• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 5
  • 4
  • 4
  • 1
  • Tagged with
  • 69
  • 69
  • 13
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Studies on the pharmacodynamics and toxicity of chlorine dioxide in drinking water in rat and chicken /

Abdel-Rahman, Mohamed Shawky, January 1979 (has links)
No description available.
52

Treatment of algae-induced tastes and odors by chlorine, chlorine dioxide and permanganate

Buffin, Lisa Webster 11 May 2010 (has links)
Chlorine (Cl₂(sq»' chlorine dioxide (ClO₂ ) and potassium permanganate (KMnO₄) were evaluated as oxidants for the removal of grassy and cucumber odors associated with the pure compounds, cis-3-hexenol and trans-2, cis-6-nonadienal, respectively, and for the removal of fishy odors associated with a culture of an alga, Synura petersenii. The effects of the oxidants on the pure compounds were assessed both by Flavor Profile Analysis (FPA) and gas chromatography/mass spectrometry (GC/MS). The effects of the oxidants on the algae culture were evaluated by FPA only. In addition, an unoxidized sample of Synura petersenii was analyzed by gas chromatography coupled with mass spectrometry (GC/MS) for possible identification of fishy-smelling compounds. Chlorine (1-6 mg/L) and KMn04 (0.25-4 mg/L) markedly reduced grassy and cucumber odors associated with the two compounds. Gas chromatography/mass spectrometry confirmed that these compounds were reduced to below method detection limits. Levels of Cl₂(&q) required (up to 6 mg/L) to reduce the grassy odors associated with cis-3-hexenol were higher than those of KMnO₄ â ¢ The high Cl₂(&q) doses may have contributed to the formation of chemical odors observed by panelists. Two isomers of chlorohexenol were confidently identified as byproducts of cis-3-hexenol chlorination and may have contributed to the chemical odors that developed after CI2(aq) treatment. Chlorine and KMnO₄ (both at 10 mg/L) either reduced or destroyed the fishy odor associated with the culture of Synura petersenii; however, oxidation caused either the development or unmasking of fruity, cucumber, melon and grassy odors. Chlorine dioxide (3 mg/L) did not reduce the grassy and cucumber odors associated with cis-3-hexenol and trans-2, cis-6-nonadienal , respectively. Gas chromatography and mass spectrometry confirmed that concentrations of these compounds were not reduced to below method detection limits. Furthermore, at a concentration of 10 mg/L, Cl₂ did not effectively reduce either the fishy or other objectionable odors associated with Synura petersenii culture. Hexanal, with an odor described as "green" or "like lettuce heart," and trans-2, cis-6-nonadienal (cucumber odor) were confirmed as algal products in a two-week-old culture of Synura petersenii. In addition, decatrienal was confidently identified as a product of Synura and may have contributed to the fishy odor associated with this alga. / Master of Science
53

Evaluating Methods of Improving Recovery of Sub-lethally Injured Salmonella in Low Moisture Foods Treated with Antimicrobial Gas

Garcia, Jose Octavio 17 June 2022 (has links)
The pathogenic microorganism Salmonella enterica has been associated with several outbreaks and recalls of spices, herbs, and seeds. To control these pathogens additional treatment methods, such as fumigation with chlorine dioxide (ClO2) or hydrogen peroxide (H2O2) gas and recovery methods are needed. Recovery methods should accurately quantify all viable cells, even those injured, to prevent overestimation of treatment effectiveness. This study was performed to determine the effect of different recovery media and supplements on the recovery of multiple strains of S. enterica and Enterococcus faecium NRRL B2354, from chlorine dioxide or hydrogen peroxide treated low moisture foods (LMF) black peppercorns, dried basil leaves, and chia seeds. Also, this study aimed to compare the log reduction of these two microorganisms to evaluate E. faecium NRRL B2354 as a surrogate for S. enterica. On average, recovery of S. enterica was 3.43 log and 4.77 log CFU/g from ClO2 and H2O2 treated LMFs, respectively on the selective media Xylose Lysine Deoxycholate agar, while the average recovery on non-selective media was 4.50 log CFU/g and 5.74 log CFU/g from ClO2 and H2O2 treated LMFs, respectively. The use of non-selective media was correlated with increased recovery compared to selective media. In further studies, addition of sodium pyruvate, ferrous sulfate, or 3'3'-thiodiproionate supplements to MTSAYE did not show increased recovery (P>0.05). On each treatment and LMF combination tested, there was no significant difference between the log reduction of S. enterica and E. faecium NRRL B2354, indicating its suitability as a surrogate under the test conditions. / Master of Science in Life Sciences / Spices, dried herbs, and seeds have become popular throughout the world for enhancing the flavor of food, but may also harbor harmful bacteria, including Salmonella enterica. It is US federal law under the Food Safety Modernization Act that these foods are safe to eat straight from processors since these foods are typically consumed raw. Novel treatment methods are being tested to kill harmful bacteria on these dried foods without adding water including chlorine dioxide fumigation and hydrogen peroxide fumigation. However, these processes can injure the bacteria without killing them. These injured bacteria might not be counted using traditional means which could lead to overestimating the effectiveness of a treatment. Different media types, used as part of the process to count the number of bacteria in a sample, were tested to determine their effect on recovery of injured S. enterica cells. Furthermore, the bacterium Enterococcus faecium NRRL B2354 was tested against S. enterica to evaluate, if the former, a relatively harmless microorganism, could be used by food processing plants to determine that their treatment processes meets regulatory standards. More injured S. enterica cells were recovered from each non-selective media tested, compared to the selective media. Although there isn't a significant difference in injured S. enterica recovery between any supplemented non-selective media, any non-selective media recovers more sub-lethally injured cells, and would give more accurate bacterial counts. Results also indicated that E. faecium NRRL B2354 is a suitable surrogate to the pathogen S. enterica for spices and herbs processed under the same conditions.
54

