• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 593
  • 235
  • 69
  • 21
  • 21
  • 10
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • Tagged with
  • 1085
  • 573
  • 116
  • 78
  • 78
  • 77
  • 69
  • 68
  • 63
  • 62
  • 59
  • 56
  • 55
  • 52
  • 51
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Photodynamically Activated Multifunctional Chitosan Nanoparticles to Disinfect and Improve Structural Stability of Dentin

Shrestha, Annie 14 January 2014 (has links)
Bacteria have been confirmed as the main etiological factor for root canal infection as well as for root canal treatment failure. Thus the success of endodontic treatment depends on the complete elimination of bacteria and prevention of bacterial recolonization in the root canal system. The major challenge for conventional root canal disinfection strategies is the ability of bacteria to persist as biofilms within the anatomical complexities of the root canal system. In addition, the alterations in the ultrastructure of dentin tissue results in compromised structural integrity of root dentin leading to higher risk of fracture in root-filled teeth. The objectives of this study are twofold: 1) develop and test functionalized nanoparticles to eliminate biofilm bacteria and, 2) to stabilize and strengthen the dentin organic matrix by crosslinking collagen fibrils in the presence of biopolymeric nanoparticles. A bioactive polymeric nanoparticle functionalized with a photosensitizer may present as a single step treatment to achieve both the objectives. Chitosan a bioactive polymer was used owing to their inherent antibacterial and biocompatible characteristics. Chitosan micro-/nanoparticles were synthesized as well as functionalized with photosensitizer (rose bengal) for photodynamic activation. Bioactive chitosan nanoparticle functionalized with a rose bengal is expected to combine the properties of chitosan i.e., polycationic with higher affinity to bacterial cell wall and alter membrane integrity; that of a photosensitizer i.e., to generate singlet oxygen when photoactivated; and the nano-form further potentiate these specific properties. These photodynamically activable chitosan nanoparticles showed the distinct characteristics of chitosan and rose bengal. The synergistic effect of the chitosan conjugated nanoparticles was able to eliminate monospecies and multi-species bacterial biofilms with complete disruption of the biofilm structure. The singlet oxygen generated during photoactivation produced photochemical crosslinking of dentin collagen and infiltration of chitosan nanoparticles. Following crosslinking the dentin collagen showed significantly improved mechanical properties (ultimate tensile strength and toughness) and improved resistance to degradation by bacterial collagenase. In conclusion, this study presents a potential photosensitizer functionalized chitosan nanoparticles based treatment strategy to improve the success of endodontic treatment to achieve complete disinfection of the root canal system and enhanced the mechanical/ structural integrity of the root-filled teeth.
182

Studies on storage behaviour of tomatoes coated with chitosan-lysozyme films

Thumula, Padmini. January 2006 (has links)
Simple technologies are required for reducing the post harvest losses of horticultural produce. Edible films are being studied extensively for application on fresh and cut fruits and vegetables. Tomato, being a very nutritious and important food and a highly perishable climacteric fruit, this study was planned to investigate the application of chitosan films. Chitosan is a biodegradable waste product from sea food and is safe for consumption. With a view to broaden its antimicrobial activity it was combined with lysozyme, a lytic enzyme. Since the edible films are sensitive to changes in temperature and humidity, they were studied under ambient and optimal conditions of storage. / This study showed that 1% chitosan was more suitable for tomatoes for storage at both conditions of ambient and low temperature. Respiration study showed that 1% chitosan treatments resulted in more favorable levels of CO 2 production and internal O2. This was reflected in the quality of tomatoes held under these conditions. Two per cent chitosan films were unsuitable due to their high CO2 production and low internal O 2 levels. Spoilage was more apparent in this treatment. Lysozyme addition did not show any additional benefit. / The research in this study has demonstrated that the selection of edible films for horticultural produce needs to be integrated with the requirement of storage conditions of the produce.
183

Photodynamically Activated Multifunctional Chitosan Nanoparticles to Disinfect and Improve Structural Stability of Dentin

