• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 141
  • 78
  • 43
  • 9
  • 9
  • 7
  • 6
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 337
  • 86
  • 74
  • 70
  • 46
  • 45
  • 45
  • 43
  • 40
  • 34
  • 31
  • 31
  • 28
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The chicken chemokine repertoire

Waters, Victoria Hannah January 2011 (has links)
No description available.
52

Conception de plateformes hétérocycliques originales et application à la découverte de nouveaux neutraligands des chimiokines CXCL12 et CCL17 / Design and synthesis of new heterocyclic scaffolds and application to the discovery of chemokine CXCL12 and CCLl7 neutraligands

Regenass, Pierre 13 November 2015 (has links)
Les chimiokines forment une vaste famille de cytokines chimioattractantes surtout connues pour leur implication dans des phénomènes pro-inflammatoires. Ainsi, l’obtention de composés modulant l’action de ces protéines apparaît aujourd’hui comme un enjeu primordial. L’utilisation de petites molécules organiques capables d’interférer directement avec les chimiokines (concept de « neutraligands ») se révèle être une stratégie originale pour développer de nouveaux outils pharmacologiques ainsi que de potentiels agents thérapeutiques. Dans ce contexte, nous avons développé des neutraligands de la chimiokine CXCL12 pour des applications potentielles dans le traitement de l’asthme, du lupus ou de la maladie de Crohn. Des neutraligands radiomarqués ont également été développés afin d’étudier les paramètres pharmacocinétiques de ces dérivés. Dans une seconde partie, le concept de neutraligand a été également étendu avec succès à la chimiokine CCL17. Des études autour des aza-dicétopipérazines, châssis « drug-like », ont ainsi permis d’obtenir deux nouveaux neutraligands dont le potentiel thérapeutique va être évalué prochainement dans la dermatite atopique et l’asthme. Dans une dernière partie, nous avons cherché à élargir la diversité structurale autour des aza-dicétopipérazines en réalisant la synthèse de bi- et tricycles par cyclohydrocarbonylation, fonctionnalisés ensuite de manière diastéréosélective. L’accès à ces composés a également été optimisé en développant une réaction « one-pot » plus rapide et plus efficace permettant ainsi de faciliter la préparation de chimiothèques focalisées autour du motif aza-dicétopipérazine. / Chemokines are a large family of chemoattractant cytokines best known for theirinvolvement in proinflammatory processes. Thus, compounds that could modulate theaction of these proteins are crucial. Neutraligands are small organic compounds thatare capable of directly interfering with chemokines. This novel strategy is of importanceto develop new pharmacological tools and potential therapeutic agents. In this context,we have developed novel compounds neutralizing the chemokine CXCL12 for potentialapplications in the treatment of asthma, lupus or Crohn's disease. Radiolabeled probeshave also been synthesized to investigate the pharmacokinetic characteristics of thesederivatives. Neutraligand strategy has also been successfully extended to thechemokine CCL17. Studies of aza-diketopiperazines, a drug-like scaffold, haveprovided two compounds with therapeutic potential in atopic dermatitis and asthma. We also expanded the diversity around aza-diketopiperazines by designing andsynthesizing novel bi- or tricyclic compounds using cyclohydrocarbonylation. Thesederivatives were further diastereoselectively functionalized. Access to thesecompounds has also been optimized by performing a "one-pot" reaction, giving a rapidand efficient access to original, 3D-shaped and “drug-likeness” aza-diketopiperazinebased libraries.
53

CCL18 et réponse régulatrice, de la situation physiologique à l'atopie / CCL18 and regulatory responses from steady state to atopy

