• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 77
  • 18
  • 13
  • 12
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Genetic characterization of the acetohydroxyacid synthase (AHAS) gene responsible for imidazolinone resistance in chickpea (Cicer arietinum L.).

2013 December 1900 (has links)
Weed control in chickpea (Cicer arietinum L.) is challenging because of poor crop competition ability and limited herbicide options. Development of chickpea varieties with resistance to different herbicide modes of action would be desirable. Resistance to imidazolinone (IMI) herbicides in chickpea has been previously identified, but the genetic inheritance and the mechanism were unknown. In many plant species, IMI resistance is caused by point mutation(s) in the acetohydroxyacid synthase (AHAS) gene resulting in an amino acid substitution. This changes the enzyme configuration at the herbicide binding site, preventing the herbicide attachment to the molecule. The main research objective was to genetically characterize chickpea resistance to imidazolinone herbicides. Two homologous AHAS genes, namely AHAS1 and AHAS2 sharing 80% similarity were identified in the chickpea genome. A point mutation in AHAS1 at cytosine 675 thymine 675 resulting in an amino acid substitution from alanine 205 to valine 205 confers the resistance to imidazolinone in chickpea. A KASP marker targeting the point mutation was developed and effectively predicted the herbicide response in the RIL population. This same population was used in molecular mapping where the major locus for herbicide resistance was mapped to chromosome 5. Segregation analysis demonstrated that the resistance is inherited as a single gene in a semi-dominant fashion. To study the synteny of AHAS across plant species, lentil (Lens culinaris) AHAS1 was sequenced. The same mutation that confers the resistance to imidazolinone in chickpea was also found in lentil. Phylogenetic analysis indicated independent clustering of AHAS1 and AHAS2 across pulse species. In vivo and in vitro AHAS enzyme activity analysis showed inhibition of AHAS activity in the susceptible genotype CDC Frontier over time and with the increasing imidazolinone concentrations. In contrast, the resistant genotype CDC Cory did not show AHAS inhibition under the same treatments. In summary, the simple genetic inheritance and the availability of KASP marker could aid in the development of chickpea varieties with resistance to imidazolinone herbicide.
42

THE EFFECT OF SEED TEMPERING AND MICRONIZATION TEMPERATURE ON THE PHYSICOCHEMICAL PROPERTIES OF CHICKPEA FLOUR AND ITS PERFORMANCE AS A BINDER IN LOW-FAT PORK BOLOGNA

2014 April 1900 (has links)
The overall goal of this research was to investigate the effect of seed tempering moisture and micronization temperature on the physicochemical properties of chickpea flour and its subsequent performance as a binder in a model low-fat pork bologna product. This work was divided into three studies. In the first study, the effect of seed tempering moisture (untempered (7% moisture) or tempered to 15 or 22% moisture) and surface micronization temperature (115, 130, 150 or 165oC) and on the physical, chemical and functional properties of chickpea flour were investigated. Chickpea flour became darker as seed moisture or micronization temperature increased. Increasing the micronization temperature at 22% seed moisture increased starch gelatinization from 8.2 to 34.0%. The lipoxygenase activity of chickpea flour also was reduced by micronization of seed. Lipoxygenase activity in flour from non-micronized seed and flour from seed micronized at 115oC without tempering was determined to be 1.98×105 and 1.12×105 units/g of protein, respectively, with no activity found in any other treatments. There was an increase in the water holding (WHC) and oil absorption capacity (OAC) of flour when chickpea seed was tempered to 22% moisture before micronization. Flour from untempered seed and from seed tempered to 15% moisture exhibited small increases in WHC as micronization temperature increased. Micronization had no effect on the OAC of untempered flours, whereas OAC decreased in flour from seed tempered to 15% moisture at higher micronization temperatures. Rapid visco-analysis (RVA) revealed that peak viscosity and final viscosity of all flours from tempered seed decreased with increasing micronization temperature, whereas the trend for both peak viscosity and final viscosity was in the opposite direction with untempered seed. The effect of seed tempering moisture and micronization temperature on the performance of chickpea flour as a binder in a low-fat, comminuted meat product (i.e., low-fat bologna) was investigated in study 2. Both the textural and sensory properties (trained sensory panel, n=12) of the bologna (10% fat) were explored. In study 3, a consumer panel was performed with 101 untrained participants evaluating selected formulations in order to better understand consumer purchasing behaviour as it relates to comminuted meat products containing a pulse-based binder. Bologna containing flour from micronized chickpea was more yellow in colour (CIE system, trained panel and consumer panel evaluation) compared to those with added wheat flour or no binder. There was no effect of tempering or micronization conditions on cook loss or expressible moisture of bologna containing chickpea flour, whereas bologna produced with wheat flour had the greatest WHC among all bologna treatments. Texture profile analysis (TPA) showed that the addition of chickpea flour from seed tempered to 15% or 22% seed moisture and micronized to 115, 130 or 150oC or flour from untempered seed micronized to 130 or 150oC led to an increase in hardness to a level similar to that of bologna containing wheat flour; sensory evaluation by the trained panel did not produce a similar result. A difference in flavour intensity was not found among all bolognas containing chickpea flour during sensory evaluation. Bologna produced with chickpea flour from seed micronized to 150oC and from seed tempered to 22% moisture and micronized to 115oC was comparable to bologna containing wheat flour with respect to overall texture, overall juiciness and flavour acceptability. These results demonstrated that selection of appropriate seed tempering conditions and micronization temperatures is important with respect to the utilization of chickpea flour as a binder in low-fat bologna.
43