Shrestha, Annie 14 January 2014 (has links)
Bacteria have been confirmed as the main etiological factor for root canal infection as well as for root canal treatment failure. Thus the success of endodontic treatment depends on the complete elimination of bacteria and prevention of bacterial recolonization in the root canal system. The major challenge for conventional root canal disinfection strategies is the ability of bacteria to persist as biofilms within the anatomical complexities of the root canal system. In addition, the alterations in the ultrastructure of dentin tissue results in compromised structural integrity of root dentin leading to higher risk of fracture in root-filled teeth. The objectives of this study are twofold: 1) develop and test functionalized nanoparticles to eliminate biofilm bacteria and, 2) to stabilize and strengthen the dentin organic matrix by crosslinking collagen fibrils in the presence of biopolymeric nanoparticles. A bioactive polymeric nanoparticle functionalized with a photosensitizer may present as a single step treatment to achieve both the objectives. Chitosan a bioactive polymer was used owing to their inherent antibacterial and biocompatible characteristics. Chitosan micro-/nanoparticles were synthesized as well as functionalized with photosensitizer (rose bengal) for photodynamic activation. Bioactive chitosan nanoparticle functionalized with a rose bengal is expected to combine the properties of chitosan i.e., polycationic with higher affinity to bacterial cell wall and alter membrane integrity; that of a photosensitizer i.e., to generate singlet oxygen when photoactivated; and the nano-form further potentiate these specific properties. These photodynamically activable chitosan nanoparticles showed the distinct characteristics of chitosan and rose bengal. The synergistic effect of the chitosan conjugated nanoparticles was able to eliminate monospecies and multi-species bacterial biofilms with complete disruption of the biofilm structure. The singlet oxygen generated during photoactivation produced photochemical crosslinking of dentin collagen and infiltration of chitosan nanoparticles. Following crosslinking the dentin collagen showed significantly improved mechanical properties (ultimate tensile strength and toughness) and improved resistance to degradation by bacterial collagenase. In conclusion, this study presents a potential photosensitizer functionalized chitosan nanoparticles based treatment strategy to improve the success of endodontic treatment to achieve complete disinfection of the root canal system and enhanced the mechanical/ structural integrity of the root-filled teeth.
184

Economics of bio-ingredients production from shrimp processing waste in Newfoundland

Tackie, Richard January 2002 (has links)
This thesis examined the economics of producing high value bio-ingredients such as chitin and carotenoprotein from shrimp processing waste in Newfoundland. The shrimp waste in the province was estimated to be at least 37000 tons annually. A survey of shrimp processing plants in the province revealed that the waste generated was relatively pure with little or no foreign material. The economic engineering approach was employed to estimate the production cost of chitin and carotenoprotein at the laboratory and pilot scale levels. At the laboratory scale where 480 kg/year of raw material (shrimp waste) was processed, the cost of chitin and carotenoprotein was found to be $159/kg and $315/kg, respectively. At the pilot scale level, the cost of chitin and carotenoprotem was estimated to be $125/kg and $244/kg, respectively based on volume of 4800 kg/year. Sensitivity analysis was carried out to establish the cost variations due to changes in the quantity of starting raw material, labor cost and cost of laboratory supplies (chemicals and enzymes). The cost of chitin and caroteinoprotein showed a decreasing trend with increasing scale of production. An expert opinion survey was conducted with a selected panel of 9 experts from the shrimp processing industry, chitin related industry, and the academic/research community to determine the potential market of the high-grade chitin/chitosan in Canada. The results showed that the health and nutraceutical industry is the most promising niche for high-grade chit in/chitosan. The survey also indicated that potential market would be high in Ontario and Quebec due to the presence of large health and nutraceutical companies in the big metropolitan areas of these regions.
185