Azzaoui, Imane 29 September 2011 (has links)
Les chimiokines sont un élément essentiel du trafic cellulaire aussi bien homéostatique que dans des situations pathologiques. Outre cette fonction chimiotactique spécifique à ce type de molécules, on leur a récemment attribué une implication dans le profil de polarisation de la réponse adaptative spécifique, en agissant directement sur les lymphocytes T (Lc T) ou indirectement par le biais des cellules dendritiques (DC). CCL18 est une chimiokine exprimé préférentiellement au niveau pulmonaire et de façon moindre au niveau ganglionnaire, capable d’attirer les DC et les Lc T, elle est induite par les cytokines de type Th2 telle que l'IL-4, l'IL-13, mais aussi par la cytokine immunomodulatrice l'IL-10, son récepteur est inconnu à ce jour. Au laboratoire il a été montré une implication du CCL18 dans l’asthme allergique (de Nadai, JI, 2006), et cette chimiokine a été associée à différentes pathologies à tropisme pulmonaire ou non avec un rôle pas toujours très clair. L'objectif de ce travail a été d’étudier l’effet immunitaire de cette chimiokine, en base et en situation atopique. L'effet direct du CCL18 a été évalué sur la polarisation de la réponse T. Le prétraitement des Lc T mémoire CD4+ CD25-, de sujets non allergiques, avec le CCL18 conduit à leur transformation en Lc T régulateurs CD4+ CD25+ Foxp3+ produisant de l’IL-10 et du TGF-b capables d'inhiber la prolifération des Lc T effecteurs, à la fois par un mécanisme cytokine et contact dépendant. Cependant, cet effet de régulation de CCL18 est perdu lorsque les cellules T proviennent de sujets allergiques (Chang Y et al., FASEB J, 2010). L’effet indirect du CCL18 a été évalué sur la réponse immune via les DC. La différenciation de monocytes de sujets sains en présence de GM-SCF et CCL18 conduit au développement de DC de phénotype semi-mature, expriment le CCR7, produisant de l’IL10 et l’enzyme 2,3-indoleamine dioxigenase et induisant le développent de Lc T régulateurs de type Tr1 produisant de l’IL-10 capables d’inhiber la prolifération de Lc T effecteurs, par un mécanisme cytokine dépendant. Étonnamment, lorsque les monocytes proviennent de patients allergiques, l'effet tolérogène de CCL18 est perdu en liaison avec la diminution de la fixation de CCL18 à son récepteur putatif (Azzaoui I et al., en révision Blood). Par ailleurs, CCL18 pourrait également jouer un rôle dans la résolution de la réaction allergique par un effet chimiotactique vis-à-vis d’une sous population de LcT régulateurs CD4+CD25highCD127lowLAP+ (Chenivesse C et al., en révision JI). L'effet de corticoïdes sur l'expression de CCL18 a ensuite été analysé. Il a été montré que la sécrétion de CCL18 induite par les cytokines IL-4 et IL-10 est potentialisée par la dexaméthasone, ce qui confirme que CCL18 est plutôt une chimiokine à activité anti inflammatoire (Chabrol J et al., en préparation). La dernière étude concerne une approche dans un modèle murin d'asthme allergique, induit par l'ovalbumine chez la souris Balb/cBYJ. D'un point de vue fonctionnel, l'administration de CCL18 recombinant par voie intratrachéale à des animaux sensibilises permet d'inhiber le développement de la réaction asthmatique, en diminuant l'inflammation pulmonaire (réduction de l'infiltration éosinophilique, inhibition de la production locale de cytokines Th2) et protège ces derniers contre l'altération de leur fonction respiratoire (protection contre l'hyperréactivité bronchique, avec inhibition de l'hypersécrétion de mucus). Toutefois, les mécanismes cellulaires à l'origine de cette protection semblent indépendants de grandes voies de régulation de la réaction (Gilet J et al., en préparation). L'ensemble de ces études montre, et pour la première, qu’une chimiokine est capable d’induire le développement d’une réponse tolérogénique. / Chemokines are a key component of homeostatic cell traffic and involved in pathological situations. In addition to this chemotactic function, specific to these molecules, they have been recently assigned an involvement in specific adaptive response polarization, by acting directly on T cells (T Lc) or indirectly through dendritic cells (DC). CCL18 is a chemokine preferentially expressed in lung and lymph nodes, able to attract DCs and T Lc, induced by Th2 cytokines such as IL-4, IL-13 but also by the immunomodulatory cytokine IL-10, and its receptor is still unknown. In our laboratory it was shown an involvement of CCL18 in allergic asthma (de Nadai, JI, 2006), and this chemokine has also been associated with various pathologies without areal clear described role. The purpose of this work was to evaluate the immune effect of CCL18 at baseline and in atopic situation. The direct effect of CCL18 was evaluated on T cell polarization. Pretreatment of memory T cells CD4+CD25-, from non allergic subjects, with CCL18 led to their switch to regulatory CD4+CD25+ Foxp3+ cells, able to produce IL-10 and TGF-b and inhibit effectors T cell proliferation, by a contact and cytokine dependent mechanism. However, this regulatory effect of CCL18 was lost when T cells were derived from allergic subjects (Chang Y et al., FASEB J, 2010). The indirect effect of CCL18 has been assessed on the immune response through DC. Monocyte, from healthy subjects, differentiated in DC with GM-CFS and CCL18 led to development of semi-mature DC, that expressed CCR7 and produced IL10 and the enzyme indoleamine 2,3-inducing dioxigenase. These cells primed regulatory Tr1 cells able to produce IL-10 and to suppress LcT effectors proliferation by a cytokine dependent mechanism. Surprisingly, when monocytes were derived from allergic patients, the tolerogenic effect of CCL18 was lost, in association with a decreased binding of CCL18 to its putative receptor (Azzaoui I and al., in revision Blood) Moreover, we have shown that CCL18 may also play a role in the resolution of the allergic reaction with a chemotactic effect, by recruitment of a subpopulation of regulatory T cells CD4+CD25highCD127lowLAP+ (Chenivesse C et al., in revision JI). The effect of corticosteroids on CCL18 expression was analyzed. These results showed that the secretion of CCL18 induced by cytokines IL-4 and IL-10 is potentiated by dexamethasone (Chabrol J et al., in preparation) which confirms the anti inflammatory role of CCL18. The last study was an approach in a murine model of allergic asthma induced by ovalbumin in mice Balb/cByJ. Intratracheal administration of recombinant CCL18 to sensitized animals, inhibits asthmatic reaction development, by decreasing pulmonary inflammation (reduced eosinophil infiltration, and inhibition of local production of Th2 cytokine) and protects them against the deterioration of their respiratory function (protection against bronchial hyperresponsiveness, and inhibition of mucus hypersecretion). However, the cellular mechanisms behind this protection appear independent of major regulatory pathways of the reaction (J Gilet et al., in preparation). All these studies show, for the first time, that a chemokine is able to induce a tolerogenic response. However, this feature is absent in allergic donors who exhibit a defect in the binding of CCL18 to its putative receptor. This may participate to the lack of tolerance response observed in allergic diseases. This data suggest that CCL18 and its putative receptor may represent therapeutic targets.
54

