• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 820
  • 399
  • 384
  • 108
  • 57
  • 44
  • 35
  • 28
  • 28
  • 28
  • 28
  • 28
  • 20
  • 11
  • 10
  • Tagged with
  • 2186
  • 348
  • 338
  • 330
  • 181
  • 151
  • 131
  • 119
  • 117
  • 102
  • 99
  • 97
  • 93
  • 92
  • 91
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
611

Analysis of a great basin cyclone and attendant mesoscale features

Blazek, Thomas R. January 2000 (has links) (PDF)
Thesis (M.S.)--University of Utah, 2000. / "FY00-246." Title from web page (viewed Nov. 13, 2003). Includes bibliographical references (p. [118]-122). Also available in print version.
612

Synoptic to interannual variability in volumetric flushing in Tampa Bay, FL using observational data and a numerical model

Wilson, Monica 01 January 2013 (has links)
This research provides insight into changes in volumetric flushing of the Tampa Bay estuary caused by synoptic scale wind events. The two main studies of this dissertation involve 1) using wavelet analysis to investigate the link between the El Niño-Southern Oscillation (ENSO) and the frequency and strength of volumetric flushing driven by synoptic variability and 2) using a multi-decadal model simulation to examine how extratropical/winter storms and hurricanes affect the overall flushing rates for Tampa Bay, FL. In the first study, two analyses are performed on 55 years of observational data to investigate the effect of multiple small wind events on estuarine flushing. First I use subtidal observed water level as a proxy for mean tidal height to estimate the rate of volumetric bay outflow. Second, I use wavelet analysis on sea level and wind data to isolate the synoptic sea level and surface wind variance. For both analyses the long-term monthly climatology is removed to focus on the volumetric and wavelet variance anomalies. The overall correlation between the Oceanic Niño index and volumetric anomalies is small (r2=0.097) due to the seasonal dependence on the ENSO response. The mean monthly climatology between the synoptic wavelet variance of elevation and axial winds have similar seasonal behavior. During the winter, El Niño (La Niña) increases (decreases) the synoptic variability, but decreases (increases) it during the summer. The difference in winter El Niño/La Niña wavelet variances is about 20% of the climatological value. ENSO can swing the synoptic flushing of the bay by 0.22 bay volumes per month. These changes in circulation associated with synoptic variability have the potential to impact mixing and transport within the bay. In the second study, volumetric changes from large scale weather events are investigated using a numerical circulation model simulation (1975-2006) to find the cumulative impact of flushing on the bay by extreme events. The strong wind speeds, duration of high winds and wind direction during these events all affect the amount of water flushed in and out of the estuary. Normalized volume anomalies are largest when wind components blow up/down the estuary in the NE/SW direction. Wind induced normalized flushing rates for all 10 extratropical/winter storms range from 12% to 40% and from 14% to 40% for all 10 hurricanes. All storms discussed in this study caused winds greater than 15 m s-1 (~30 knots). The direction of the winds had an impact on the flushing rates during these extreme events. Storm9 (February 1998) and Hurricane Gabrielle (September 2001) experienced the smallest total volume changes (14% and 13%). Both storms experienced weak axial and co-axial winds causing volume changes to be small. The Storm of the Century (March 1993) and Hurricane Frances (September 2004) saw the largest total volume changes of 40%. They both had strong winds blowing in the NE direction. Hurricane Frances had two wind peaks and lingered in the area for approximately 48 hours, so both strength and duration of winds played a large role in the total volume change. Total inflow and outflow rates per year show that there is year to year variability of flushing in Tampa Bay.
613

A multimodel approach to modeling bay circulation in shallow bay-ship channel systems

Pothina, Dharhas 13 August 2012 (has links)
Numerical modeling of shallow microtidal semi-enclosed estuaries requires the effective simulation of physical processes with a wide range of temporal and spatial scales. In theory, application of sufficient grid resolution in both the horizontal and vertical should result in a reasonable simulation. However, in practice, this is not the case. Fully resolving the finest scales can be computationally prohibitive, and various algorithmic assumptions can break down at fine resolutions, leading to spurious oscillations in the solution. One method of simulating inherently cross-scale phenomena is to use multimodel approaches in which domain decomposition is used to divide the region into multiple subregions, each modeled by different submodels. These submodels are coupled to simulate the entire system efficiently. In general, the different models may involve different physics, they may be dimensionally heterogeneous or they may be both physically and dimensionally heterogeneous. A reduction in computational expense is obtained by using simpler physics and/or a reduced dimension model in the submodels. In this research, we look at the particular case of modeling shallow bays containing narrow, deep ship channels. In order to accurately model bay circulation, a model should capture the effect of these spatially localized navigational channels. Our research shows that modeling techniques currently used to simulate such systems using 2 dimensional or coarse resolution 3 dimensional estuary models misrepresent wind driven surface circulation in the shallow bay and tide driven volume fluxes through the channel. Fully resolving the geometry of the ship channel is impractical on all but large parallel computing clusters. We propose a more efficient method using the multimodel approach. This approach splits the estuary into a shallow bay region and a subsurface ship channel region. By separating the physical domain into two parts in this way, simpler models can be used that are targeted at the different physical processes and geometries dominant in each region. By using a low resolution 3D model (SELFE) in the shallow bay region, coupled through appropriate interface conditions with a 2D laterally averaged model, the effects of the ship channel on bay circulation are accurately represented at a fraction of the computational expense. In this research, this coupled model was developed and applied to an ideal shallow bay- ship channel system. The coupled model approach is found to be an effective strategy for modeling this type of system. / text
614

