• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 5
  • 1
  • 1
  • Tagged with
  • 102
  • 57
  • 25
  • 24
  • 20
  • 13
  • 13
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Caracterização de uma nova proteina com repetições de anquirina, ANKHD1, na hematopoese normal e leucemica

Traina, Fabiola 10 August 2018 (has links)
Orientador: Sara Teresinha Olalla Saad / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciencias Medicas / Made available in DSpace on 2018-08-10T10:41:55Z (GMT). No. of bitstreams: 1 Traina_Fabiola_D.pdf: 10463418 bytes, checksum: a1c92a0820404ccf5ce6623bff80018a (MD5) Previous issue date: 2007 / Resumo: Importante passo para a compreensão dos processos fisiopatológicos das neoplasias é a identificação de genes ativamente expressos e das funções biológicas de cada proteína codificada por estes genes. Ankyrin Repeat Single KH Domain containing 1 (ANKHD1) foi inicialmente identificada em células de adenocarcinoma de próstata humano (LNCaP), no ano de 2003. Entretanto, seu padrão de expressão e sua função ainda não haviam sido caracterizados. A ANKHD1 é uma proteína ortóloga à Multiple Ankyrin repeat and single KH domain (Mask) da Drosophila melanogaster. Mask foi identificada através de um rastreamento genético utilizado para detectar novas proteínas associadas à proteína tirosina fosfatase Corkscrew (CSW), homóloga à Src Homology-2 domain-containing protein tyrosine Phosphatase-2 (SHP2) humana. SHP2 é uma fosfatase de tirosina citoplasmática codificada pelo gene PTPN11 e exerce papel fundamental no desenvolvimento da hematopoese normal e leucêmica. Os objetivos gerais do presente estudo foram caracterizar o padrão de expressão gênica e protéica de ANKHD1 em células hematopoéticas normais e leucêmicas e sua participação nas vias de sinalização celular. Neste estudo, foi demonstrada a elevada expressão gênica e protéica de ANKHD1 em linhagens de leucemias agudas humanas (KG-1, HEL, K562, NB4, HL-60, Jurkat, MOLT4, Raji, Daudi e Namalwa) e em amostras de 38 pacientes com diagnóstico de leucemia aguda, quando comparadas às células hematopoéticas normais. A expressão protéica de ANKHD1 em diferentes tecidos humanos normais (rim, baço, estômago, intestino delgado, músculo esquelético, fígado, pulmão e linfonodo) foi detectada em intensidades variáveis. A associação da ANKHD1 com SHP2 foi identificada, através de Western Blotting, em células de leucemia mielóide crônica em fase blástica (K562) e células LNCaP. Entretanto, esta associação não foi detectada nas linhagens leucêmicas KG1, HL60, Daudi e Jurkat. A ANKHD1 foi localizada no citoplasma de células hematopoéticas normais e leucêmicas. Detectou-se a fosforilação de ANKHD1 em serina em células leucêmicas, mas não em células hematopoéticas normais. Através de ensaio de duplo híbrido em levedura, utilizando-se uma biblioteca de cDNA de medula óssea humana normal, detectou-se a interação de ANKHD1 com as proteínas SIVA1 e SIVA2, proteínas pró-apoptóticas altamente expressas em linhagens de leucemia linfóide aguda. Análises preliminares indicaram que a inibição da expressão protéica de ANKHD1, através de RNAi, induziu à apoptose celular em células leucêmicas, sugerindo uma função anti-apoptótica à ANKHD1. Em conclusão, o presente estudo identificou ANKHD1 como uma nova proteína altamente expressa em leucemias agudas, associada à SHP2 e SIVA em diferentes células, e, possivelmente, envolvida com o fenótipo anormal da célula leucêmica através de uma função anti-apoptótica. Os achados aqui descritos sugerem que ANKHD1 pode ser uma molécula alvo para a terapia da leucemia no futuro, e permitirão direcionar novos estudos com o objetivo de melhor elucidar as funções específicas de ANKHD1 em diferentes células hematopoéticas normais e leucêmicas / Abstract: One step in the path towards building a comprehensive molecular portrait of human cancer is the definition of actively expressed genes and the function of their coding proteins. The Ankyrin Repeat Single KH Domain containing 1 protein (ANKHD1) was first described in humans in a prostate carcinoma cell line LNCaP, in 2003; however, its expression pattern and its function have not yet been described. ANKHD1 is an orthologous protein of the Drosophila melanogaster, MASK (Multiple Ankyrin repeat and single KH domain), where it was first identified using a genetic screen designed to discover proteins that interact with the protein tyrosine phosphatase Corkscrew (CSW), which is a homolog to the SH2-containing protein tyrosine phosphatase (SHP2) in humans. SHP2 is a cytoplasmic protein-tyrosine phosphatase, coded by the PTPN11 gene and plays an important role in the development of normal hematopoiese and leukemogenesis. The aim of the present study was to characterize the gene and protein expression pattern of ANKHD1 in normal hematopoietic cells and in leukemia cells, and its role in signaling pathways. In the present study, the overexpression of ANKHD1 mRNA and its protein was demonstrated in human leukemia cell lines (KG-1, HEL, K562, NB4, HL-60, Jurkat, MOLT4, Raji, Daudi and Namalwa) and in 38 patients with a diagnosis of acute leukemia, compared to normal hematopoietic cells. The ANKHD1 protein was found to have a variable expression in different normal tissues (kidney, spleen, stomach, small intestine, skeletal muscle, liver, lung and lymph node). An association of ANKHD1 and SHP2 was found, through imunopreciptation and Western Blotting, in the chronic myeloid leukemia blastic phase cell line (K562) and in LNCaP cells. However, this association was not detected in the leukemia cell lines, KG1, HL60, Daudi and Jurkat. ANKHD1 was found located in the cytoplasm of normal hematopoietic cells and leukemia cells. ANKHD1 was found to be phosphorylated at serine in leukemic cells, but not in normal hematopoieitic cells. Through the yeast two-hybrid system, using a cDNA library from normal human bone marrow, the interaction of ANKHD1 with SIVA1 and SIVA2 was detected. SIVA isoforms are pro-apoptotic proteins, overexpressed in acute lymphoblastic leukemia cell lines. Preliminary studies showed that the inbition of ANKHD1 expression, through RNAi, resulted in increased apoptosis in leukemic cells, which suggests an anti-apoptotic function for ANKHD1. In conclusion, the present study identified ANKHD1 as a new protein that is overexpressed in leukemic cells. The protein interacts with SHP2 and SIVA in different cells and is probably associated with the abnormal phenotype of the leukemia cell through its anti-apoptotic function. These findings suggest that ANKHD1 may be a molecular target for a rational therapy for leukemia in the near future, and open a new field of investigation to better define the specific roles of ANKHD1 in different normal and leukemic hematopoietic cells / Doutorado / Biologia Estrutural, Celular, Molecular e do Desenvolvimento / Doutor em Fisiopatologia Medica
12