Quantitative determination of quinone chromophore changes during ECF bleaching of kraft pulp

Zawadzki, Michael A. 08 1900 (has links)
No description available.
55

The effect of methanol on BTEX mobility in saturated zone and the remedial approach to this problem

Kholdisabeti, Roshanak 06 June 2011 (has links)
Soil contamination with petroleum hydrocarbons is a common problem. Toxic compounds such as BTEXs are present in gasoline derivatives. They can move through the soil and contaminate the groundwater, especially if methanol is present. This problem is critical in permeable soil. Although leaching of BTEX compounds from soil to the water is almost temperature dependent, movement of methanol through the soil is not. Methanol can move through the porous soil and reach the groundwater in a short time. It can also dissolve and carry BTEX compounds through the porous soil. Therefore, fast cleanup of the permeable soil which is contaminated with BTEX and methanol is crucial. Chlorine dioxide is an oxidizer, which is easy to use and safe to transport; and may be considered as a treatment technique for soil cleanup. Keywords: Groundwater, soil contamination, BTEX compounds, methanol, chlorine dioxide, soil cleanup
56

Chemické omyly ve světle skutečnosti - identifikace a vysvětlení / Chemical mistakes in the light of reality - identification and explanation

Fatka, David January 2018 (has links)
This thesis deals with widespread, chemically-themed misinformation. The the- oretical part describes psychological effects leading to myth spreading. It also descri- bes the debunking possibilities of such myths and the didactic reasons for misinformation- based work on the high school level. General practical part uses methods of content analysis upon random sample of School educational programmes to prove the usability of misinformation-based work in education. It also summarizes the organisations and resources useful for myth debunking. Specific practical part deals with analysis of chosen suspicious information, their credibility and the possibilities of educational work based on them. The chosen in- formation was the "medicinal" usage of chlorine dioxide solution. Rumors of alkaline diet and alleged harmfulness of aspartame, an artificial sweetener, were also chosen. The way they tend to be presented, none of these claims are backed. In all these cases, multiple unsubstantiated claims were found among proponents of these ideas.
57

Étude du comportement à long terme d'accessoires en polyamide 66 utilisés dans les réseaux d'eau intérieurs / Study of the long term behaviour of valves products made of polyamide 66 in the domestic water network

