• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 2
  • 2
  • Tagged with
  • 78
  • 78
  • 44
  • 25
  • 22
  • 19
  • 15
  • 15
  • 14
  • 13
  • 13
  • 13
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

High-Pressure Natural Gas to Syngas Chemical Looping: Thermodynamic Modeling, Gas-to-Liquid Plant Integration, and Variable Reducer-Combustor Operating Pressure

Sandvik, Peter 28 August 2019 (has links)
No description available.
42

Syngas and Hydrogen Production Enhancement Strategies in Chemical Looping Systems

Nadgouda, Sourabh Gangadhar January 2019 (has links)
No description available.
43

Catalytic Modification of Oxygen Carriers for Chemical Looping Applications

Guo, Mengqing January 2019 (has links)
No description available.
44

Behavior and Distribution of Sulfur Species in Coal-Direct Chemical Looping with Iron-Based Oxygen Carriers

Basu, Akash G. 24 September 2020 (has links)
No description available.
45

Sliding Mode Control and Electrical Capacitance Volume Tomography for Advanced Control of the Chemical Looping Process

Park, Cody 08 October 2018 (has links)
No description available.
46

Applications of Chemical Looping Technologies to Coal Gasification for Chemical Productions

Hsieh, Tien-Lin 11 September 2018 (has links)
No description available.
47

New Polygeneration Processes for Power Generation and Liquid Fuel Production with Zero CO2 Emissions

Khojasteh Salkuyeh, Yaser 06 1900 (has links)
The price and accessibility of fossil fuels, especially crude oil, are subject to considerable fluctuations due to growing demand on energy, limited resources, and energy security concerns. In addition, climate change caused by burning of fossil fuels is a challenge that energy sector is currently facing. These challenges incentivize development of alternative processes with no greenhouse gas emissions that can meet transportation fuels, chemical liquids, and electricity demands. Coal-based processes are of particular interest because coal price is both low and stable. However, these processes have a large environmental impact and are also less economically attractive than natural gas based plants due to the recent significant drop in natural gas price. However, even for natural gas plants, attempts to reduce CO2 emissions by using traditional CO2 capture and sequestration technologies not only decrease the thermal efficiency and profitability of the plant significantly but still release some CO2 to the atmosphere. The aim of this thesis is to develop, simulate and optimize an integrated polygeneration plant that uses multiple feedstocks and produces multiple products with low to zero CO2 emissions. Several process alternatives are investigated in this work to show the effect of each feedstock and product on the performance of the proposed plant. A comprehensive study is performed in each section, including process simulation in Aspen Plus software, development of custom models required for some units, as well as cost analysis by using Aspen Icarus software and empirical cost estimations from literature. Moreover, derivative free optimization techniques such as particle swarm optimization (PSO), genetic algorithm (GA) and simulated annealing (SA) are implemented to drive the design to economically optimum conditions as a function of the market price and carbon taxes. The final model will also introduce emerging technologies that can achieve higher efficiency and lower CO2 emissions compared to commercial systems, such as chemical looping gasification, chemical looping combustion, nuclear heat reforming, etc. By integrating multiple feedstocks and processes, the model can exploit certain synergies which are unavailable to traditional plants, resulting in significant efficiency improvements. In addition to power and liquid fuels, this polygeneration process offers benefits for petrochemical plants. Despite limited worldwide crude oil reserves, the demand for petrochemical products is still growing fast and it is highly important for petrochemical industry to find new resources as feedstock and diversify their supply chain network. By integration of the polygeneration plant in the same facility with novel processes that produce olefins (petrochemical feedstock) not from oil, but from syngas, it is possible to supply the required feed at lower cost than commercial steam cracking plants. / Thesis / Doctor of Philosophy (PhD)
48

Conversion of Carbonaceous Fuel to Electricity, Hydrogen, and Chemicals via Chemical Looping Technology - Reaction Kinetics and Bench-Scale Demonstration

Luo, Siwei 04 September 2014 (has links)
No description available.
49

Iron-Based Coal Direct Chemical Looping Process for Power Generation: Experimental Aspects, Process Development, and Considerations for Commercial Scale

Bayham, Samuel C. 21 May 2015 (has links)
No description available.
50

Heat Capacity and Oxidation Kinetic Studies of Fe-Ti Composite Metal Oxide (ITCMO) using Simultaneous Differential Scanning Calorimetry and Thermogravimetric Analysis

Kumar, Prateek January 2017 (has links)
No description available.

Page generated in 0.0803 seconds