La Proteína Pelado regula la polimerización de Actina durante la formación de tricomas en Drosophila melanogaster

Molina Pelayo, Claudia Macarena 04 1900 (has links)
Tesis entregada a la Universidad de Chile en cumplimiento parcial de los requisitos para optar al grado de Doctor en Ciencias, mención Biología Molecular, Celular y Neurociencias. / El citoesqueleto es un componente esencial en todas las células. En particular, el citoesqueleto de Actina cumple múltiples funciones, desde el desarrollo de un organismo, la migración celular, hasta la formación de distintas estructuras celulares, tales como pelos cuticulares o tricomas, que corresponden a una extensión de la membrana plasmática. En Drosophila melanogaster, las células epiteliales forman un único pelo o tricoma en la zona apico-distal de estas. Durante el desarrollo, esta estructura se forma por la acumulación polarizada de Actina y su subsecuente polimerización lineal, la que es finamente regulada. Sin embargo, aún no se tiene claro cuáles son los mecanismos moleculares que promueven la acumulación y polimerización de Actina para la formación de pelos en las células epiteliales de insectos como Drosophila melanogaster. En nuestro laboratorio se encontró una mutación en un gen no caracterizado en Drosophila melanogaster. Dicha mutación en homocigosis genera la letalidad del animal en el periodo embrionario. Para analizar el fenotipo celular asociado a la mutación de dicho gen, utilizamos mosaicos celulares. Se observó que en células epiteliales mutantes para pelado, la formación de pelos es inhibida. Junto con esto, en células del sistema inmune de Drosophila, la pérdida de función de Pelado genera una alteración en la forma celular, las que aparentemente no se adhieren bien a la superficie de contacto. Sin embargo, al inducir la ganancia de función en estas mismas células se observa la formación de filopodios. Estos datos en conjunto sugieren que Pelado promueve la polimerización lineal de Actina durante la formación del pelo. El fenotipo en la formación de pelos o tricomas generado por la pérdida de función de Pelado es revertido con la ganancia de función de Diaphanous, que corresponde a una formina, que nuclea y polimeriza la Actina de manera lineal. Este fenotipo también es revertido por la pérdida de función de Scar/WAVE, proteína que induce la polimerización ramificada de Actina. En el caso de los hemocitos, la pérdida de función de Diaphanous revierte la formación de filopodios inducida por Pelado. Esto indica que la función de Pelado podría estar mediada por la regulación de la formina Diaphanous. Se generó una mutante que carece del extremo C-terminal de Pelado con la intención de determinar si era suficiente para cumplir la función de la proteína completa. Al analizar el fenotipo de ganancia de función de esta mutante sobre los hemocitos, se observó que de todas maneras se induce la formación de filopodios. Sin embargo, esta mutante no es capaz de revertir el fenotipo de pérdida de función de Pelado en la formación del pelo. Indicando que el extremo N-terminal de Pelado cumple la función de inducir la polimerización lineal de Actina, pero no así en la formación del pelo. Finalmente, el análisis de la distribución celular de ambas versiones de Pelado, muestra que la versión silvestre se localiza más periféricamente que la que carece del extremo Cterminal, sugiriendo que esta región es necesaria para su localización subcelular durante el proceso de formación del pelo. / Cytoskeleton is an essential component in every cell. In particular, Actin cytoskeleton fulfill several functions, from development of an organism, cell migration, to different cell structures formation, such cellular as hairs or trichomes. In Drosophila melanogaster, a single hair grows at the distal side of the apical cortex of every epithelial cell. During development, this structure is formed by the polarized accumulation of Actin and its subsequent linear polymerization, which is tightly regulated. However, it is still not clear what are the molecular mechanisms that promote the accumulation and polymerization of Actin for the hair formation in insects as Drosophila melanogaster. In our lab, we found a mutation in an undescribed gene of Drosophila, which in homozygosity causes embryonic lethality. To analyze the cellular phenotype associated with this mutation, we use cell mosaics. We observed that in mutant epithelial cells, hair formation is inhibited. Moreover, loss of function of Pelado in immune cells generates cell shape defect and its gain of function promotes filopodia formation. All this data together, indicates that Pelado promotes linear actin polymerization during hair formation. The hair formation phenotype generated by Pelado loss of function, is reversed by Diaphanous gain of function, which is a type of formin, that nucleates and polymerize Actin in a linearly. This phenotype is also reversed by the Scar/WAVE loss of function, a protein that induces the branched actin polymerization. In hemocyte cells case, the Diaphanous loss of function reversed the filopodia formation induced by Pelado gain of function. This indicates that Pelado function in Actin polymerization could be mediated by Diaphanous. In order to start unveiling the role of the different domains of Pelado, we generated a new mutant, that lacks the C-terminal portion of Pelado. This mutant was generated to determine whether this region is enough to fulfill the entire protein function. This new mutant also induces the filopodia formation in hemocytes. However, this mutant is not able to revert the hair formation phenotype induced by Pelado loss of function, indicating that the amino portion of Pelado is sufficient to induce linear Actin polymerization, but not to induce hair formation. Finally, analyses of cellular distribution of Pelado forms shows that wild type version has a more peripheral location than the mutant, suggesting that the C-terminal region is required for its localization. / Mayo 2020
13

Parâmetros bioquímicos de alterações do citoesqueleto no modelo experimental da doença do Xarope do Bordo