Planting date as an adaptive strategy to improve yield of Chickpea (Cicer arietinum) under under climate change condition in Southern Africa

Mubvuma, Michael Ticharwa 21 September 2018 (has links)
PhD (Plant Production) / Department of Plant Production / Planting chickpea genotypes at different dates within the same season may expose the crop to different environmental factors (temperature and moisture) during their vegetative and reproduction stages. Thus, knowledge of optimum planting date that minimises extreme temperature and water stress conditions during crital stages of chickpea plant development may increase biomass and grain yield. The objective of the study was to determine the effect of planting date and genotype on aboveground biomass and grain yield of chickpea under climate change scenario in North Eastern Region of South Africa. The hypothesis tested was that planting date and genotype have an effect on biomass and grain yield of chickpea under climate change scenario. Thus, a study design incorporating a combination of field and modelling experiments was set to run in 2014 and 2015 winter planting seasons at the University of Venda, South Africa. Field experiments determined the effect of planting date and genotype on chickpea flower retention and pod abortion, aboveground biomass and grain yield, water use and radiation use efficiency, whilst modelling experiments calibrated and validated the FAO AquaCrop model to simulate chickpea aboveground biomass and grain yield using climate datasets (1950 - 2100), simulated from 15 global circulation models (GCMs) under the representative carbon dioxide concentration pathways (RCP) 4.5 and 8.5. Field experiments results showed significant effect of planting date and genotype on biomass and grain yield of chickpea. Planting early, particularly under well-watered conditions appeared to be the most suitable sowing period for chickpea in this region. In contrast, late planting had lowest biomass and grain yield. The high grain yield in early planting (1.99 t ha-1) was supported by greater yield components (seed weight (13.8 gm-2) and pod weight 23 gm-2), number of pods per plant (75 pods plant-1) and harvest index (43 %)). Moreover, plant phenological factors such as plant height (46 cm) and number of branches per plant (16 branches) were also greater in early planting, with late planting recording lowest values in all the measured parameters. In addition, the greater biomass and grain yield in early planting compared with the normal and late sowings was caused by greater intercepted radiation (91%), improved flower retention (45.2%) and minimised water use (174 mm) and pod abortion (13.6%). Late maturing genotypes (Range 4 & 5) showed greater water use efficiency of grain yield (7.3 & 7.1 kg ha-1 mm-1) and had the highest radiation use efficiency of grain yield, which was on average 7.2% (0.07 g MJ-1) greater than ICCV9901, and 15.6% (0.13 g MJ-1) greater than Range 1 & 3, but this depended on soil moisture availability. vi The simulation results, indicated a significant increase in temperature (by 4.2 to 5.5 oC) over a period from 1950 to 2100. This increase lead to a concomitant increase in chickpea evapotranspiration and accumulated growing degree days. Moreover, optimal planting date for chickpea shifted from mid-month of April during 1950 to end of May in 2100 and reduced growing season length from 140 days in 1950 to 85 days in 2100. Aboveground biomass increased from 2.0 & 2.05 t ha-1 in 1950 to 4.3 & 4.57 t ha-1 in 2100, respectively in RCP 4.5 and 8.5, whilst grain yield increased from 1.07 & 1.08 t ha-1 in 1950 to 1.68 & 2.21 t ha-1 in 2100, respectively under RCP 4.5 and 8.5. Planting dates that were recommended by AquaCrop model recorded the highest increase in aboveground biomass and grain yield compared with early, normal and late planting dates. Late maturing genotypes (Range 4 & 5) showed greater grain yield and biomass, whilst early and medium maturing genotypes had low biomass and grain yield. The study recommend early planting date together with late maturing chickpea genotypes (Range 4 and 5) in the region so as to improve water use efficiency, radiation use efficiency, heat use efficiency and aboveground biomass and grain yield of the crop under the present time and under climate change scenario. The early maturing genotype (Range 1) and medium maturing genotypes (Range 3 and ICCV9901) may only be recommended under normal planting date, although there will not be any significant yield advantages compared with late maturing genotypes. The study also recommend the use of planting dates generated by AquaCrop model so as to improve biomass and grain yield when chickpea is sown under climate change scenario in Southern Africa. The yield improvement using AquaCrop recommended planting dates was partly caused by greater water use efficiency, heat use efficiency and corbon dioxide productivity. Given the potential importance of planting dates in improving current and future productivity of chickpea shown in the study, there is need to work on development of a sowing (planting date) criteria for chickpea in the / NRF
44