Regeneration of heavy metal contaminated soil leachate with chitosan flakes

Soga, Benedictus Hope. January 2001 (has links)
Chemical treatment of contaminated soils (in-situ or ex-situ) is the current most practical option for remediation. The degree of metal complexation by organic acids depends on the type, concentration, metal type, pH and temperature. The influence of pH, temperature on the extraction efficiency of lead, zinc and copper was evaluated using Sodium citrate and sodium acetate buffers. Sodium citrate buffer was selected for the soil treatment. The soil was characterized for its pH, total metal content and the distribution of target heavy metals in soil fractions. Optimal conditions for Pb extraction with 0.5M citrate buffer was used to treat soil in batches and in columns, to evaluate their extraction efficiency and possible use for in-situ remediation. / Chitosan, a derivative of chitin is a versatile biopolymer with metal uptake capabilities. Due to the large amounts of chitosan required to treat heavily contaminated leachates, magnesium (Mg) and iron (Fe) metals granules were evaluated for stripping the heavy metals from solution before the use of chitosan at optimized conditions to effectively polish the soil washing. (Abstract shortened by UMI.)
186

A comparison on the release modifying behaviour of chitosan and kollidon SR / Carel Petrus Bouwer

Bouwer, Carel Petrus January 2007 (has links)
Controlled release formulations deliver an active ingredient over an extended period of time. It is an ideal dosage form for an active ingredient with a short elimination half-life. An active ingredient with a short elimination half-life would be released in small portions over an extended period of time and thus less frequent administration is necessary and this improve patient compliance. Other advantages of these formulations include: decreased side effects, constant drug levels in the blood, improvement in treatment efficiency and reduction in cost of administration. Controlled release beads are formulated in such a way that the active ingredient is embedded in a matrix of insoluble substance like chitosan; the dissolving drug then has to find its way through the pores of the matrix into the surrounding medium. The chitosan matrix swells to form a gel, the drug then has to first dissolve in the matrix and diffuse through the outer surface into the surrounding medium. Chitosan is a biocompatible, biodegradable polymer of natural origin. It has mucoadhesive properties as well as the ability to manipulate the tight junctions in the epithelium membrane and these properties have qualified chitosan as an effective drug carrier in controlled release dosage forms. The effect of a modern controlled release polymer namely Kollidon® SR in combination with chitosan on drug release was investigated. Ketoprofen was chosen as model drug. Ketoprofen is an anti-inflammatory drug that causes gastrointestinal side effects in conventional dosage forms. Ketoprofen has a short elimination half-life of 2.05 ± 0.58 h and this characteristic makes it an ideal candidate for use in a controlled release formulation. The aim of this study was to achieve controlled release and minimize gastrointestinal effects of ketoprofen with chitosan particles. Kollidon® SR was used as polymer because it exhibits pH independent release characteristics and previous studies have shown potential for this combination. Chitosan beads and chitosan-Kollidon® SR beads, as well as chitosan granules and chitosan-Kollidon® SR granules, were prepared and investigated as potential controlled release formulations. Chitosan beads were prepared through the inotropic gelation method using tripolyphosphate as a cross linking agent. Granules were prepared through wet granulation using 2% v/v acetic acid as the granulating fluid or by dissolving ketoprofen in ethanol and Kollidon® SR in 2-pyrrolidinone and using the solution as granulating fluid. Kollidon® SR was added in concentrations of 0.25, 0.5 and 1% (w/v) in the bead formulations and concentrations of 1, 5 and 10% (w/w) in the granule formulations. The beads and granules were characterised by evaluating the following properties: morphology, drug loading and drug release. Additionally swelling and friability tests were also conducted on the bead formulations. The cross linking times of the bead formulations were varied to investigate the effect of cross linking time on the characteristics of the beads. Chitosan-Kollidon® SR beads showed promising results for controlled release formulations and ketoprofen were released over an extended period of time. Drug loading of the plain chitosan beads was 74.65 ± 0.71% and it was noted that the inclusion of Kollidon® SR in the beads resulted in an increase in drug loading and the formulation containing 1% (w/v) Kollidon® SR, cross linked for 30 minutes had a drug loading of 77.38 ± 0.01%. Drug loading of the beads that were cross linked for a longer time were slightly lower which is an indication that some of the drug might have leached out during cross linking. The degree of swelling was promising with some beads swelling to a degree of 2.5 in phosphate buffer solution pH 5.6. Granules had a drug loading between 81.73 ± 1.53% and 93.30 ± 0.50%. Ketoprofen release from the beads and the granules in PBS pH 7.40 at 37 °C over a period of 6 hours were investigated. The bead formulations were more effective in achieving controlled release and it was noted that the bead formulations that was cross linked for a longer period was more efficient in achieving controlled release. The granules did not form a matrix and were not effective in achieving controlled release. Controlled release of ketoprofen were achieved and the results show potential for chitosan-Kollidon® SR formulations in the future. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2008.
187