Funchal, Cláudia da Silva January 2005 (has links)
A Doença do Xarope do Bordo (DXB) é um erro inato do metabolismo causado pela deficiência na atividade do complexo desidrogenase dos cetoácidos de cadeia ramificada, levando ao acúmulo de concentrações milimolares dos seguintes α-cetoácidos de cadeia ramificada (CACR): ácidos α-cetoisocapróico (CIC), α-ceto-β-metilvalérico (CMV), α-cetoisovalérico (CIV) e dos seus aminoácidos precursores, leucina, isoleucina e valina em tecidos de pacientes afetados. Essa doença é caracterizada por severos sintomas neurológicos que incluem edema e atrofia cerebral, entretanto, os mecanismos envolvidos na neuropatologia da DXB ainda não são bem estabelecidos. Neste trabalho utilizamos um modelo experimental de DXB com o objetivo de verificar os efeitos dos CACR que se acumulam nessa desordem neurodegenerativa sobre o citoesqueleto de células neurais de ratos. Nesse modelo fatias de córtex cerebral de ratos de diferentes idades, ou culturas de células neurais foram incubados com concentrações variando de 0,1 a 10 mM de cada metabólito. Inicialmente demonstramos que o CIC, CMV e CIV inibiram a captação de glutamato em fatias de córtex cerebral de ratos durante o desenvolvimento. O CIC inibiu a captação de glutamato em ratos de 9, 21 e 60 dias de idade, enquanto o CMV e o CIV inibiram a captação de glutamato em animais de 21 e 60 dias. Observamos que o CIC alterou a fosforilação de proteínas do citoesqueleto de um modo dependente do desenvolvimento através de receptores glutamatérgicos ionotrópicos em fatias de córtex cerebral de ratos. O metabólito causou diminuição da fosforilação dos filamentos intermediários (FI) em ratos de 9 dias de idade e aumento dessa fosforilação em animais de 21 dias de vida. Também demonstramos que em animais de 9 dias de idade o efeito do CIC foi mediado pelas proteínas fosfatases PP2A e principalmente pela PP2B, uma proteína fosfatase dependente de cálcio, enquanto que em animais de 21 dias de idade o efeito deste metabólito foi mediado pela proteína quinase dependente de AMP cíclico (PKA) e pela proteína quinase dependente de cálcio e calmodulina (PKCaMII). Além disso, verificamos que o CIC promoveu um aumento nos níveis intracelulares dos segundos mensageiros AMPc e Ca2+. O aumento do Ca2+ intracelular provocado pelo CIC foi demonstrado pelo uso de bloqueadores específicos de canais de cálcio dependentes de voltagem tipo L, por exemplo, nifedipina, canais de cálcio dependentes de ligantes, por exemplo, NMDA e de quelantes de cálcio intracelular, por exemplo, BAPTA-AM. Por outro lado, o CMV aumentou a fosforilação de FI somente em ratos de 12 dias de idade, sendo esse efeito mediado por receptores GABAérgicos do tipo A e B, desencadeando a ativação das proteínas quinases PKA e PKCaMII. É importante salientar que o CIV não alterou a atividade do sistema fosforilante em nenhuma das idades estudadas. Além dos efeitos causados pelos CACR que se acumulam na DXB sobre a atividade do sistema fosforilante associado aos FI em fatias de córtex cerebral de ratos, demonstramos que esses metabólitos foram capazes de alterar a fosforilação da proteína glial fibrilar ácida (GFAP) na linhagem de glioma C6. Essa alteração de fosforilação causou uma reorganização do citoesqueleto de GFAP e um aumento no imunoconteúdo da GFAP na fração citoesquelética. Também verificamos que o CIC, o CMV e o CIV, em concentrações encontradas em pacientes portadores de DXB, levaram a uma reorganização dos filamentos de GFAP e do citoesqueleto de actina de astrócitos em cultura, causando uma importante alteração na morfologia destas células. As alterações do citoesqueleto levaram a morte celular progressiva quando os astrócitos foram expostos por várias horas aos metabólitos. Demonstramos também que os efeitos dos CACR sobre a morfologia dos astrócitos foram desencadeados por mecanismos de membrana que diminuíram a atividade da Rho GTPase. Esse mecanismo foi evidenciado utilizando-se ácido lisofosfatídico (LPA), um ativador específico da RhoA, o qual preveniu os efeitos causados pelos CACR em culturas de astrócitos. É importante salientar que as alterações morfológicas e a morte celular induzida pelos CACR em culturas de astrócitos foram totalmente evitadas com a suplementação de creatina às culturas. Também verificamos que a atividade da creatina quinase foi inibida pelos metabólitos, indicando que a homeostase energética provavelmente estaria envolvida nos efeitos causados pelos CACR. XI Sabe-se que as alterações do citoesqueleto estão relacionadas com inúmeras doenças neurodegenerativas. Portanto, é provável que as alterações causadas pelos CACR nos mecanismos de membrana que regulam níveis de segundos mensageiros intracelulares e cascatas de sinalização celular, na perda do equilíbrio fisiológico do sistema fosforilante associado ao citoesqueleto e conseqüentemente na sua reorganização, possam ter importantes conseqüências para a função neural. Com base nos presentes resultados demonstramos que os CACR que se acumulam na DXB levam à desorganização do citoesqueleto em um modelo experimental podendo ser uma contribuição importante para o estudo da patogênese do sistema nervoso central característica dos pacientes portadores de DXB.
14

Efeitos da administração intraestriatal aguda de ácido quinolítico sobre o citoesqueleto de células neurais de ratos