IMPACT OF FERMENTED AND NON-FERMENTED PLANT-BASED FOODS SUPPLEMENTATION ON GUT MICROBIOTA AND METABOLITES IN C57BL/6J MICE

Gandhi, Priya Darshan 14 November 2023 (has links) (PDF)
Plant-based proteins have gained popularity because of their high nutritional value and more sustainable alternative to animal-based proteins. Soybean and chickpea are two widely consumed plant-based proteins, whereas tempeh is a popular plant-based fermented whole food product that is rich in protein. With the increase in the development of plant-based food products, there is little research into how plant proteins affect gut microbiota characteristics and metabolites. Therefore, there is a need to understand the underlying mechanisms surrounding the consumption of these foods. The purpose of this study was to investigate the health benefits of soybean, chickpea, and their tempeh counterparts’ consumption as whole foods on the gut microbiota and metabolites. Our results showed that soybean tempeh significantly increased the abundance of beneficial probiotic bacteria such as Roseburia and Ruminiclostridium 5 in the gut microbiota of mice. Additionally, soybean tempeh and soybean significantly increased Muribaculaeceae abundance, known to increase SCFA production in the colon. Lachnospiraceae NKA136 was significantly increased in soybean tempeh, soybean, and chickpea groups which may allow these foods to be used as a way of probiotic restoration. Our results showed that all dietary supplementation groups had significantly altered metabolic profiles compared to the control group. The soybean tempeh group had higher levels of peroxide (vitamin B6), myoinositol, and tetrahydrobiopterin while the chickpea tempeh group had higher levels of metabolites such as 3 hydroxyanthranilic acid. The soybean group had higher levels of metabolites such as 3-hydroxytryptophan (Oxitriptan) whereas the chickpea protein group had higher levels of metabolites such as 3-hydroxyanthranilic acid and oxitriptan. In conclusion, our study suggests that different plant-based foods can have distinct effects on gut microbiota and metabolic profiles in mice. These findings may have implications for human health and warrant further investigation into the effects of plant protein consumption on human metabolism.
45

Ascochyta Rabiei in North Dakota: Characterization of the Secreted Proteome and Population Genetics