Dausseins, Julie 29 June 2015 (has links)
Le dioxyde de chlore se positionne actuellement comme une alternative au chlore pour la désinfection de l'eau potable. Bien que son pouvoir biocide soit aujourd'hui bien connu, il existe peu de données bibliographiques sur ses effets sur les matériaux organiques dans les réseaux d'eau intérieurs. L'utilisation du PA66 pour des clapets anti-retour est récente : son comportement à long terme est donc méconnu. L'objectif de cette étude était de progresser dans la compréhension des mécanismes d'interaction entre le dioxyde de chlore et une matrice PA66 stabilisée par un mélange de deux antioxydants et chargée de fibres de verre, mais aussi de proposer une méthode « multi-échelle » de prédiction de la durée de vie de ce matériau composite en service. Tout d'abord, une meilleure description des réactions chimiques se produisant au sein du matériau (oxydation, hydrolyse, protection du polymère par les antioxydants, attaque chimique du polymère et des antioxydants par le désinfectant) a permis d'élaborer un schéma mécanistique général de dégradation. Des équations cinétiques ont été dérivées de ce schéma mécanistique pour prédire l'évolution des modifications chimiques, en considérant une répartition hétérogène des antioxydants dans la matrice PA66 et en prenant en compte la plupart des conditions d'exposition (température de l'eau, concentration en réactifs chimiques, temps). Ensuite, le matériau vieilli a été testé en conditions d'usage grâce à des essais de pression hydrostatique pour identifier son régime de rupture. / Nowadays, chlorine dioxide is an alternative of chlorine for the disinfection of drinking water. Although its biocide ability is well known, scientific literature lacks of knowledge about its effects on organic materials in domestic water networks. The use of PA 66 for valves is quite recent: its long term behaviour is thus unknown. The aim of this study was to improve the knowledge of the interaction mechanisms between chlorine dioxide and a PA 66 matrix stabilized by blend of two antioxidants and reinforced by glass fibres, but also to propose a multi-scale method for the lifetime prediction of this composite material in service. First of all, a better description of the chemical reactions occurring within the material (oxidation, hydrolysis, polymer protection by antioxidants, chemical attack of polymer and antioxidants by disinfectant) has allowed elaborating a general degradation mechanistic scheme. Kinetic equations were derived from this mechanistic scheme for predicting the chemical changes, considering a heterogeneous distribution of antioxidants within the PA 66 matrix and taking into account most exposure conditions (water temperature, concentration in chemical reactants, time). Then, the aged material was tested in use conditions thanks to hydrostatic pressure experiments in order to identify its failure regime.
58

The use of dioxy MP 14 (stabilized aqueous chlorine dioxide) to control environmental airborne microorganisms

Mbamalu, Oluchi Nneka January 2009 (has links)
Magister Pharmaceuticae - MPharm / Dioxy MP 14 is a locally developed form of stabilized chlorine dioxide in an aqueous medium. It has all the sanitizing properties of chlorine dioxide gas, a neutral compound of chlorine in the +IV oxidation state, which has been used extensively as a non-toxic sterilizing agent with various applications. In this study, Dioxy MP14 was tested in a commercial chicken pen to determine its effectiveness as an environmental sanitizing agent. Control of environmental microbes in a chicken pen is important to ensure healthy birds and optimum egg production. The biocide was introduced via an overhead misting system with a variable dosing pump at various daily frequencies.The effectiveness of environmental microorganism control was determined with air settle plates. The health and performance of the chickens were evaluated and compared to chickens in a control pen.The results show a decrease in airborne microbial load in the treated pen. Better egg production and lower mortality of the chickens in the treated pen compared to the control pen, indicate effective environmental microbial control was achieved with a residual 7.46 ppm Dioxy MP 14 at a daily dose given for 5 minutes every 2 hours.This study was a pilot study, with encouraging results, for an extended study to investigate the feasibility of introducing Dioxy MP 14 through a misting system in a clinical environment (clinics and hospitals) to control airborne pathogens like Mycobacterium tuberculosis thereby reducing the infection risks for clinical workers and medical staff.
59

FILTER SAMPLING OF AIRBORNE MICROBIAL AGENTS - EVALUATION OF FILTER MATERIALS FOR PHYSICAL COLLECTION EFFICIENCY, EXTRACTION, AND COMPARISON TO TRADITIONAL BIOAEROSOL SAMPLING

BURTON, NANCY CLARK 08 October 2007 (has links)
No description available.
60

Avaliação da remoção de diclofenaco e formação de subprodutos em tratamento de água / Evaluation of the removal of diclofenac and formation of by-products in water treatment