Pierozan, Paula January 2010 (has links)
No presente estudo nós investigamos o efeito in vivo da injeção intraestriatal de ácido quinolínico (AQ) sobre proteínas do citoesqueleto de astrócitos e neurônios de ratos jovens 30 minutos após a infusão. Injeção intraestriatal de AQ é um modelo excitotóxico da doença de Huntington (DH). Nossos resultados mostraram que o AQ (150μmol/0.5μL) aumentou significativamente a fosforilação in vitro da subunidade de baixo peso molecular dos neurofilamentos (NF-L) e da proteina glial fibrilar ácida (GFAP) de neurônios e astrócitos, respectivamente. Este efeito foi mediado pela proteína quinase AMPc-dependente (PKA), proteina quinase C (PKC) e proteina quinase Ca2+/calmodulina-dependente II (PKCaMII). Em contraste, proteínas quinases ativadas por mitógeno (MAPK) não foram ativadas pela infusão com AQ. Além disso, o pré-tratamento com MK-801 (0.25 mg/kg i.p), antagonista específico dos receptores N-metil-D-aspartato (NMDA); com o antioxidante L-NAME (60 mg\kg\day) e com o difenildisseleneto (PheSe)2 (0.625 mg\kg\dia) preveniram totalmente a hiperfosforilação induzida pelo AQ. Nós também observamos que o sítio de fosforilação Ser55 localizado no domínio N-terminal da NF-L, descrito como um sítio regulatório da associação dos NF in vivo, foi alvo da hiperfosforilação induzida pelo AQ. Este efeito foi totalmente prevenido por MK801, pelo inibidor de PKA, H89 e pelo (PheSe)2, enquanto que staurosporina, um inibidor de PKC, preveniu apenas parcialmente a fosforilação da Ser55. O inibidor de PKCaMII (KN93) e o antioxidante L-NAME não preveniram a hiperfosforilação da Ser55 pelo AQ. Portanto, nós presumimos que a hiperfosforilação da NF-LSer55 pode representar os primeiros passos na cascata fisiopatológica dos eventos deletérios exercidos pelo AQ no estriado de ratos. Nossas observações também indicam que os eventos mediados pelo receptor NMDA e por estresse oxidativo podem estar relacionados com a hiperfosforilação das proteínas do citoesqueleto observadas, com importantes implicações para as funções cerebrais. / In the present study we investigated the effect of in vivo intrastriatal injection of quinolinic acid (QA) on rat cytoskeleton proteins in astrocytes and neurons of young rats at early stages (30 min) after infusion. Intrastriatal QA injection is an excitotoxic model of Huntington´s Disease (HD). Results showed that QA (150μmol/0.5μL) significantly increased the in vitro phosphorylation of the low molecular weight neurofilament subunit (NF-L) and the glial fibrillary acidic protein (GFAP) of neurons and astrocytes, respectively. This effect was mediated by cAMP-dependent protein kinase A (PKA), protein kinase C (PKC) and Ca2+/calmodulin-dependent protein kinase II (PKCaMII). In contrast, mitogen activated protein kinases (MAPK) were not activated by QA infusion. Furthermore, the specific N-methyl-D-aspartate (NMDA) antagonist MK-801 (0.25 mg/kg i.p), the antioxidant L-NAME (60 mg\kg\day), and diphenyldiselenide (PheSe)2 (0.625 mg\kg\day) injected prior to QA infusion totally prevented QA-induced hyperphosphorylation of cytoskeletal proteins. We also observed that QA-induced hyperphosphorylation was targeted at the Ser55 phosphorylating site on NF-L head domain, described as a regulatory site for NF assembly in vivo. This effect was fully prevented by MK801, by the PKA inhibitor H89 and by (PheSe)2, whereas staurosporine (PKC inhibitor) only partially prevented Ser55 phosphorylation. The PKCaMII inhibitor (KN93) and the antioxidant L-NAME failed to prevent the hyperphosphorylation of Ser55 by QA infusion. Therefore, we presume that QA-elicited NF-LSer55 hyperphosphorylation of the neural cytoskeleton achieved by intrastriatal QA injection could represent an early step in the pathophysiological cascade of deleterious events exerted by QA in rat striatum. Our observations also indicate that NMDA-mediated Ca2+ events and oxidative stress may be related to the altered protein cytoskeleton hyperphosphorylation observed with important implications for brain function.
15

Efeito do ditelureto de difenila sobre as células neurais de ratos jovens : vias de sinalização, homeostase do citoesqueleto e neurodegeneração