Mittal, Nitin January 2011 (has links)
Chickpea is one of the most important leguminous crops grown in regions of southern Europe, Asia, the Middle East, and the United States. Ascochyta blight, caused by Ascochyta rabiei, is the most important foliar disease of chickpea. In favorable conditions, this disease can destroy the entire chickpea field within a few days. In this project the secreted proteins of Ascochyta rabiei have been characterized through one and two-dimensional polyacrylamide gel electrophoresis. This is the first proteomic study of the A. rabiei secretome, and a standardized technique to study the secreted proteome has been developed. A common set of proteins secreted by this pathogen and two isolates that exhibit the maximum and minimum number of secreted proteins when grown in modified Fries and Czapek Dox media have been identified. Population genetic studies of Ascochyta rabiei populations in North Dakota have been conducted using microsatellites and AFLP markers. Population genetic studies have shown that the ascochyta population in North Dakota has not changed genetically in the years 2005, 2006 and 2007, but the North Dakota population is different from the baseline population from the Pacific Northwest. The ascochyta population in North Dakota is a randomly mating population, as shown by the mating type ratio.
46

Effect of genotype and phosphorus fertilizer rates on water use and yield of chickpea

Madzivhandila, Thendo 09 December 2013 (has links)
MSCAGR / Department of Plant Production
47

Amido resistente obtido a partir de amido de leguminosas e de seus hidrolisados / Resistant starch from legumes starches and their hydrolysates

Polesi, Luis Fernando 28 August 2009 (has links)
O amido resistente (AR) é a fração do amido que não sofre a ação das enzimas digestivas, apresentando comportamento semelhante ao da fibra dietética. O objetivo do presente trabalho foi avaliar o teor e as características dos AR obtidos a partir dos amidos de ervilha e de grão-de-bico por diferentes processos de redução de massa molecular. Os amidos naturais ou gelatinizados foram submetidos a processos de hidrólise ácida (HCl 2 M por 2,5 h) ou enzimática (pululanase, 40 U/g por 10 h) previamente a um processo controle, que constou de tratamento hidrotérmico (autoclavagem a 121 °C por 30 min), refrigeração (4 °C por 24 h) e liofilização. O material produzido foi caracterizado quanto ao aspecto geral por microscopia eletrônica de varredura (MEV), teor de AR, teor de fibra dietética total (FDT), índice de absorção de água (IAA), índice de solubilidade em água (ISA), padrão de cristalinidade (difração de raios X), viscosidade (RVA - Rapid Visco Analyser) e propriedades térmicas (DSC - Differential Scanning Calorimeter). O teor de AR para o amido natural de ervilha e grãode- bico foi de 39,8 e 31,9 %, respectivamente. Nos amidos processados esse teor variou de 38,5 a 54,6 % para a ervilha e de 16,4 a 32,3 % para o grão-de-bico. Os melhores tratamentos para elevar o teor de AR foram o tratamento ácido (amido natural e gelatinizado) para o amido de ervilha e o tratamento enzimático (amido gelatinizado) para o amido de grão-de-bico. Os teores de FDT dos amidos processados de ervilha variaram de 22,9 a 37,1 % e foram superiores aos do grão-de-bico, que variaram entre 7,2 e 15,7 %. A MEV revelou a presença de grânulos inteiros ou não fragmentados nos amidos de ervilha dos diferentes tratamentos, enquanto os amidos de grão-de-bico tratados apresentaram apenas massa amorfa, sem a evidência de grânulos. Os padrões de cristalinidade dos amidos naturais foram tipo B e C, respectivamente para os amidos de ervilha e grão-de-bico, entretanto, os amidos processados