The role of the Mexican Plateau in shaping rainfall over Texas

Ren, Tong 17 February 2014 (has links)
Previous studies have suggested that advection from the Mexican Plateau (MP) may influence rainfall over Texas in spring and summer; generally air ascends over the cordillera and descends over the southern plains. The two mechanisms may link the northern Mexico drought to Texas drought. Observations and the Community Earth System Model are used in this study to describe the 2011 Texas-northern-Mexico drought and examine the role of the MP on the hydro-climate over the southern US, providing implications for the linkage between the MP and rainfall over Texas. A control run and three experimental runs were performed with prescribed sea surface temperatures and sea ice fractions. The results show that when the MP becomes dry, rainfall declines locally and downstream. During the spring, the dry air brought to Texas by prevailing westerly winds suppresses local convection; but dry air advection from the highlands has little influence on rainfall over Texas during the summer when Texas is no longer in the downstream areas. During the summer, a warmer MP draws moist air over the peripheral low elevation areas to the highlands; it bends the low-level jet towards the highlands and an anti-cyclonic flow anomaly forms over the southern US, which causes air to diverge and tends to reduce rainfall over the southern US. / text
615

Evaluation of heat losses from a domestic hot water circulation system

Salazar Navalón, Pablo January 2015 (has links)
Heat losses are an important problem in domestic hot water circulation systems. Therefore, to reduce these losses becomes an issue of utmost importance both economically and environmentally. Nevertheless, it has not been until recent years when these losses have been studied further. Commonly studies have focused on the heat space system operation or radiator system. This study focuses on heat losses in the domestic hot water circulation through the piping system in a building at a school located in Gävle (Sweden) using non-destructive flow and temperature reading devices. The heat used by the school is provided by the district heating network that feeds several heat exchangers. The heat losses, at the same time, will be compared with simulation and theoretical procedures to corroborate them. The domestic hot water piping system of this study consists on more than 1200 meters of insulated copper pipes with different diameters and different insulation thickness. The system was measured for one week (April 26, 2015 to May 3, 2015) when there are working days and nonworking days. A 5% of the annual district heating consumption in the school was calculated as heat losses in the domestic hot water circulation system in the building studied. Finally, improvements in insulation system and changes in the domestic hot water temperature have been simulated and they demonstrate that savings of up to 35% of the heat losses can be achieved and produce significant energy savings.
616

Drifter modeling and error assessment in wind driven currents

Furnans, Jordan Ernest 28 August 2008 (has links)
Not available / text
617

Evaluating the “critical relative humidity” as a measure of subgrid-scale variability of humidity in general circulation model cloud cover parameterizations using satellite data

Quaas, Johannes 21 August 2015 (has links) (PDF)
A simple way to diagnose fractional cloud cover in general circulation models is to relate it to the simulated relative humidity, and allowing for fractional cloud cover above a “critical relative humidity” of less than 100%. In the formulation chosen here, this is equivalent to assuming a uniform “top-hat” distribution of subgrid-scale total water content with a variance related to saturation. Critical relative humidity has frequently been treated as a “tunable” constant, yet it is an observable. Here, this parameter, and its spatial distribution, is examined from Atmospheric Infrared Sounder (AIRS) satellite retrievals, and from a combination of relative humidity from the ECMWF Re-Analyses (ERA-Interim) and cloud fraction obtained from CALIPSO lidar satellite data. These observational data are used to evaluate results from different simulations with the ECHAM general circulation model (GCM). In sensitivity studies, a cloud feedback parameter is analyzed from simulations applying the original parameter choice, and applying parameter choices guided by the satellite data. Model sensitivity studies applying parameters adjusted to match the observations show larger positive cloud-climate feedbacks, increasing by up to 30% compared to the standard simulation.
618

Geographically versus dynamically defined boundary layer cloud regimes and their use to evaluate general circulation model cloud parameterizations

Nam, Christine C. W., Quaas, Johannes 25 August 2015 (has links) (PDF)
Regimes of tropical low-level clouds are commonly identified according to large-scale subsidence and lower tropospheric stability (LTS). This definition alone is insufficient for the distinction between regimes and limits the comparison of low-level clouds from CloudSat radar observations and the ECHAM5 GCM run with the COSP radar simulator. Comparisons of CloudSat radar cloud altitude-reflectivity histograms for stratocumulus and shallow cumulus regimes, as defined above, show nearly identical reflectivity profiles, because the distinction between the two regimes is dependent upon atmospheric stability below 700 hPa and observations above 1.5 km. Regional subsets, near California and Hawaii, for example, have large differences in reflectivity profiles than the dynamically defined domain; indicating different reflectivity profiles exist under a given large-scale environment. Regional subsets are better for the evaluation of low-level clouds in CloudSat and ECHAM5 as there is less contamination between 2.5 km and 7.5 km from precipitating hydrometeors which obscured cloud reflectivities.
619

Tough Times, Tough Decisions: Streamlining, Studying and Experimenting to Save $ and Better Serve Customers

Anaya, Toni, Begay, Wendy, Huff-Eibl, Robyn 06 April 2006 (has links)
Poster presentation from the Living the Future 6 Conference, April 5-8, 2006, University of Arizona Libraries, Tucson, AZ. / In the past several years, circulation and shelving statistics as well as the usage of print reserves have declined. At the University of Arizona Libraries, we are moving from a traditional mediated service environment towards increased user self-sufficiency, where the basic circulation transactions become unmediated. Come learn how we have implemented open holds, reserves, self check-in, streaming audio and soon streaming video. Learn how we have consolidated services into a single desk, the challenges we faced and competencies required to create a new future for your circulation staff.
620

Cerebral blood flow monitoring of brain injured patients

吳志萍, Ng, Chi-ping. January 1996 (has links)
published_or_final_version / Surgery / Master / Master of Philosophy

Page generated in 0.1199 seconds