Heimfarth, Luana January 2012 (has links)
O telúrio é um elemento raro usado como componente industrial de muitas ligas. Estudos in vivo e in vitro demonstraram que compostos orgânicos do telúrio são neurotóxicos, entre eles podemos destacar o ditelureto de difenila [(PhTe)2]. Os efeitos provocados por esse organotelureto nos diferentes sistemas são importantes, no entanto, os observados no SNC são particularmente marcantes. Relatos têm demonstrado que o (PhTe)2 pode causar alterações no estado de fosforilação dos filamentos intermediários (FIs) neuronais e gliais, sendo os neurônios e astrócitos importantes alvos desse neurotoxicante. Considerando que o citoesqueleto é um importante alvo de neurotoxinas, nosso trabalho estudou o efeito do (PhTe)2 sobre alguns parâmetros bioquímicos do citoesqueleto neural. Ratos submetidos a uma injeção subcutânea de (PhTe)2 apresentaram alteração na fosforilação e/ou expressão das subunidades dos neurofilamentos (NF-H, NF-M e NF-L), da GFAP e da vimentina, bem como ativação das vias das MAPK e da PKA. Essas modificações são dependentes da estrutura estudada (cerebelo ou estriado) e da idade do animal. Além disso, uma única administração de (PhTe)2 em ratos jovens provocou morte neuronal e astrogliose. Quando o (PhTe)2 é administrado nas ratas mães durante os primeiros 14 dias de lactação verificamos que ocorre uma modificação no sistema fosforilante associado aos FIs nos filhotes, novamente de uma maneira estrutura (córtex cerebral, hipocampo, estrido ou cerebelo) e idade dependente. Além disso, verificou-se que esse organocalcogênio injetado nas ratas mães também age sobre as vias das MAPK e da PKA. Estudos in vitro mostraram que esse composto orgânico do telúrio causa hipofosforilação dos FIs neuronais e gliais no córtex cerebral. Esse efeito é mediado por alteração homeostase do cálcio e do glutamato, bem como pela inibição da PKA, alteração da fosforilação da proteína DARPP-32(Thr34) e ativação da PP1. No hipocampo temos uma ativação dos receptores glutamatérgicos ionotrópicos e metabotrópicos, acarretando uma alteração na homeostase do cálcio e ativação da PKC, PKCaMII e via das MAPK, conduzindo a um aumento de fosforilação dos FIs neuronais e gliais. Nossos resultados mostraram, portanto, que o (PhTe)2 altera a homeostase do citoesqueleto cerebral e que essa modificação é dependente do desenvolvimento do animal, da estrutura cerebral estudada, bem como da maneira de contato com esse neurotoxicante. Além disso, verificou-se o envolvimento de várias vias de sinalização nas ações desencadeadas pelo composto orgânico do telúrio sobre os FIs, estando elas muitas vezes interligadas. Esses resultados podem contribuir para o melhor entendimento dos mecanismos envolvidos em uma intoxicação com compostos de telúrio, sendo que o desequilíbrio do citoesqueleto pode estar associado à neurotoxicidade desse organotelureto. / Tellurium is a rare element used as a component of many industrial alloys. In vivo and in vitro studies have demonstrated that organic tellurium compounds are neurotoxic. We can highlight the organic coumpoud diphenyl ditelluride [(PhTe)2]. The effects caused by this organoteluride in different systems are important, however, the effects observed in the CNS are particularly striking. Reports have shown that (PhTe)2 can induces changes in the phosphorylation state of neuronal and glial intermediate filaments (IFs). The neurons and astrocytes are important targets of this neurotoxin. Considering that the cytoskeleton is an important target for neurotoxins, the aim of the present study was studied the effect of (PhTe)2 on some biochemical parameters of the neural cytoskeleton. Rats treated with a single subcutaneous (s.c.) injection of (PhTe)2 showed changes in the phosphorylation and / or expression of neurofilament subunit (NF-H, NF-M and NF-L), GFAP and vimentin, as well as activation of the MAPK pathway and PKA. These changes are dependent on the structure studied (cerebellum or striatum) and age of the animal. Furthermore, a single administration (PhTe)2 in young rats caused neuronal death and astrogliosis. When (PhTe)2 is administered in dams during the first 14 days of lactation we observed a change in the phosphorylating system associated with IFs in pups. This effect is dependent of the structure studied and the developmental stages of the pups. Furthermore, it was found that (PhTe)2 is administered in dams during the first 14 days of lactation also acts on the MAPK pathway and in the PKA. In vitro studies showed that the organic tellurium causes hipophosphorylation of the neuronal and glial IFs proteins in the cerebral cortex. This effect is mediated by change in calcium and glutamate homeostasis, inhibition of PKA, desphosphorylation of the protein DARPP-32 (Thr34) and activation of PP1. In the hippocampus have an activation of ionotropic and metabotropic glutamatergic receptors, causing an alteration in calcium homeostasis and activation of PKC, PKCaMII and MAPK pathway, leading to increased phosphorylation of neuronal and glial IFs. The results of this work showed that the (PhTe)2 changes cytoskeletal homeostasis in brain. This modification is dependent of the animal development, the brain structure studied, as well as the way of contact with the neurotoxin. Moreover, there is the involvement of different signaling pathways in the action of (PhTe)2 and they are often interconnected. These results may contribute to a better understanding of mechanisms involved in intoxication with tellurium compounds. The imbalance of the cytoskeleton may be associated with neurotoxicity of this organochalcogenide.
16

Efeitos da homocisteína sobre parâmetros bioquímicos e estruturais do citoesqueleto de células neurais de ratos

Loureiro, Samanta Oliveira January 2009 (has links)
A homocistinúria (HHCY) é uma desordem metabólica causada algum tipo de deficiência no metabolismo da metionina, folato ou vitamina B12, resultando no acúmulo tecidual de homocisteína (Hcy) e de metionina. Os pacientes afetados por essa doença apresentam principalmente retardo mental, isquemia cerebral, convulsões e aterosclerose. Vários mecanismos têm sido propostos para explicar a relação entre HHCY e desordens no sistema nervoso, entre eles podemos destacar mecanismos glutamatérgicos, mobilização de Ca+2 e envolvimento de espécies reativas de oxigênio (ROS). Considerando que o citoesqueleto é um importante alvo para a sinalização celular em inúmeras doenças neurodegenerativas, nosso estudo investigou os possíveis efeitos tóxicos da Hcy sobre alguns parâmetros bioquímicos do citoesqueleto neural. Ratos submetidos a um tratamento crônico com Hcy apresentam uma marcada seletividade na alteração da expressão gênica das subunidades dos filamentos intermediários (FIs) estudados, tanto no extrato tecidual total como na fração citoesquelética de hipocampo e córtex cerebral, refletindo uma maior susceptibilidade do hipocampo nessas alterações. Estudos in vitro mostraram que a Hcy 100 e 500 μM, relacionadas a homocistinuria (HHCY) moderada e grave respectivamente, são capazes de causar hiper (Hcy 100 μM) ou hipofosforilação (Hcy 500 μM) das subunidades dos neurofilamentos e da proteina glial fibrilar ácida, FIs do citoesqueleto de neurônios e astrócitos respectivamente. Estes efeitos são dependentes da idade dos ratos e da estrutura cerebral, manifestando-se em hipocampo de ratos de 17 dias de idade. Resultados em fatias de hipocampo mostraram que a ação das duas concentrações de Hcy é mediada por mecanismos dependentes do influxo de Ca2+ por receptores NMDA e por canais de Ca2+ dependentes de voltagem, assim como da liberação de Ca2+ dos estoques intracelulares, enfatizando a alta suscetibilidade e complexidade das vias de sinalização ativadas por Ca2+ no hipocampo. Além disso, estudos morfológicos em astrócitos e células de glioma C6 mostraram que células glias em cultura também são alvo para as ações da Hcy, reorganizando seu citoesqueleto e alterando o sistema fosforilante associado ao mesmo através de mecanismos envolvendo excitotoxicidade, estresse oxidativo e mecanismos glutamatérgicos. Estes estudos mostram que a integridade estrutural do citoesqueleto é da maior importância para o funcionamento neuronal e qualquer distúrbio na dinâmica desta estrutura poderia ativar processos de reparação plástica manifestados como alterações na expressão, localização e metabolismo das proteínas do citoesqueleto. No entanto, os mecanismos através dos quais o desequilíbrio do citoesqueleto é capaz de induzir a disfunção neural ainda não foram esclarecidos e a exata dimensão destas alterações precisa ser determinada. / The homocystinuria (HHCY) is a metabolic disorder caused by deficiency in the metabolism of methionine, vitamin B12 or folate, which leads to tissue accumulation of homocysteine (Hcy) and methionine. Homocystinuric patients usually present mental retardation, cerebral ischemia, seizures, and atherosclerosis. Several mechanisms have been proposed to explain the relationship between HHCY and nervous system disorders, among them we can highlight glutamatergic mechanisms, mobilization of Ca+2 and involvement of reactive oxygen species (ROS). Considering that the cytoskeleton is an important target for cellular signaling in many neurodegenerative diseases, our study investigated the possible toxic effects of Hcy on some biochemical parameters of the neural cytoskeleton. Initially, we demonstrated that rats subjected to chronic model of Hcy showed a marked selectivity in alterations of gene expression, total immunocontent and cytoskeletal fraction of subunits of intermediate filaments (IFs) studied, reflecting a greater susceptibility of the hippocampus in these changes. In vitro studies showed that 100 and 500 μM Hcy associated with moderate and severe HHCY respectively, was able to induced hyperphosphorylation (Hcy 100 μM) and hypophosphorylation (Hcy 500 μM) of neurofilaments subunits and glial fibrillary acidic protein, IFs of neuronal and astrocytic cytoskeleton. These effects are dependentents of age and cerebral structure of rats: hippocampus of 17 day old rats are sensible. Results in slices of hippocampus showed that the action of Hcy is mediated by mechanisms dependent of influx of Ca2+ by NMDA receptors and Ca2+ channels voltage-dependent and release of Ca2+ from intracellular stores, emphasizing the high susceptibility and complexity of signaling pathways activated by Ca2+ in the hippocampus. In addition, glial cells were also target for the actions of Hcy, reorganizing their cytoskeleton and changing the phosphorylation system associated to cytoskeleton through mechanisms involving excitotoxicity, oxidative stress and glutamatergic mechanisms. The cytoskeleton may represent a target to HHCY and your dysfunction can have an important role in neurodegeneration characteristic of the disease. However, the mechanisms by which disruption of the cytoskeleton proteins is able to induce neural dysfunction have not yet been clarified and the exact extent of these changes need to be determined.
17