Diagnosis and the Role of Chemokine Receptors in Alzheimer's Disease

Gonzalez Murcia, Josue David 27 March 2020 (has links)
Alzheimer’s disease (AD) is the most common neurodegenerative disorder and is the main cause of dementia in the elderly population. AD is pathologically characterized by the accumulation of amyloid plaques and neurofibrillary tangles that results in neurodegeneration and loss of memory function. However, diagnosis of AD and characterization of biological mechanisms that lead to pathology and modulate risk for disease has proven to be extremely difficult. Cerebrospinal fluid (CSF) contains critical biomarkers for AD such as levels of amyloid beta (Aβ) phosphorylated-tau (p-tau), total-tau (t-tau), and neurofilament light chain (NfL). The CSF levels of these biomarkers are useful in determining AD status in a patient, but data collection can be time consuming, technically difficult, and expensive. While still subject to the limitations of obtaining CSF, cell free single stranded DNA (cfssDNA) is much cheaper and more reliably measured than these biomarkers. We investigated cfssDNA as a biomarker for AD status. We observed an association between low levels of concentration isolated from CSF as a potential biomarker for diagnosis of AD. Inflammation is a vital process in the immune system. Acute inflammation plays an essential role in the normal response to tissue injury. This inflammatory response initiates a cascade of cellular activation signals in innate immune cells resulting in increased production of proinflammatory cytokines and chemokines. These chemokines are essential to the recruitment and activation of other cells in the innate and adaptive immune system. Deviations from the normal production of these chemokines can result in disease status. Recently published work has identified genetic variants that show strong associations with AD-related chemokine levels in CSF and plasma. We attempted to characterize the biological mechanisms that underlie the reported associations between the ACKR2-V41A variant and CCL2 levels and the CCRL2-V180M variant and CCL4 levels. Our data demonstrate that the ACKR2-V41A receptor has a lower CCL2 binding affinity, scavenging efficiency, and receptor upregulation compared to ACKR2-WT. For CCRL2-V180M our data demonstrate higher binding affinity with chemerin and CCL19 than CCRL2-WT. Our data also show that while CCRL2-V180M and CCRL2-WT do not directly bind with CCL4, interactions between CCRL2-V180M and CCL19 alter the secretion of CCL4 from leukocytes. These findings provide evidence for a novel biomarker for AD diagnosis, mechanistic insights into the functional impact of common genetic variants on chemokine levels, and highlight a potential role of atypical chemokines in altering the risk for AD.
55