Rigobello, Eliane Sloboda 14 May 2012 (has links)
A presença de resíduos de fármacos em águas superficiais e de abastecimento público tem preocupado a comunidade científica devido principalmente à sua persistência na água e aos efeitos adversos causados à comunidade aquática e aos possíveis riscos à saúde humana. Dentre os fármacos comumente identificados em águas de abastecimento público, encontram-se os anti-inflamatórios, como o diclofenaco (DCF), um dos fármacos mais consumidos no Brasil e no mundo. Nesse contexto, o presente trabalho, teve como objetivo principal estudar a eficiência das etapas de tratamento de água em ciclo completo (coagulação, floculação, sedimentação, filtração em areia e desinfecção com cloro) com e sem pré-oxidação com cloro e com dióxido de cloro e adsorção em carvão ativado granular (CAG) na remoção de DCF. Também foram determinados os trialometanos (THM) e identificados os principais subprodutos do DCF formados na oxidação com cloro e dióxido de cloro. Para a determinação do DCF nas amostras de água antes e após as etapas de tratamento de água foram desenvolvidos e validados métodos analíticos de extração em fase sólida (SPE) e cromatográfico por cromatografia líquida de alta eficiência (HPLC) com detecção no ultravioleta (UV). A validação do método foi feita de acordo com a resolução n&ordm; 899 de 2003 da Agência Nacional de Vigilância Sanitária (ANVISA), considerando os requisitos para métodos bioanalíticos. Os procedimentos analíticos empregados foram efetivos e confiáveis para a identificação e quantificação do DCF nas amostras de água antes e após os processos de tratamento de água. Os ensaios de tratamento de água foram feitos em equipamento de reatores estáticos (jarteste) e filtros de escala laboratorial empregando-se água de poço artesiano não clorada preparada com substâncias húmicas aquáticas (SHA) para conferir cor verdadeira de 20 uH, caulinita para conferir turbidez de 70 uT e fortificada com 1 mg L-1 de DCF. Os resultados indicaram que as etapas de coagulação com sulfato de alumínio, floculação, sedimentação e filtração em areia não removeram o DCF. Nas etapas de préoxidação com cloro e dióxido de cloro e de pós-cloração houve remoção parcial do DCF, porém verificou-se a formação de subprodutos provenientes da oxidação do DCF. Dentre os THM, foi quantificado apenas o clorofórmio na etapa de pré-oxidação com cloro. Em geral, os resultados indicaram que o dióxido de cloro foi mais eficiente na redução do DCF e formou menos subprodutos. Entretanto, o tratamento em ciclo completo seguido da adsorção em CAG foi eficiente na remoção de DCF, com remoção maior que 99,7%. Os subprodutos formados na oxidação com cloro e dióxido identificados por cromatografia líquida acoplada a espectrometria de massas em série (LC-MS/MS) consistiram na descaboxilação/hidroxilação e substituição aromática de átomos de hidrogênio por cloro. Os subprodutos identificados na oxidação com cloro apresentaram as seguintes fórmulas moleculares: C14H11</subCl2NO3, C13H10Cl3N e C14H10Cl3NO2. Com o dióxido de cloro foi identificado o subproduto de fórmula molecular igual a C14H11Cl2NO3. / The presence of pharmaceutical residues in surface waters and in drinking water supply has concerned the scientific community, mainly in which regards their persistence in water, adverse effects on the aquatic community and possible risks to human health. Antiinflammatory drugs, as diclofenac (DCF), are among those drugs commonly identified in drinking water supply. In this context, the main objective of this study was to assess the efficiency of the different stages of the conventional drinking water treatment (coagulation, flocculation, sedimentation, sand filtration and chlorine disinfection) with and without preoxidation with chlorine and chlorine dioxide and adsorption on granular activated carbon (GAC) in the removal of DCF. The trihalomethanes (THMs) were also determined and the main by-products of DCF formed by oxidation with chlorine dioxide and chlorine were identified. For the DCF determination in water samples before and after water treatment stages analytical methods of solid phase extraction (SPE) and chromatographic method by high performance liquid chromatography (HPLC) with detection in the ultraviolet (UV) were developed and validated. The method validation was based on Resolution n&ordm; 899 of the 2003 of the Brazilian National Health Surveillance Agency (ANVISA), considering the requirements for bioanalytical methods. The analytical procedures used were effective and reliable for the identification and quantification of DCF in the water samples before and after the water treatment stages. The water treatment tests were carried out in jar test equipment and filters on laboratory scale employing non chlorinated water of artesian well prepared with aquatic humic substances (AHS) to yield 20 uH true color, kaolin turbidity of 70 NTU and DCF concentration of 1 mg L-1. The results indicated that the stages of coagulation with aluminum sulphate, flocculation, sedimentation and filtration sand did not remove DCF. In the stages of pre-oxidation with chlorine and chlorine dioxide and chlorine disinfection the DCF was partially removed, however by-products were formed from the DCF oxidation. Among the THMs, only chloroform was quantified in the pre-oxidation with chlorine. In general, the results showed that chlorine dioxide was more effective to reduce the DCF and fewer by-products were formed. Nevertheless, the complete cycle treatment followed by GAC adsorption was effective to remove DCF (&gt; 99.7%. removal). The by-products of the oxidation of DCF with chlorine and chlorine dioxide identified by liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) consisted in the descaboxylation/hydroxylation and aromatic substitution of hydrogen atoms by chlorine. The compounds identified in the oxidation with chlorine showed the following molecular formulas: C14H11</subCl2NO3, C13H10Cl3N e C14H10Cl3NO2. The by-product identified using chlorine dioxide was C14H11Cl2NO3.

Page generated in 0.083 seconds