Efeitos da hiperamonemia sobre a homeostase do citoesqueleto em células neurais de ratos jovens

Carvalho, Ronan Vivian January 2015 (has links)
Uma elevação da concentração de amônia no sangue é tóxica e pode levar a convulsões, coma e morte. A suscetibilidade do cérebro em desenvolvimento a alterações neurológicas é maior do que no adulto. O citoesqueleto e, em particular, os filamentos intermediários (FIs) são um alvo de neurotoxinas e metabólitos tóxicos. No SNC temos os FIs neuronais, representados pelos neurofilamentos de alto, médio e baixo peso molecular (NF-H, NF-M, NF-L), e os astrocitários, proteína glial fibrilar ácida e vimentina (GFAP e VIM), entre outros. A fosforilação é uma modificação pós-traducional bem descrita como um dos principais mecanismos de regulação da dinâmica dos FIs. No presente trabalho, estudamos os efeitos de concentrações tóxicas de amônia sobre o citoesqueleto, com ênfase na homeostase do sistema fosforilante direcionado para os FIs e alguns mecanismos moleculares envolvidos nesses efeitos. Para tanto, utilizamos dois modelos experimentais de hiperamonemia aguda em animais de 10 e 21 dias de idade: in vivo e in vitro. No modelo in vivo, os animais foram injetados intraperitonealmente com acetato de amônio (7 mmol/Kg) e o nível de fosforilação das proteínas do citoesqueleto foi analisado no córtex cerebral e no hipocampo. No modelo in vitro, fatias de córtex cerebral e hipocampo de ratos nas mesmas idades foram incubadas com diferentes concentrações de NH4Cl. Nos dois modelos experimentais utilizados as alterações no sistema fosforilante foram dependentes da idade e da estrutura cerebral. A injeção de acetato de amônio não alterou o nível de fosforilação dos FIs no córtex cerebral de ratos de 10 dias, 30 e 60 min após a injeção. No entanto, observamos hipofosforilação dos FIs astrocitários (GFAP e VIM) e neuronais (NF-L, NF-M e NF-H) 30 min após a injeção, sendo que esse efeito foi revertido 60 min após a injeção. O sistema fosforilante associado aos FIs das células neurais de hipocampo não foi alterado com relação aos controles nas duas idades e nos dois tempos estudados. No modelo in vitro a resposta ao NH4Cl foi estrutura-dependente e dose-dependente para as concentrações de 0,5, 1 e 5 mM. Fatias de hipocampo de ratos de 10 dias de idade apresentaram hipofosforilação de GFAP, VIM e NFL em resposta à incubação com 5 mM de NH4Cl, sem alteração na homeostase do citoesqueleto nas células neurais de córtex cerebral. Por outro lado, fatias de córtex cerebral de ratos de 21 dias de idade apresentaram hipofosforilação dos FIs astrocitários (GFAP e VIM) sem alteração no sistema fosforilante direcionado aos FIs de hipocampo. A hipofosforilação em resposta a sinais celulares está frequentemente associada à ativação de proteínas fosfatases. Portanto, em uma tentativa de estudar as vias de sinalização buscamos identificar as fosfatases envolvidas no efeito do NH4Cl, utilizando fatias de córtex cerebral. As proteínas fosfatases 1 (PP1) e 2B (PP2B) foram ativadas em resposta a 5 mM de NH4Cl aos 30 min e esse evento envolveu alterações nos níveis intra e extracelulares de Ca2+ via ativação do sistema glutamatérgico por receptores N-metil-D-aspartato (NMDA). O conjunto dos nossos dados evidenciam a neurotoxicidade da amônia por meio de um desequilíbrio no sistema fosforilante direcionado para os FIs tanto neuronais quanto astrocitários e de uma desregulação nos mecanismos de sinalização celular envolvidos na homeostase do citoesqueleto de astrócitos. Essas alterações podem ser parte integrante dos danos neurológicos associados à hiperamonemia aguda, principalmente no cérebro em desenvolvimento, como retardo mental e paralisia cerebral. Acreditamos que esses resultados são relevantes para a compreensão das bases moleculares envolvidas com a toxicidade da amônia no SNC. / High ammonia levels in the blood are toxic to brain and can lead to seizures, coma and death. The susceptibility of the developing brain to neurological abnormalities is greater than in adults. The cytoskeleton and, in particular, the intermediate filaments (IFs) are a target of neurotoxins and toxic metabolites. The intermediate dilaments (IFs) in the CNS are mainly represented by neurofilaments of high, medium and light molecular weight (NF-H, NF-M, NF-L) in neurons, glial fibrillary acidic protein and vimentin (GFAP and VIM), in astrocytes. Phosphorylation is a post-translational modification described as one of the major mechanisms regulating the dynamics of IFs. In the present work, we studied the effects of toxic concentrations of ammonia on the cytoskeleton, with emphasis in the homeostasis of the phosphorylating system directed to the IFs and we focused in some molecular mechanisms involved in these effects. For this, we use two experimental models of acute hyperammonemia in animals of 10 and 21 days of age: in vivo and in vitro models. In the in vivo model, animals were injected intraperitoneally with ammonium acetate (7 mmol/Kg) and the phosphorylation level of the cytoskeletal proteins was analyzed in the cerebral cortex and hippocampus.The injected acetate did not alter the phosphorylation level of IFs in the cerebral cortex of 10 day-old rats, 30 and 60 min after injection. However, we noted hypophosphorylation of the astrocytic (GFAP and VIM) as well as neuronal IFs (NF-L, NF-M and NF-H) 30 min after injection, and this effect was reversed 60 min after injection. The phosphorylating system associated with IFs of neural cells of the hippocampus was not altered as compared with controls at both ages and in the two studied times. In the in vitro model, the response to NH4Cl was structure-dependent and dose-dependent at the concentrations of 0.5, 1 and 5 mM. Hippocampal slices of 10-day-old rats showed hypophosphorylation of GFAP VIM and NFL in response to incubation with 5 mM NH4Cl, and unaltered homeostasis of the phosphorylating system directed to the cytoskeleton in the neural cells of the cerebral cortex. On the other hand, slices of cerebral cortex of 21-day-old rats showed hypophosphorylation of astrocytic IFs (GFAP and VIM) without altering the phosphorylating system directed to hippocampal IFs. The hypophosphorylation in response to cellular signals is often associated with activation of protein phosphatases. Therefore, in an attempt to study the signaling pathways we seek identify phosphatases involved in the effect of NH4Cl, using cerebral cortex slices. The protein phosphatases 1 (PP1) and 2B (PP2B) were activated in response to 5 mM NH4Cl 30 min after injection and this event was associated with in intra and extracellular Ca2+ levels via activation of glutamate N-methyl-D-aspartate (NMDA) receptors. Taken together, our data show that the neurotoxicity of ammonia is directed to the phosphorylating imbalance of both neuronal as astrocytic IFs through disruption of the homeostasis of the NMDA-mediated signaling mechanisms of cortical astrocytes of 21-day-old rats. These changes may be part of the neurological damage associated with acute hyperammonemia, in the developing brain, as mental retardation and cerebral palsy. We believe that these results are relevant for understanding the molecular basis involved in the toxicity of ammonia in the CNS.
18

