• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 113
  • 19
  • 10
  • 9
  • 6
  • 1
  • Tagged with
  • 203
  • 54
  • 54
  • 48
  • 37
  • 35
  • 21
  • 19
  • 17
  • 16
  • 16
  • 16
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Probing the Roles that Intraflagellar Transport B Protiens Play on Stability, Assembly, and Localization of Complex B in Chlamydomonas ReinhardtII

Richey, Elizabeth 14 March 2013 (has links)
Intraflagellar transport (IFT), the key mechanism for ciliogenesis, involves large protein particles moving bi-directionally along the entire ciliary length. IFT particles contain two large protein complexes, A and B, which are constructed with proteins in a core and several peripheral proteins. Prior studies have shown that in Chlamydomonas reinhardtii, IFT46, IFT52, and IFT88 directly interact with each other and are in a subcomplex of the IFT B core. However, ift46, bld1, and ift88 mutants differ in phenotype as ift46 mutants are able to form short flagella, while the other two lack flagella completely. In this study, we investigated the functional differences of these individual IFT proteins contributing to complex B assembly, stability, and basal body localization. We found that complex B is completely disrupted in bld1 mutant, indicating an essential role of IFT52 for complex B core assembly. Ift46 mutant cells are capable of assembling a relatively intact but highly unstable complex B. In contrast, in ift88 mutant cells the complex B core still assembles and remains stable, but the peripheral proteins no longer attach to the B core. Moreover, while complex A and the anterograde IFT motor FLA10 are localized normally to the transition fibers, complex B proteins instead are accumulated at the proximal ends of the basal bodies in ift88. Taken together, these results revealed a step-wise assembly process for complex B, and showed that the complex first localizes to the proximal end of the centrioles and then translocates onto the transition fibers via an IFT88-dependent mechanism. Protein interaction analyses such as the yeast two-hybrid assay in addition to identification and characterization of novel IFT complex B mutants will reveal a more complete picture of the architecture and function of IFT complex B.
62

Functional Analysis of an Integrated GTPase Regulating the Cellular Pool and Distribution Profile of Intraflagellar Transport Particles in Chlamydomonas Reinhardtii

Silva, David 14 March 2013 (has links)
Cilia and flagella are sensory organelles, found in the majority of eukaryotic organisms that play a vital role in the general physiology, health and early development of humans. Intraflagellar transport (IFT) is tasked with building and maintaining the entire ciliary structure by facilitating the transport of axonemal precursors, trafficking of ciliary membrane proteins and turnover products. Currently, there are no complete models detailing how ciliated organisms regulate the entry and exit of IFT particles, a multi-meric adaptor complex that ferries flagellar proteins. In this thesis, I focus on small Rab-like protein IFT22, an IFT-particle integrated protein with predicted GTPase activity, as a potential regulatory component of IFT particle trafficking in Chlamydomonas. Using an artificial microRNAs strategy, I show that IFT22 regulates the available cellular pool of IFT particles and the distribution profile of the IFT particles between the cytoplasm and the flagellar compartment. Additionally, I demonstrate how the putative constitutive active mutant of IFT22 is able properly localize to the peri-basal body and enter the flagellar compartment using immunofluorescence and immunoblot analysis of flagella extracts. Finally, preliminary RNAi data suggests IFT25 the IFT particle/motor/BBSome assembly downstream of IFT22 regulation, evident from the depletion of kinesin-2 subunit FLA10, IFT-dynein-2 subunit D1bLIC and BBsome component BBS3from whole cell extracts of IFT25 knockdown transformants.
63