de ambos apresentaram padrão do tipo B. Os amidos naturais apresentaram endotermas entre 56 e 90 °C, enquanto os amidos processados apresentaram endotermas em temperaturas superiores, entre 131 e 171 °C. A entalpia de gelat inização (H) dos amidos de ervilha processados foi superior à dos amidos de grão-de-bico. Os amidos natural e processados de ervilha, de modo geral, apresentaram viscosidade baixa (< 20 RVU) em RVA. O amido de grão-de-bico natural apresentou viscoamilograma bem definido, característico da fonte. Os amidos resistentes obtidos por hidrólise, de ambas as fontes, apresentaram redução na viscosidade em comparação com o controle. A viscosidade foi inversamente proporcional ao teor de AR nas amostras. A hidrólise e o processamento térmico promoveram o aumento no IAA e ISA dos amidos tratados. Os processos de hidrólises dos amidos de ervilha e de grão-de-bico podem elevar o teor de AR se comparados com o método controle. / Resistant starch (RS) is the fraction of starch that does not suffer the action of digestive enzymes, showing similar behavior to that of dietary fiber. The aim of this study was to evaluate the amounts and characteristics of RS obtained from chick-pea and high amylose pea starches using different processes of molecular weight reduction. The natural or pregelatinized starches were submitted to acid (2 M HCl for 2.5 h) or enzymatic (pullulanase, 40 U / g per 10 h) hydrolysis prior to a control process, which consisted of hydrothermal treatment (autoclaving at 121 ° C for 30 min), refrigeration (4 ° C for 24 h) and liophilization. The material was characterized as to the general appearance by scanning electron microscopy (SEM), RS content, total dietary fiber (TDF) content, water absorption index (WAI), water solubility index (WSI), crystallinity pattern (X-ray diffraction), viscosity (RVA - Rapid Visco Analyzer) and thermal properties (DSC - Differential Scanning Calorimeter). The RS content in pea and chick-pea natural starch was 39.8 and 31.9%, respectively. The processed starches showed contents ranging from 38.5 to 54.6% for pea and from 16.4 to 32.3% for chick-pea starch. The best treatments to raise the level of RS were the acid treatment (natural and gelatinized starch) for pea and the enzymic treatment (gelatinized starch) for chick-pea starch. The FDT amounts in processed pea starches ranged from 22.9 to 37.1% and were higher than those of chick-pea, which ranged between 7.2 and 15.7%. The photomicrographs in SEM revealed the presence of whole grains (not fragmented) in pea starches treatments, while the treated chick-pea starches showed only amorphous mass, without the evidence of granules. The cristallinity patterns of natural starches were B and C types, respectively for pea and chick-pea starch. Both processed starches, however, presented B type pattern. The natural starches showed endotherms between 56 and 90°C, while the processed starches showed endotherms at higher temperatures (131 and 171°C). The processed pea starches gelatinizati on enthalpy (H) was higher than those of processed chick-pea starches. The natural and processed pea starches, in general, showed low viscosity (<20 RVU) in RVA. The natural chick-pea starch presented viscoamylogram well defined, typical of this botanical source. The resistant starches obtained by hydrolysis showed in both sources, a decrease in viscosity compared to the control treatment. The viscosity was inversely proportional to the RS content in the samples. The hydrolysis and the thermal processing promoted an increase in WAI and WSI of treated starches. The hydrolysis process of pea and chickpea starches may raise the level of RS when compared to the control process.
48