Efeitos da homocisteína sobre parâmetros bioquímicos e estruturais do citoesqueleto de células neurais de ratos

Loureiro, Samanta Oliveira January 2009 (has links)
A homocistinúria (HHCY) é uma desordem metabólica causada algum tipo de deficiência no metabolismo da metionina, folato ou vitamina B12, resultando no acúmulo tecidual de homocisteína (Hcy) e de metionina. Os pacientes afetados por essa doença apresentam principalmente retardo mental, isquemia cerebral, convulsões e aterosclerose. Vários mecanismos têm sido propostos para explicar a relação entre HHCY e desordens no sistema nervoso, entre eles podemos destacar mecanismos glutamatérgicos, mobilização de Ca+2 e envolvimento de espécies reativas de oxigênio (ROS). Considerando que o citoesqueleto é um importante alvo para a sinalização celular em inúmeras doenças neurodegenerativas, nosso estudo investigou os possíveis efeitos tóxicos da Hcy sobre alguns parâmetros bioquímicos do citoesqueleto neural. Ratos submetidos a um tratamento crônico com Hcy apresentam uma marcada seletividade na alteração da expressão gênica das subunidades dos filamentos intermediários (FIs) estudados, tanto no extrato tecidual total como na fração citoesquelética de hipocampo e córtex cerebral, refletindo uma maior susceptibilidade do hipocampo nessas alterações. Estudos in vitro mostraram que a Hcy 100 e 500 μM, relacionadas a homocistinuria (HHCY) moderada e grave respectivamente, são capazes de causar hiper (Hcy 100 μM) ou hipofosforilação (Hcy 500 μM) das subunidades dos neurofilamentos e da proteina glial fibrilar ácida, FIs do citoesqueleto de neurônios e astrócitos respectivamente. Estes efeitos são dependentes da idade dos ratos e da estrutura cerebral, manifestando-se em hipocampo de ratos de 17 dias de idade. Resultados em fatias de hipocampo mostraram que a ação das duas concentrações de Hcy é mediada por mecanismos dependentes do influxo de Ca2+ por receptores NMDA e por canais de Ca2+ dependentes de voltagem, assim como da liberação de Ca2+ dos estoques intracelulares, enfatizando a alta suscetibilidade e complexidade das vias de sinalização ativadas por Ca2+ no hipocampo. Além disso, estudos morfológicos em astrócitos e células de glioma C6 mostraram que células glias em cultura também são alvo para as ações da Hcy, reorganizando seu citoesqueleto e alterando o sistema fosforilante associado ao mesmo através de mecanismos envolvendo excitotoxicidade, estresse oxidativo e mecanismos glutamatérgicos. Estes estudos mostram que a integridade estrutural do citoesqueleto é da maior importância para o funcionamento neuronal e qualquer distúrbio na dinâmica desta estrutura poderia ativar processos de reparação plástica manifestados como alterações na expressão, localização e metabolismo das proteínas do citoesqueleto. No entanto, os mecanismos através dos quais o desequilíbrio do citoesqueleto é capaz de induzir a disfunção neural ainda não foram esclarecidos e a exata dimensão destas alterações precisa ser determinada. / The homocystinuria (HHCY) is a metabolic disorder caused by deficiency in the metabolism of methionine, vitamin B12 or folate, which leads to tissue accumulation of homocysteine (Hcy) and methionine. Homocystinuric patients usually present mental retardation, cerebral ischemia, seizures, and atherosclerosis. Several mechanisms have been proposed to explain the relationship between HHCY and nervous system disorders, among them we can highlight glutamatergic mechanisms, mobilization of Ca+2 and involvement of reactive oxygen species (ROS). Considering that the cytoskeleton is an important target for cellular signaling in many neurodegenerative diseases, our study investigated the possible toxic effects of Hcy on some biochemical parameters of the neural cytoskeleton. Initially, we demonstrated that rats subjected to chronic model of Hcy showed a marked selectivity in alterations of gene expression, total immunocontent and cytoskeletal fraction of subunits of intermediate filaments (IFs) studied, reflecting a greater susceptibility of the hippocampus in these changes. In vitro studies showed that 100 and 500 μM Hcy associated with moderate and severe HHCY respectively, was able to induced hyperphosphorylation (Hcy 100 μM) and hypophosphorylation (Hcy 500 μM) of neurofilaments subunits and glial fibrillary acidic protein, IFs of neuronal and astrocytic cytoskeleton. These effects are dependentents of age and cerebral structure of rats: hippocampus of 17 day old rats are sensible. Results in slices of hippocampus showed that the action of Hcy is mediated by mechanisms dependent of influx of Ca2+ by NMDA receptors and Ca2+ channels voltage-dependent and release of Ca2+ from intracellular stores, emphasizing the high susceptibility and complexity of signaling pathways activated by Ca2+ in the hippocampus. In addition, glial cells were also target for the actions of Hcy, reorganizing their cytoskeleton and changing the phosphorylation system associated to cytoskeleton through mechanisms involving excitotoxicity, oxidative stress and glutamatergic mechanisms. The cytoskeleton may represent a target to HHCY and your dysfunction can have an important role in neurodegeneration characteristic of the disease. However, the mechanisms by which disruption of the cytoskeleton proteins is able to induce neural dysfunction have not yet been clarified and the exact extent of these changes need to be determined.
19