Chitosan-Sericin Blend Membranes for Controlled Release of Drugs

Eslami, Shahabedin 22 December 2011 (has links)
The peak and valley problems caused by oral administration, injection or other conventional methods, call for developing systems that can deliver therapeutics more effectively. As one of the techniques, diffusion-controlled drug release membranes have significant interest due to great ease with which they can be designed to achieve near-zeroth-order release kinetics. Since diffusion is the rate-limiting step in these systems, determining the permeability and diffusivity of drug molecules in the membrane is therefore important in evaluating drug release performance. This study focuses on the Membrane Permeation Controlled Release (MPC) system, which involves a non-porous (dense) membrane, comprising of two biopolymers, sericin and chitosan. Ciprofloxacin hydrochloride and (+)-cis-diltiazem hydrochloride were used as hydrophilic model drugs, and nitro-2-furaldehyde semicarbazone (Nitrofurazon) was used as a hydrophobic model drug. Permeation experiments were carried out in a semi-infinite reservoir/receptor system to simulate in-vitro drug release. The intrinsic permeability and diffusivity (P, D) of the drugs through the membranes were determined using a modified time-lag method based on short time permeation and mass balance method based on long time permeation. The partition coefficients Kd of the drugs in the membranes and the swelling degree of the membranes were determined by sorption/desorption experiments. The diffusivities of the drugs were also determined from the sorption/desorption kinetics. Over the experimental ranges tested, the drug concentration and membrane cross-linking did not have significant effects on these parameters presumably due to the relatively low drug concentrations and mild crosslinkings of the membranes. The diffusivity coefficients of ciprofloxacin hydrochloride, (+)-cis-diltiazem hydrochloride and nitrofurazon in the membranes were found to be in the range of (2.0-2.6)×〖10〗^(-9)±2.6×〖10〗^(-10) cm2/s, (2.5-2.6) ×〖10〗^(-9)±1.1×〖10〗^(-10) and (38-134) ×〖10〗^(-9)±33.1×〖10〗^(-9) (cm2/s), respectively, and their permeability coefficients were in the range of (24-29)×〖10〗^(-8),(51-52) ×〖10〗^(-8) and (131-169) ×〖10〗^(-8) (cm2/s), respectively. The partition coefficients were determined to be around 0.91±0.21, 25±0.12 and 26±0.31, respectively. The diffusivity coefficients determined from sorption experiments for ciprofloxacin hydrochloride, diltiazem hydrochloride and nitrofurazon were found to be in the range of (3.2-7.6) ×〖10〗^(-9)±6.3×〖10〗^(-8), (6-10) ×〖10〗^(-9)±2.6×〖10〗^(-8) and (15-18) ×〖10〗^(-9)±2.7×〖10〗^(-7) (cm2/s), respectively. Also the diffusivity coefficients determined from sorption experiments for ciprofloxacin hydrochloride, diltiazem hydrochloride and nitrofurazon were in the range of (20-47) ×〖10〗^(-9), (12-24) ×〖10〗^(-9) and (11-20) ×〖10〗^(-9) (cm2/s), respectively. Nonetheless the differences in the diffusivities calculated from permeation and sorption/desorption experiments are considered to be acceptable, in view of the different experimental techniques used in this work, for the purpose of comparison of the membrane diffusivity and permeability.
188

Use of chitosan-coated plastic films incorporating antimicrobials to control the growth of Listeria monocytogenes on ham steaks and cold-smoked salmon

Ye, Mu. January 2008 (has links)
Thesis (M.S.)--University of Delaware, 2008. / Principal faculty advisor: Haiqiang Chen, Animal & Food Sciences. Includes bibliographical references.
189