Hydrocyclone fractionation of chickpea flour and measurement of physical and functional properties of flour and starch and protein fractions

Tabaeh Emami, Seyed Shahram 14 June 2007
Chickpea grain contains a high amount of starch and valuable protein. Many grain legumes (pulses) can be processed by pin milling and air classification with high separation efficiency. However, chickpea exhibits low separation efficiency because it has a relatively high fat content compared to other pulses. Therefore, the main goal of this research was to improve the starch-protein separation from chickpea flour in order to increase the economic value of chickpea grain.<p>The chemical composition of pin-milled chickpea flour was determined. The functional and physical properties of chickpea flour affecting starch-protein separation were determined. No chemical interactive force was detected between starch granules and protein particles. Therefore, a physical separation technique, i.e. applying centrifugal force in a hydrocyclone, was employed to separate starch granules from protein particles. <p>Using a hydrocyclone, centrifugal force was applied to chickpea flour particles. Chickpea flour was suspended in two different media, isopropyl alcohol or deionized water. In both media, high inlet pressure resulted in smaller geometric mean diameter of particles collected in the overflow and underflow. Isopropyl alcohol as a medium resulted in particles with smaller geometric mean diameter than did deionized water. Starch and protein separation efficiencies were higher at greater inlet pressures. The application of a double-pass hydrocyclone process increased the purity of starch in the underflow and of protein in the overflow, although this process reduced separation efficiencies. Starch granules and protein particles were separated at higher purities in deionized water than in isopropyl alcohol. Separation in deionized water resulted in higher starch separation efficiency and lower protein separation efficiency than did separation in isopropyl alcohol. This difference was due to the difference in density and viscosity of the two media. The higher viscosity of isopropyl alcohol reduced the likelihood of starch granules reaching the inner hydrocyclone wall. Thus, some starch granules were retained in the overflow instead of in the underflow. Additionally, the centrifugal force and drag force applied to the chickpea flour particles differed between the two different media. Hydrocyclone operation resulted in higher centrifugal force and lower drag force in deionized water than in isopropyl alcohol. Since the drag force in isopropyl alcohol was higher than that in deionized water, some small starch granules were diverted to the overflow which caused reduction of protein purity. <p>The use of pH 9.0 and defatting of chickpea flour improved both starch and protein separation efficiencies. Chickpea flour in deionized water at a feed concentration of 5% yielded a pumpable slurry which was delivered efficiently to the hydrocyclone at an inlet pressure of 827 kPa Fractionation of starch and protein from chickpea flour in deionized water using an integrated separation process resulted in starch and protein fractions containing 75.0 and 81.9% (d.b.) starch and protein, respectively. This process resulted in starch and protein separation efficiencies of 99.7 and 89.3%, respectively. <p>Experiments were also conducted to determine the physical and functional properties of chickpea flour and starch and protein fractions. Thermal conductivity, specific heat, and thermal diffusivity were determined and the polynomial linear models were fitted very well to experimental data. Internal and external friction properties of chickpea flour and starch and protein fractions were determined. Samples were subjected to uniaxial compression testing to determine force-time relationships. The samples particles underwent rearrangement rather than deformation during compression. The asymptotic modulus of samples was also computed, and it was linearly related to maximum compressive pressure. The functional properties of fractionated products were highly affected by the separation process. The water hydration capacity of starch fraction increased, whereas the emulsion capacity and foaming capacity of starch and protein fractions were reduced, compared to that of chickpea flour.
49

A study of chickpea (<i>Cicer arietinum</i> L.) seed starch concentration, composition and enzymatic hydrolysis properties

Frimpong, Adams 20 September 2010
Grain quality in chickpea (<i>Cicer arietinum</i> L.) is a major factor affecting its consumption for human nutrition and health benefits. Some of the major factors affecting chickpea grain quality are: seed weight, size, colour, protein, starch and amylose concentration, and amylopectin structure. The objectives of this study were to: 1) determine variation, repeatability and genotype by environment interaction on thousand seed weight, starch, amylose and protein concentration of chickpea cultivars adapted to western Canada; 2) assess variations in global chickpea germplasm for thousand seed weight, seed size, protein, starch and amylose concentrations; and 3) characterize the desi and kabuli type chickpea for starch concentration, composition, and amylopectin structure to study their effect on starch enzymatic hydrolysis. Limited variation was observed in seed composition of chickpea cultivars adapted to the western Canadian prairies. Significant genotype by environment interaction occurred for starch, amylose, and protein (except for kabuli) concentrations, seed yield and thousand seed weight indicating that testing over a wide range of environments is needed to identify genotypes for grain quality improvement. Repeatability of starch, amylose, and protein concentrations was low and inconsistent across chickpea market classes. Broad sense heritability was higher than repeatability across all traits for all market classes implying that repeatability estimates do not set upper limits to heritability if significant genotype by environment interaction is present. The negative relationship between seed constituents and yield indicates that selection for chickpea cultivars with desired seed composition may require compromise with yield and indirect selection. All the mini core accessions that had above average seed diameter score in both desi and kabuli also had above average score for thousand seed weight. Selecting mini core with promising intrinsic and extrinsic quality characteristics may reduce yield. Slowly digestible starch was negatively correlated with hydrolysis index in both pure starch and meal starch of desi and kabuli. Amylose had a strong relationship with resistant starch but not with rate of starch hydrolysis. Genotypes with a significantly higher rate of starch hydrolysis had significantly lower 60-80 µm starch granule size volume. Amylopectin B2 chains were related to slowly digestible starch of meal (except kabuli) and extracted starch. Resistant starch positively correlated with B1 fraction of amylopectin chain length in both desi and kabuli meal starch. Our results suggest that there is no major difference between starch composition in the two chickpea market classes, although only three genotypes of each class were tested. The meal components affect the starch hydrolytic properties and the effect is genotype specific. The results also show that amylopectin structure influences starch hydrolytic properties. These observations emphasize that complete characterization of seed components is needed to obtain meaningful results regarding the desired nutritional and health benefits attributed to any grain.
50