Functional Analysis of the Cordon-bleu Protein in Mouse

Custer, Laura Mary January 2009 (has links)
<p>The actin cytoskeleton is a fundamental component of the cell and is involved in many processes, including cell division, cell migration, vesicle trafficking and cell polarity. The actin cytoskeleton has a very important role in embryogenesis as the cells within developing tissues proliferate, migrate, interpret extracellular cues, and shape complex tissues. The molecules that help the cell to interpret their environment and turn those cues into morphological changes are of great interest. One protein which may be involved in this manner is Cordon-bleu (Cobl). </p><p>In mouse embryos, <italic>Cobl's</italic> expression pattern resembles that of important developmental genes, is restricted to distinct domains, and changes dynamically throughout development as tissues are formed. While it is known that <italic>Cobl</italic> expression is regulated by developmental signaling pathways such as Shh and BMP, its molecular function at the cellular level remains elusive. In this study, we have identified molecular functions of Cobl. Cobl has C-terminal Wasp Homology-2 (WH2) domains which bind actin and nucleate new actin filaments in <italic>in vitro</italic> polymerization assays. Using cultured cells, we have determined that Cobl is involved in cytoskeletal remodeling during neurite branching and epithelial cell migration. We also demonstrate that Cobl interacts with the Syndapin family of adaptor proteins that link endocytosis and vesicle trafficking. Cobl colocalizes with Sdp2 in cultured epithelial cells and similarly localizes with Sdp1 and Sdp2 in developing mouse embryos. The localization of Cobl or Sdp2 in cultured epithelial cells is dependent on the other, as demonstrated using shRNA knockdown. </p><p>Previous studies demonstrated that a hypomorphic allele of <italic>Cobl</italic> interacts genetically with <italic>Looptail</italic>, in midbrain neurulation. <italic>Looptail</italic> mutants are deficient in the gene <italic>Vangl2</italic>, a member of the planar cell polarity pathway that coordinates the morphogenesis of a sheet of cells. To discover other roles for <italic>Cobl</italic> in the developing mouse, we have generated a conditionally null allele of <italic>Cobl</italic>. We find that outbred <italic>Cobl</italic> homozygous mutants are viable, but that they have inner ear defects. Together, our studies demonstrate that Cobl is a tissue-specific actin nucleator whose localization is regulated by its interaction with Syndapins and which functions in the development of sensory epithelia.</p> / Dissertation
64

A MOLECULAR ANALYSIS OF PROTEIN TRAFFICKING IN THE VERTEBRATE RETINA: IMPLICATIONS FOR INTRAFLAGELLAR TRANSPORT AND DISEASE

Krock, Bryan L. 2009 May 1900 (has links)
Vertebrate photoreceptors are highly specialized sensory neurons that utilize a modified cilium known as the outer segment to detect light. Proper trafficking of proteins to the outer segment is essential for photoreceptor function and survival and defects in this process lead to retinal disease. In this dissertation I focus on two aspects of protein trafficking, intracellular vesicular trafficking in photoreceptors and retinal pigmented epithelial (RPE) cells and how it relates to the human disease choroideremia (CHM), and the trafficking of proteins through the photoreceptor cilium. The human retinal degenerative disease choroideremia (CHM) is caused by mutation of the Rab escort protein-1 (REP1) gene, which is required for proper intracellular vesicular trafficking. However, it was unclear whether photoreceptor degeneration in this disease is cell-autonomous, due to defective opsin transport within the photoreceptor, or is noncell-autonomous and a secondary consequence of defective RPE. Utilizing the technique of blastomere transplantation and a zebrafish line with a mutation in the rep1 gene, I show that photoreceptor degeneration in CHM is noncell-autonomous and is caused by defective RPE. The molecular machinery responsible for protein trafficking through the photoreceptor cilium remained unclear for a long time. Recent studies found Intraflagellar Transport (IFT) is the process that mediates cilia formation and transport of proteins through a cilium, and further analyses showed IFT is important for trafficking proteins to the outer segment. However, many details about how IFT works in photoreceptors remained unclear. By analyzing zebrafish harboring a null mutation in the ift57 gene, I show that Ift57 is only required for efficient IFT, and that the Ift57 protein plays a role in the ATP-dependent dissociation of kinesin II from the IFT particle. Lastly, I investigate the role of retrograde IFT in photoreceptors, a process that had yet to be investigated. By utilizing antisense morpholino oligonucleotides to inhibit expression of cytoplasmic dynein-2 (the molecular motor that mediates retrograde IFT) , I show that retrograde IFT is required for outer segment extension and the recycling of IFT proteins.
65

Designing oscillating cilia for regulating particle motion in microfluidic devices