Loss of the Lipopolysaccharide Core Biosynthesis rfaD Gene Increases Antimicrobial Chemokine Binding and Bacterial Susceptibility to CCL28 and Polymyxin: A Model for Understanding the Interface of Antimicrobial Chemokines and Bacterial Host Defense Avoidance Mechanisms

Lew, Cynthia S. 24 August 2012 (has links) (PDF)
In order to better understand the mechanism of antimicrobial chemokine activity, including binding to and killing of bacteria, random transposon mutagenesis was performed in Yersinia pseudotuberculosis. Resulting mutants were screened for increased binding to chemokine and high binding clones were selected for further study. One mutant, designated mutant 27, was found to have a single insertion mutation in the rfaD gene. The rfaD gene product is involved in heptose biosynthesis, one of the sugars of the inner core oligosaccharide of Gram- negative lipopolysaccharide (LPS). Mutant 27 was found to bind both CCL25 and CCL28, two antimicrobial chemokines, more efficiently than the wild type bacteria. This clone was also found to be more susceptible to CCL28- mediated killing and polymyxin activity. Complementation with a plasmid bearing the full rfaDFC operon restored the wild type phenotype in both regards. These data suggest that normal LPS expression by Y. pseudotuberculosis serves to protect the bacteria from the antimicrobial function of chemokines and other antimicrobial proteins of the mammalian innate immune system.
56

INTERFERON GAMMA-MEDIATED NEUROINFLAMMATION CONTRIBUTES TO THE PERSISTENCE OF NOCICEPTOR SENSITIZATION IN HIV-ASSOCIATED DISTAL SENSORY POLYNEUROPATHY

