• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 333
  • 87
  • 84
  • 46
  • 24
  • 8
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 775
  • 162
  • 99
  • 96
  • 92
  • 74
  • 72
  • 60
  • 59
  • 59
  • 59
  • 54
  • 53
  • 48
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
461

Cellular and Polymeric Membranes for Separation and Delivery Applications

Alyami, Mram Z. 14 April 2022 (has links)
The primary focus of this research is to utilize cellular and polymeric membranes for biomedical applications: To date, several organic and inorganic materials have been used to synthesize nanoparticles (NPs). The question arises as to which criteria and design principles should be considered while selecting the best material. Based on the results of testing, three key roles of NPs have been identified. First, NPs need enough circulation time to reach their target. Then these NPs must be able to target diseased tissue while leaving healthy tissue unaffected. Finally, NPs must be biodegradable and easily eliminated from the body. Biomimetic nanoparticles based on cell membranes have been developed as an efficient way to fulfill the needs of drug delivery goals and achieve targeted delivery by actively interacting and communicating with the biological environment. In the first project, genome editing machinery was delivered to particular cells using biomimetic cancer cell coated zeolitic imidazolate frameworks. MCF-7 cells demonstrated the highest uptake of C3-ZIFMCF compared to HeLa, HDFn, and aTC cells. In terms of genome editing, MCF-7 cells transfected with C3-ZIFMCF showed 3-fold EGFP repression compared to C3-ZIFHELA cells transfected with 1-fold EGFP repression. In vivo tests demonstrated C3-ZIFMCF's affinity for MCF-7 tumor cells. This demonstrates the biomimetic approach's ability to target cells specifically, which is definitely the most essential step in future genome editing technology translation. In the second project, multimodal therapeutic nanowires (NWs D-ZIF) MCF-7 cancer cells were developed. D-ZIF coated NWs had higher cellular uptake and photothermal treatment efficiency than non-coated NWs. (NWs D-ZIF) MCF accumulates in MCF-7 tumor cells and enhances photothermal capability. On the other hand, chiral separation of enantiomers is becoming more important, particularly in pharmaceuticals. Because enzyme activities and other biological processes are stereoselective, chiral drugs' enantiomers often have different metabolic effects, pharmacological activity, metabolic rates, and toxicities. In an attempt to address this issue, we decided in the final project to study the capability of chiral polyamide membrane for efficient and energy-free chiral separation. In particular, to separate essential amino acid critical to all living organisms (DL-tryptophan).
462

Enzymatic cascade for dynamic kinetic resolution of amines

Listén Hedlin, Embla January 2017 (has links)
No description available.
463

Première partie : synthèse énantiosélective d'amines alpha-tertiaires. Deuxième partie : synthèse d'halogénocyclopropylméthanols

Gagnon, Alexandre January 2000 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
464

Theoretical studies of unconventional superconductivity in Sr2RuO4 and related systems

Wang, Xin January 2022 (has links)
In this thesis, we study the unconventional superconductivity in Sr2RuO4 (SRO) and related systems. The superconducting state in SRO remains a puzzle after more than 28 years of study. Early experiments had pointed toward a topological non-trivial time-reversal symmetry breaking (TRSB) chiral p-wave order. This pairing candidate has attracted a large amount of attention, partly in relation to the possibility of topological quantum computation, and has stimulated studies on higher chirality superconducting systems. In the first part of this thesis, we study the spontaneous edge current in chiral d- and f-wave superconductors. We show that these currents, which vanish in the continuum limit at zero temperature, are generally non-vanishing but tiny, compared to the simplest chiral p-wave case. In the presence of strong surface roughness, the direction of the edge current in the chiral d-wave case can be reversed, compared with that of a specular ideal surface with specular scattering. However, it is shown that this current reversal is non-universal beyond the continuum limit. The chiral p-wave scenario in SRO is overturned by recent Knight shift measurements, highlighting the importance of exploring different pairing symmetries for SRO. Recently, $d_{x^2-y^2} \pm ig_{(x^2-y^2)xy}$, $s' \pm id_{xy}$ and mixed helical p-wave pairings have been proposed as order parameter candidates. However, the stability of these states, especially of the $d_{x^2-y^2} \pm ig$ pairing, remains unclear. In the second part of the thesis, we study the leading superconducting instabilities in SRO in the presence of sizable atomic spin-orbit coupling (SOC), non-local SOC, and non-local interactions. We find that it is difficult to stabilize chiral p-wave pairing in SRO models; this is because, among the triplet p-wave states, the atomic SOC favors helical states over the chiral state. The presence of both d- and g-wave pairings, including a $d_{x^2-y^2} \pm ig$ state, is found when the second nearest neighbor (in-plane) repulsions, together with orbital-anisotropy of the non-local interactions and/or the B2g channel non-local SOC are included. We further analyze the properties, such as nodal structures, in-plane field spin-susceptibility, and spontaneous edge current, of the realized $d_{x^2-y^2} \pm ig$ pairing and find that this state is more compatible with existing experimental measurements than the $s' \pm id_{xy}$ and the mixed helical p-wave proposals. / Dissertation / Doctor of Philosophy (PhD)
465

Novel chiral phosphonium ionic liquids as solvents and catalysts for cycloadditions. Investigation of the Diels-Alder reaction of a series of dienes and dienophiles in novel chiral phosphonium ionic liquids.