Ghosh, Rajat 12 April 2010 (has links)
We design actuated cilia that can maneuver microscopic particles normal to a microfluidic channel wall and transport microscopic particles parallel to the channel wall. For identifying the design specifications, we employ a hybrid LBM/LSM computational model, to simulate hydrodynamic interactions between oscillating elastic cilia and microscopic particles in a microfluidic channel. The oscillating synthetic cilia are elastic filaments tethered to the channel wall and actuated by sinusoidal force acting at their free ends. The cilia are arranged in a square pattern. The microscopic particle is a neutrally buoyant solid sphere, which is sufficiently small compared to the cilium length and inter-cilium distances, so that the particle can move freely inside the ciliated layer. We study the effect of actuation frequency on the particle motion inside the ciliated layer. We show that depending on the frequency, particles can be either driven away from the ciliated channel wall or drawn towards the wall. We also examine how to use inclined cilia to transport particles along the ciliated layer. We show that the particle transport along the ciliated layer can be regulated by the frequency of cilium oscillation. The results uncover a new route for regulating particle position and transport in microfluidic devices.
66

A Role for Cilia in Endocardial Cushion Development

Cooney, Laura Gilbert Hollingsworth 24 August 2010 (has links)
Congenital heart defects due to the aberrant development of the atrioventricular (AV) valves and septum are among the most common developmental abnormality in newborns and cause significant neonatal morbidity and mortality. A key point in cardiac morphogenesis occurs when cells within the endocardial cushions (ECCs), the precursors for the AV valvoseptal complex, delaminate and undergo an epithelial-to-mesenchymal transformation (EMT). The mesenchymal cells then proliferate and the cushion area elongates to form the AV valves and portions of the AV septae. The signals that initiate region-specific EMT during heart development are unknown. Cilia, known for their role in establishing left-right (LR) asymmetry, function to receive and integrate extracellular signals, including fluid flow, in a range of other organ systems. We hypothesize that cilia could also have a direct role in heart development outside of their role in LR development. Using immunohistochemistry, we demonstrated the presence of cilia on the myocardium, epicardium, and ECCs of wild-type mouse hearts at embryonic day (e) 9.5 and e12.5. To characterize the potential role of these cilia, we compared mice with mutations affecting ciliary biogenesis, motility, and mechanosensation. Using bright field microscopy and in situ hybridization, we analyzed the embryonic heart structure and the expression pattern of Gata4, an EMT transcription factor. We showed that compared to mice with immotile but structurally normal cilia, the mice without cilia had hypocellular ECCs, a thinned compact myocardium (CM), and an up-regulated expression of Gata4. These observations suggest that a subset of cilia called cardiac cilia have a role in cardiogenesis outside of their role in LR development and affect Gata4 expression. One possible function of cardiac cilia is as mechanosensors, integrating fluid flow and influencing cardiac morphogenesis including EMT and development of the CM.
67

Nde1-mediated inhibition of ciliogenesis controls cell cycle re-entry

Kim, Sehyun. January 2009 (has links) (PDF)
Thesis (Ph. D.)--University of Oklahoma. / Bibliography: leaves 118-130.
68

PCP signaling and ciliogenesis in vertebrate embryos

Park, Tae Joo, 1974- 08 October 2012 (has links)
The vertebrate planar cell polarity (PCP) pathway has been previously found to control polarized cell behaviors rather than cell fate. We report here that disruption of Xenopus laevis orthologs of the Drosophila melanogaster PCP genes Xint or Xfy affected not only PCP-dependent convergent extension but also caused embryonic phenotypes consistent with defective Hedgehog signaling. These defects in Hedgehog signaling resulted from a broad requirement for Inturned and Fuzzy in ciliogenesis. We show that these proteins are necessary for the formation of both primary cilium in the neural tube and multi-cilia in the epidermis. Also, using Xenopus muco-ciliary epidermis, we demonstrated that one of the core PCP genes Dishevelled performs dual functions in ciliogenesis, basal body docking and planar polarization of ciliary beating. To this end, we showed that Dishevelled works in concert with the PCP effector protein Inturned and Rho GTPase to mediate the docking of basal bodies to the apical cell surface. We suggest that this docking involves a Dvl-dependent association of basal bodies with vesicles, and with the vesicle-trafficking protein Sec8. Finally, we showed that independent of their roles in apical docking, Dvl/PCP signaling is required again for directional ciliary beating. For the first time, this study uncovered the mechanism for controlling the apical docking of basal bodies. Moreover, the results suggest that the same Dvl/PCP signaling is also important for the planar polarization of ciliary beating in a vertebrate muco-ciliary epithelium. / text
69