Warfield, Rebecca K 12 1900 (has links)
Despite the development of antiretroviral therapy (ART), human immunodeficiency virus (HIV)-associated distal sensory polyneuropathy (HIV-DSP) has remained prevalent. To recapitulate chronic pain during HIV infection, simian immunodeficiency virus (SIV)-infected rhesus macaques were examined to dissect the molecular mechanisms of peripheral and central sensitization. Previous studies identified atrophy in nociceptive neurons during SIV infection, which was associated with monocyte infiltration into the dorsal root ganglia (DRG). However, the sensory signaling mechanism connecting this pathology to symptomology remains unclear, especially because pain persists after resolution of high viremia and inflammation with ART. We hypothesize that residual DRG and dorsal horn neuroinflammation contributes to nociceptive sensitization. Using three cohorts of macaques (uninfected, SIV-infected, and SIV+/ART), we showed an increase in the cellular and cytokine inflammatory profiles in the DRG of SIV+/ART macaques compared to uninfected animals. We observed significant increased expression of nociceptive ion channels, transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) among DRG neurons in SIV+/ART compared to uninfected animals. SIV-infected and SIV+/ART animals showed reduced innervation of the non-peptidergic nociceptors into the dorsal horn compared to uninfected animals. Finally, there were significantly higher numbers of CD68+ macrophages in the dorsal horn of SIV+/ART macaques compared to uninfected animals. As pain persists in people with HIV (PWH) on ART, mechanisms outside of viral load and DRG pathology were investigated. Here, bulk RNAseq of DRGs from the three cohorts of macaques revealed a significant increase in upstream regulation by interferon γ (IFNγ) and lipopolysaccharide (LPS) with SIV infection. The introduction of ART decreased the signaling of IFNγ and LPS, yet in SIV+/ART animals, there was a significant increase in expression of the IFNγ inducible chemokines, CXCL9 and CXCL10. To assess if CXCL9 and/or CXCL10 influence TRPV1/TRPA1 expression, we utilized an induced pluripotent stem cell-derived peripheral sensory neuron model (IPSC-PSN). Treatment of IPSC-PSNs with CXCL9 and/or CXCL10 induced a significant increase in TRPV1, but not TRPA1 expression. Since macrophages persist in the DRGs of SIV+/ART macaques, monocyte-derived macrophages (MDMs) were treated with IFNγ or LPS. MDMs treated with IFNᵧ but not LPS, significantly increased the release of CXCL9/CXCL10. Conditioned media from MDMs treated with IFNγ, but not LPS, significantly increased expression of TRPV1 in IPSC-PSNs. Inhibition of the CXCL9/CXCL10 receptor, CXCR3, in IPSC-PSNs partially blocked TRPV1 upregulation following treatment with conditioned media from IFNᵧ treated MDMs. In summary, these data demonstrate that neuroinflammation, characteristics of nociceptor sensitization, and central terminal atrophy persists in SIV infection with ART. Mechanistically, these data indicate a potential role of IFNᵧ signaling in the sensitization of nociceptors in HIV-DSP despite ART. / Biomedical Sciences
57

Facilitation of Neutrophil Migration Through the Corneal Stroma During Keratitis - Mmp8 and Chemokines