Use of chitosan for the removal of metal ion contaminants and proteins from water /

Gamage, Dona Ashoka Sriyani, January 2003 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2004. / Restricted until October 2005. Bibliography: leaves 135-154.
190

Avaliação de maçã Royal Gala revestida com filme de quitosana durante o período de pós-colheita

Jorge, Paula Canonico Silva [UNESP] 24 November 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:23:32Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-11-24Bitstream added on 2014-06-13T20:50:29Z : No. of bitstreams: 1 jorge_pcs_me_arafcf.pdf: 737046 bytes, checksum: dec84c3ab28e6bf448b4986f93072480 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Os filmes e revestimentos biodegradáveis são usados para revestir os alimentos, agindo como barreira à umidade e a gases, reduzindo a respiração e as perdas de água por transpiração e desidratação, além do escurecimento enzimático, e mantendo as características do alimento, com aumento da vida de prateleira. Este trabalho teve como objetivos reunir informações sobre o uso da quitosana como revestimento de frutas e vegetais, visando dar suporte ao trabalho experimental; avaliar maçãs revestidas com quitosana comercial, durante o armazenamento à temperatura ambiente, simulando as condições de comercialização das frutas para o mercado interno; avaliar maçãs revestidas com quitosana comercial durante 6 meses de armazenamento sob atmosfera controlada e baixa temperatura, condições de estocagem das frutas para o mercado externo, seguido de armazenamento por 30 dias em atmosfera ambiente e baixa temperatura, visando simular o transporte das frutas para o mercado consumidor no exterior, e posteriormente estocadas à temperatura ambiente, simulando as condições de comercialização; e avaliar maçãs revestidas com quitosana modificada, quando submetidas à temperatura ambiente, visando prolongar a vida de prateleira durante a comercialização, após 6 meses de armazenamento sob atmosfera controlada e baixa temperatura, seguidos de armazenamento por 30 dias em atmosfera ambiente e baixa temperatura. Maçãs ‘Royal Gala’ foram produzidas na safra de 2009, e após a colheita foram separadas em 3 lotes, sendo as frutas do 1o lote revestidas com quitosana comercial; as do 2o lote imersas em solução de ácido acético, que foram usadas como branco e as maçãs do 3o lote não receberam tratamento e foram usadas como controle. Após 6 meses de armazenamento sob atmosfera controlada e baixa temperatura, seguido de mais 30 dias de armazenamento em atmosfera ambiente... / The films and biodegradable coatings are used to coat the food, acting as a barrier to moisture and gases, reducing the respiration and water loss by transpiration and dehydration in addition to the enzymatic browning, maintaining the characteristics of food, with increased of shelf life. This study aimed to gather information about the use of chitosan as a coating for fruits and vegetables, aiming to support the experimental work; evaluate apples coated with commercial chitosan coating during storage at ambient temperature, simulating the real conditions of sale of the fruit for the domestic market; evaluate apples coated with commercial chitosan during 6 months of storage under controlled atmosphere and low temperature, storage conditions of fruit for the export market, followed by 30 days storage under at ambient and low temperature, in order to simulate the transport of fruit to the consumer market abroad, and subsequently stored at ambient temperature, simulating the conditions of marketing; and evaluate apples coated with modified chitosan, at ambient temperature, in order to prolong the shelf life during marketing after six months storaged under controlled atmosphere and low temperature, followed by another 30 days storage under at ambient atmosphere and low temperature. ‘Royal Gala’ apples were produced in 2009 crop and after the harvest they were separated into 3 lots, the first batch of fruit coated with commercial chitosan, those from second lot were immersed in an acetic acid solution and used as blank and the third lot of apples used as controls received no treatment. After 6 storage months under controlled atmosphere and low temperature, followed by another 30 days storage under at ambient atmosphere and low temperature apples without any treatment were separated in 2 lots, being the first batch of fruit coated with modified chitosan, and the second batch used as controls... (Complete abstract click electronic access below)

Page generated in 0.041 seconds