characterised through a variety of analytical techniques to yield sensor calibration data, degradation characteristics, pH sensitivity and suitability as a 'small molecule' drug-carrier.
137

Design Considerations and Implementation of Portable Mass Spectrometers for Environmental Applications

Mach, Phillip M. 05 1900 (has links)
Portable mass spectrometers provide a unique opportunity to obtain in situ measurements. This minimizes need for sample collection or in laboratory analysis. Membrane Inlet Mass Spectrometry (MIMS) utilizing a semi permeable membrane for selective rapid introduction for analysis. Polydimethylsiloxane membranes have been proven to be robust in selecting for aromatic chemistries. Advances in front end design have allowed for increased sensitivity, rapid sample analysis, and on line measurements. Applications of the membrane inlet technique have been applied to environmental detection of clandestine drug chemistries and pollutants. Emplacement of a mass spectrometer unit in a vehicle has allowed for large areas to be mapped, obtaining a rapid snapshot of the various concentrations and types of environmental pollutants present. Further refinements and miniaturization have allowed for a backpackable system for analysis in remote harsh environments. Inclusion of atmospheric dispersion modeling has yielded an analytical method of approximating upwind source locations, which has law enforcement, military, and environmental applications. The atmospheric dispersion theories have further been applied to an earth based separation, whereby chemical properties are used to approximate atmospheric mobility, and chemistries are further identified has a portable mass spectrometer is traversed closer to a point source.
138

A microscale chemical sensor platform for environmental monitoring

Truax, Stuart 18 August 2011 (has links)
The objective of this research is to apply micromachined silicon-based resonant gravimetric sensors to the detection of gas-phase volatile organic compounds (VOCs). This is done in two primary tasks: 1) the optimization and application of silicon disk resonators to the detection of gas-phase VOCs, and 2) the development and application of a novel gravimetric-capacitive multisensor platform for the detection of gas-phase VOCs. In the rst task, the design and fabrication of a silicon-based disk resonator structure utilizing an in-plane resonance mode is undertaken. The resonance characteristics of the disk resonator are characterized and optimized. The optimized characteristics include the resonator Q-factor as a function of geometric parameters, and the dynamic displacement of the in-plane resonance mode. The Q-factors of the disk resonators range from 2600 to 4360 at atmosphere for disk silicon thicknesses from 7 µm to 18 µm, respectively. The resonance frequency of the in-plane resonance mode ranges from 260 kHz up to 750 kHz. The disk resonators are applied to the sensing of gas-phase VOCs using (poly)isobutylene as a sensitive layer. Limits of detection for benzene, toluene and m-xylene vapors of 5.3 ppm, 1.2 ppm, and 0.6 ppm are respectively obtained. Finally, models for the limits of detection and chemical sensitivity of the resonator structures are developed for the case of the polymer layers used. In the second task, a silicon-based resonator is combined with a capacitive structure to produce a multisensor structure for the sensing of gas-phase VOCs. Fabrication of the multisensor structure is undertaken, and the sensor is theoretically modeled. The baseline capacitance of the capacitor component of the multisensor is estimated to be 170 fF. Finally, initial VOC detection results for the capacitive aspect of the sensor are obtained.

Page generated in 0.1373 seconds