Hydrocyclone fractionation of chickpea flour and measurement of physical and functional properties of flour and starch and protein fractions

Tabaeh Emami, Seyed Shahram 14 June 2007 (has links)
Chickpea grain contains a high amount of starch and valuable protein. Many grain legumes (pulses) can be processed by pin milling and air classification with high separation efficiency. However, chickpea exhibits low separation efficiency because it has a relatively high fat content compared to other pulses. Therefore, the main goal of this research was to improve the starch-protein separation from chickpea flour in order to increase the economic value of chickpea grain.<p>The chemical composition of pin-milled chickpea flour was determined. The functional and physical properties of chickpea flour affecting starch-protein separation were determined. No chemical interactive force was detected between starch granules and protein particles. Therefore, a physical separation technique, i.e. applying centrifugal force in a hydrocyclone, was employed to separate starch granules from protein particles. <p>Using a hydrocyclone, centrifugal force was applied to chickpea flour particles. Chickpea flour was suspended in two different media, isopropyl alcohol or deionized water. In both media, high inlet pressure resulted in smaller geometric mean diameter of particles collected in the overflow and underflow. Isopropyl alcohol as a medium resulted in particles with smaller geometric mean diameter than did deionized water. Starch and protein separation efficiencies were higher at greater inlet pressures. The application of a double-pass hydrocyclone process increased the purity of starch in the underflow and of protein in the overflow, although this process reduced separation efficiencies. Starch granules and protein particles were separated at higher purities in deionized water than in isopropyl alcohol. Separation in deionized water resulted in higher starch separation efficiency and lower protein separation efficiency than did separation in isopropyl alcohol. This difference was due to the difference in density and viscosity of the two media. The higher viscosity of isopropyl alcohol reduced the likelihood of starch granules reaching the inner hydrocyclone wall. Thus, some starch granules were retained in the overflow instead of in the underflow. Additionally, the centrifugal force and drag force applied to the chickpea flour particles differed between the two different media. Hydrocyclone operation resulted in higher centrifugal force and lower drag force in deionized water than in isopropyl alcohol. Since the drag force in isopropyl alcohol was higher than that in deionized water, some small starch granules were diverted to the overflow which caused reduction of protein purity. <p>The use of pH 9.0 and defatting of chickpea flour improved both starch and protein separation efficiencies. Chickpea flour in deionized water at a feed concentration of 5% yielded a pumpable slurry which was delivered efficiently to the hydrocyclone at an inlet pressure of 827 kPa Fractionation of starch and protein from chickpea flour in deionized water using an integrated separation process resulted in starch and protein fractions containing 75.0 and 81.9% (d.b.) starch and protein, respectively. This process resulted in starch and protein separation efficiencies of 99.7 and 89.3%, respectively. <p>Experiments were also conducted to determine the physical and functional properties of chickpea flour and starch and protein fractions. Thermal conductivity, specific heat, and thermal diffusivity were determined and the polynomial linear models were fitted very well to experimental data. Internal and external friction properties of chickpea flour and starch and protein fractions were determined. Samples were subjected to uniaxial compression testing to determine force-time relationships. The samples particles underwent rearrangement rather than deformation during compression. The asymptotic modulus of samples was also computed, and it was linearly related to maximum compressive pressure. The functional properties of fractionated products were highly affected by the separation process. The water hydration capacity of starch fraction increased, whereas the emulsion capacity and foaming capacity of starch and protein fractions were reduced, compared to that of chickpea flour.

Page generated in 0.0321 seconds