Yu, Jianguo January 2009 (has links)
The use of ionic liquids (ILs) as both reagents and solvents is widely recognised. ILs offer a number of advantages compared to regular molecular solvents. These advantages include: chemical and thermal stability, no measurable vapour pressure, no or lower toxicity, non-flammability, catalytic ability, high polarity and they can be recycled. There are a number of research groups investigating the various applications of this reaction medium and most studies have focused on solvents derived from the imidazolium cation. The use of the imidazolium-based ILs in the Diels-Alder reaction has been studied in detail and higher yields compared to conventional methods have been reported. The IL affects the rate and interesting selectivities have been observed. However, not much attention has been paid to the scope and limitations of phosphonium ILs (PILs). Therefore the focus of this thesis is the synthesis and application of novel chiral PILs as environmentally benign, task-specific solvents for the Diels-Alder reaction. In addition, this research seeks alternative ways to eliminate the use of toxic heavy metal catalysts and to exploit methodologies which reduce the energy consumption of the Diels-Alder reaction. A series of CILs were synthesised from the chiral pool and they were characterised by thermogravimetric analysis, differential scanning calorimetry and spectroscopy. They were then investigated as solvents and catalysts in the Diels-Alder reactions of a series of dienes (cyclopentadiene, isoprene, 2,3-dimethylbuta-1,3-diene, furan, pyrrole, N-methyl pyrrole) and dienophiles (methyl acrylate, methyl vinyl ketone, acrylonitrile, dimethyl maleate, acrolein, dimethylacetylene dicarboxylate, maleic anhydride and maleimide). Investigation of the effect of PILs in the presence of three heterogeneous catalysts Al2O3, SiO2 and K-10 montmorillonite were studied. Ultrasound and microwave-assisted Diels-Alder reactions in the PILs, in the absence and presence of the catalysts, were also studied. The reactions of these prototypical substrates illustrated that the solvents are indeed task-specific. / University of Bradford
466

Linear and nonlinear edge dynamics and quasiparticle excitations in fractional quantum Hall systems

Nardin, Alberto 12 July 2023 (has links)
We reserve the first part of this thesis to a brief (and by far incomplete, but hopefully self-contained) introduction to the vast subject of quantum Hall physics. We dedicate the first chapter to a discursive broad introduction. The second one is instead used to introduce the integer and fractional quantum Hall effects, with an eye to the synthetic quantum matter platforms for their realization. In the third chapter we present famous Laughlin's wavefunction and discuss its basic features, such as the gapless edge modes and the gapped quasiparticle excitations in the bulk. We close this introductory part with a fourth chapter which presents a brief overview on the chiral Luttinger liquid theory. In the second part of this thesis we instead proceed to present our original results. In the fifth chapter we numerically study the linear and non-linear dynamics of the chiral gapless edge modes of fractional quantum Hall Laughlin droplets -- both fermionic and bosonic -- when confined by anharmonic trapping potentials with model short range interactions; anharmonic traps allow us to study the physics beyond Wen's low-energy/long-wavelength chiral Luttinger liquid paradigm in a regime which we believe is important for synthetic quantum matter systems; indeed, even though very successful, corrections to Wen's theory are expected to occur at higher excitation energies/shorter wavelengths. Theoretical works pointed to a modified hydrodynamic description of the edge modes, with a quadratic correction to Wen's linear dispersion $\omega_k=vk$ of linear waves; even though further works based on conformal field theory techniques casted some doubt on the validity of the theoretical description, the consequences of the modified dispersion are very intriguing. For example, in conjunction with non-linearities in the dynamics, it allowed for the presence of fractionally quantized solitons propagating ballistically along the edge. The strongly correlated nature of fractional quantum Hall liquids poses technical challenges to the theoretical description of its dynamics beyond the chiral Luttinger liquid model; for this reason we developed a numerical approach which allowed us to follow the dynamics of macroscopic fractional quantum Hall clouds, focusing on the neutral edge modes that are excited by applying an external weak time-dependent potential to an incompressible fractional quantum Hall cloud prepared in a Laughlin ground state. By analysing the dynamic structure factor of the edge modes and the semi-classical dynamics we show that the edge density evolves according to a Korteweg-de Vries equation; building on this insight, we quantize the model obtaining an effective chiral Luttinger liquid-like Hamiltonian, with two additional terms, which we believe captures the essential low-energy physics of the edge beyond Wen's highly successful theory. We then move forward by studying -- even though only partially -- some of the physics of this effective model and analyse some of its consequences. In the sixth chapter we look at the spin properties of bulk abelian fractional quantum Hall quasiparticles, which are closely related to their anyonic statistics due to a generalized spin-statistics relation - which we prove on a planar geometry exploiting the fact that when the gauge-invariant generator of rotations is projected onto a Landau level, it fractionalizes among the quasiparticles and the edge. We then show that the spin of Jain's composite fermion quasielectron satisfies the spin-statistics relation and is in agreement with the theory of anyons, so that it is a good anti-anyon for the Laughlin's quasihole. On the other hand, even though we find that the Laughlin’s quasielectron satisfies the spin-statistics relation, it carries the wrong spin to be the anti-anyon of Laughlin’s quasihole. Leveraging on this observation, we show how Laughlin's quasielectron is a non-local object which affects the system's edge and thus affecting the fractionalization of the spin. Finally, in the seventh chapter we draw our conclusions.
467

Molecular engineering of side chain liquid crystalline polymers exhibiting a chiral smectic C phase

Zheng, Qiang January 1994 (has links)
No description available.
468

A FORMAL TOTAL SYNTHESIS OF BIOXALOMYCIN BETA 2

KANISKAN, H. ÜMIT 29 May 2007 (has links)
No description available.
469

Synthesis and Characterization of Photochemically Tunable Chiral Materials for Optically Addressed Cholesteric Displays

Green, Lisa M. 30 September 2008 (has links)
No description available.
470

LIQUID CRYSTALLINE NANOCOMPOSITES: FROM ACHIRAL TO CHIRAL SYSTEMS

Gutierrez Cuevas, Karla Guadalupe, Gutierrez 31 July 2017 (has links)
No description available.

Page generated in 0.0279 seconds