The effects of gelomyrtol forte on human ciliary beat frequency and intracellular cyclic adenosine monophosphate in vitro

Kwok, Pui-wai., 郭佩瑋. January 2007 (has links)
published_or_final_version / Medicine / Master / Master of Research in Medicine
70

An investigation of the mechanism(s) of hyperoxia-induced cilial epithelial loss in mammalian bronchial tissue

Abd Al-Sahib, Hanady January 2013 (has links)
Hyperoxia is an essential aid to life support in patients with severe respiratory failure. However, it is recognised as a contributor to the pathological consequences of oxidative stress including oxidative tissue damage, inflammation and cell death resulting in acute or chronic lung injury. The specific mechanisms behind this type of injury are still not completely understood. This study was undertaken with two main aims. Firstly, to evaluate the adverse effects of hyperoxia on the ciliary coverage using a novel large animal model. For the first time, an in vitro bronchus bovine tissue culture model was developed and used to quantify ciliary coverage loss over time. The protection role of antioxidant supplementation with α-tocopherol and ascorbate was also investigated. Secondly, the importance of the tight junction protein ZO-1 in hyperoxia-induced monolayer permeability was investigated using a human bronchial cell line (16HBE14o-) and the potential inflammation effects on bronchial tightness. Additionally studies were carried out in order to find out if antioxidant vitamin treatment can protect against or reduce these effects. Scanning electronic microscopy indicated that hyperoxia caused a time dependent decline (t½ = 3.4 d compared to 37.1 d under normoxia) in ciliary coverage (P < 0.0001). This was associated with an increase in the number of sloughed cells, many apparently intact, into the medium (p < 0.05). Several biochemical parameters were assessed to obtain evidence of oxidative stress caused by hyperoxia in this model including tissue damage (lactate dehydrogenase, LDH, in the medium), lipid peroxidation (thiobarbituric acid reactive substances, TBARS), DNA damage (comet assay used for the first time with primary bronchus culture), protein oxidation (OxyBlot kit) and antioxidant status (total glutathione). Antioxidant vitamins had a significant protective effect on the hyperoxia-induced reduction in percentage ciliary coverage (P < 0.05). Moreover, an increase in the bronchial permeability was shown characterised by a significant decrease (P < 0.05) in transepithelial electrical resistance (TER) under hyperoxic conditions. The reduction of ZO-1 associated fluorescence (P < 0.01) is in compatible with the downregulation of ZO-1 expression assessed by RT-PCR. Levels of the pro-inflammatory cytokines IL-8, IL-6 and TNF-a concentration in the medium, as measured by ELISA, increased significantly (P < 0.001) under hyperoxia, and this was accompanied with a marked increase in the cytokine expression. However, the antioxidant vitamins E and C, partially reduced the impact effects of hyperoxia, both individually and in combination, whilst increases in ZO-1 expression and fluorescence intensity (P < 0.05), as well as the suppression of cytokine secretion and gene expression was modest. Use of these vitamins was not enough to reduce the epithelial permeability significantly compared to normoxia. The data implies that hyperoxia-induced damage to cultured bovine bronchial epithelium and the denudation of cilia over time with increased permeability was due, at least in part, to the decline in TJ protein expression and associated fluorescence intensity. The antioxidant vitamins vitamin E and C had partial protective effects against hyperoxia damage. However, additional studies are called for in order to further understand the possible associations between oxidative stress and inflammation caused by hyperoxia and tight junction proteins, also response to treatment with antioxidant individually or in combination.

Page generated in 0.0201 seconds