Lin, Michelle January 2008 (has links)
No description available.
58

ROLE OF CHEMOKINES IN REGULATING OLIGODENDROCYTE DEVELOPMENT, ASTROGLIOSIS, AND DEMYELINATING DISEASES

Kerstetter Fogle, Amber E. January 2010 (has links)
No description available.
59

THE EFFECTS OF INTERLEUKIN-19 ON ATTENUATION OF THE VASCULAR RESPONSE TO INJURY

Ellison, Stephen Patrick January 2015 (has links)
BACKGROUND: Despite aggressive dietary modification, lipid lowering medications, and other medical therapy, vascular proliferative diseases continue to account for 50% of all mortality in the United States. It is a significant medical and socioeconomic problem contributing to the mortality of multiple diseases including myocardial infarction (MI), stroke, renal failure, and peripheral vascular disease. With a growing number of children becoming obese and an increase in the number of patients with co-morbidities such as metabolic syndrome and Type 2 diabetes mellitus, epidemiological studies project the morbidity and mortality of these diseases to increase. Among these vascular proliferative diseases are primary atherosclerosis, vascular restenosis, and allograft vasculopathy, all of which are the result of chronic inflammation believed to stem from initial endothelial injury. Once activated by any number of potential injurious agents, endothelial cells (ECs) secrete cytokines that act on multiple cell types. Stimulation of resident vascular smooth muscle cells (VSMCs) results in a phenotypic switch from a normally contractile state to a proliferative state. Following this phenotypic shift, VSMCs migrate from the media to the intima of the artery where they begin secretion of both pro- and anti-inflammatory cytokines. Vascular proliferative disease ensues as a result of the autocrine and paracrine signaling of these cytokines between many different cell types including ECs, VSMCs, macrophages, and T-cells. As a result of the integral role pro- and anti-inflammatory cytokines play in the development of vascular proliferative diseases, they have become the subject of intense study in the field of cardiovascular research. Interleukin-19 (IL-19) is a newly described member of the IL-10 sub-family of anti-inflammatory cytokines. Discovered in 2000, it was originally only thought to be basally expressed in monocytes and lymphocytes, however in 2005 our lab discovered that while uninjured arteries have no detectable IL-19, arteries of patients with vascular proliferative diseases have notable IL-19 expression. Since its discovery in multiple cell types of injured arteries, our lab has subsequently shown that IL-19 inhibits proliferation, migration, spreading, production of reactive oxygen species (ROSs), and expression of pro-inflammatory genes in VSMCs, while in ECs IL-19 has been shown to promote angiogenesis, proliferation, migration, and spreading. AIMS and HYPOTHESIS: The first aim of the current study is to show that IL-19 is expressed in atherosclerotic plaque, and to test that IL-19 can reduce experimental atherosclerosis in susceptible mice. The second aim of the study is to show that IL-19 can regulate development of intimal hyperplasia in a murine model of restenosis. For both aims, we sought to identify potential intracellular signaling mechanisms of IL-19 which produce the observed effect. These aims directed our overall hypothesis that the anti-inflammatory properties of IL-19 can attenuate the vascular response to injury in various animal models of vascular proliferative disease. METHODS and RESULTS: The first aim of this dissertation showed that LDLR-/- mice fed an atherogenic diet and injected with either 1.0ng/g/day or 10.0ng/g/day rmIL-19 had significantly less plaque area in the aortic arch compared with controls (p<0.0001). Weight gain and serum lipid levels were not significantly different. IL-19 could halt, but not reverse expansion of existing plaque. Gene expression in splenocytes from IL-19 treated mice demonstrated immune cell Th2 polarization, with decreased expression of T-bet, IFNgamma, IL-1β and IL-12β, and increased expression of GATA3 messenger ribonucleic acid (mRNA). A greater percentage of lymphocytes were Th2 polarized in IL-19 treated mice. Cellular characterization of plaque by immunohistochemistry demonstrated IL-19 treated mice have significantly less macrophage infiltrate compared with controls (p<0.001). Intravital microscopy revealed significantly less leukocyte adhesion in wild-type mice injected with IL-19 and fed an atherogenic diet compared with controls. Treatment of cultured EC, VSMC, and bone marrow-derived macrophages (BMDM) with IL-19 resulted in a significant decrease in chemokine mRNA, and in the mRNA-stability protein HuR. In the second aim of this dissertation we showed that IL-19 attenuates vascular restenosis in response to carotid artery ligation. Carotid artery ligation of hyper-responsive friend leukemia virus B (FVB) wild-type mice injected with 10ng/g/day rIL-19 had significantly lower neointima/media ratio (I/M) compared with phosphate buffered saline (PBS) controls (p=0.006). Conversely, carotid artery of IL-19-/- mice demonstrated significantly higher I/M ratio compared with wild-type mice (p=0.04). Importantly, the increased I/M ratio in the knockout mice could be rescued by injection of 10ng/g/day IL-19 (p=0.04). VSMC explanted from IL-19-/- mice proliferated significantly more rapidly compared with wild-type (p=0.04). Surprisingly, in this model, IL-19 does not modulate adoptive immunity. Rather, addition of IL-19 to cultured wild-type VSMC did not significantly decrease VSMC proliferation, but could rescue proliferation in IL-19-/- VSMC to wild-type levels (p=0.02). IL-19-/- VSMC expressed significantly greater levels of inflammatory mRNA including IL-1β, TNFα, and MCP-1 in response to TNFα stimulation (p<0.01 for all). No polarization of adaptive immunity was noted in these mice. CONCLUSIONS: These data are the first to report that IL-19 is a potent inhibitor of experimental atherosclerosis via diverse mechanisms including immune cell polarization, decrease in macrophage adhesion, and decrease in gene expression. In addition, these data are also the first to show that IL-19 plays a previously unrecognized protective role in vascular restenosis. Together, these data suggest IL-19 is both anti-atherogenic and anti-restenotic and may identify IL-19 as a novel therapeutic to limit vascular inflammation. / Physiology
60

The role of chemokine and chemokine receptor genes in genetic susceptibility to HIV infection in South Africa

Petersen, Desiree C. 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2002. / ENGLISH ABSTRACT: Please see fulltext for abstract / AFRIKAANSE OPSOMMING: Sien asb volteks vir opsomming

Page generated in 0.0318 seconds