Parâmetros bioquímicos de alterações do citoesqueleto no modelo experimental da doença do Xarope do Bordo

Funchal, Cláudia da Silva January 2005 (has links)
A Doença do Xarope do Bordo (DXB) é um erro inato do metabolismo causado pela deficiência na atividade do complexo desidrogenase dos cetoácidos de cadeia ramificada, levando ao acúmulo de concentrações milimolares dos seguintes α-cetoácidos de cadeia ramificada (CACR): ácidos α-cetoisocapróico (CIC), α-ceto-β-metilvalérico (CMV), α-cetoisovalérico (CIV) e dos seus aminoácidos precursores, leucina, isoleucina e valina em tecidos de pacientes afetados. Essa doença é caracterizada por severos sintomas neurológicos que incluem edema e atrofia cerebral, entretanto, os mecanismos envolvidos na neuropatologia da DXB ainda não são bem estabelecidos. Neste trabalho utilizamos um modelo experimental de DXB com o objetivo de verificar os efeitos dos CACR que se acumulam nessa desordem neurodegenerativa sobre o citoesqueleto de células neurais de ratos. Nesse modelo fatias de córtex cerebral de ratos de diferentes idades, ou culturas de células neurais foram incubados com concentrações variando de 0,1 a 10 mM de cada metabólito. Inicialmente demonstramos que o CIC, CMV e CIV inibiram a captação de glutamato em fatias de córtex cerebral de ratos durante o desenvolvimento. O CIC inibiu a captação de glutamato em ratos de 9, 21 e 60 dias de idade, enquanto o CMV e o CIV inibiram a captação de glutamato em animais de 21 e 60 dias. Observamos que o CIC alterou a fosforilação de proteínas do citoesqueleto de um modo dependente do desenvolvimento através de receptores glutamatérgicos ionotrópicos em fatias de córtex cerebral de ratos. O metabólito causou diminuição da fosforilação dos filamentos intermediários (FI) em ratos de 9 dias de idade e aumento dessa fosforilação em animais de 21 dias de vida. Também demonstramos que em animais de 9 dias de idade o efeito do CIC foi mediado pelas proteínas fosfatases PP2A e principalmente pela PP2B, uma proteína fosfatase dependente de cálcio, enquanto que em animais de 21 dias de idade o efeito deste metabólito foi mediado pela proteína quinase dependente de AMP cíclico (PKA) e pela proteína quinase dependente de cálcio e calmodulina (PKCaMII). Além disso, verificamos que o CIC promoveu um aumento nos níveis intracelulares dos segundos mensageiros AMPc e Ca2+. O aumento do Ca2+ intracelular provocado pelo CIC foi demonstrado pelo uso de bloqueadores específicos de canais de cálcio dependentes de voltagem tipo L, por exemplo, nifedipina, canais de cálcio dependentes de ligantes, por exemplo, NMDA e de quelantes de cálcio intracelular, por exemplo, BAPTA-AM. Por outro lado, o CMV aumentou a fosforilação de FI somente em ratos de 12 dias de idade, sendo esse efeito mediado por receptores GABAérgicos do tipo A e B, desencadeando a ativação das proteínas quinases PKA e PKCaMII. É importante salientar que o CIV não alterou a atividade do sistema fosforilante em nenhuma das idades estudadas. Além dos efeitos causados pelos CACR que se acumulam na DXB sobre a atividade do sistema fosforilante associado aos FI em fatias de córtex cerebral de ratos, demonstramos que esses metabólitos foram capazes de alterar a fosforilação da proteína glial fibrilar ácida (GFAP) na linhagem de glioma C6. Essa alteração de fosforilação causou uma reorganização do citoesqueleto de GFAP e um aumento no imunoconteúdo da GFAP na fração citoesquelética. Também verificamos que o CIC, o CMV e o CIV, em concentrações encontradas em pacientes portadores de DXB, levaram a uma reorganização dos filamentos de GFAP e do citoesqueleto de actina de astrócitos em cultura, causando uma importante alteração na morfologia destas células. As alterações do citoesqueleto levaram a morte celular progressiva quando os astrócitos foram expostos por várias horas aos metabólitos. Demonstramos também que os efeitos dos CACR sobre a morfologia dos astrócitos foram desencadeados por mecanismos de membrana que diminuíram a atividade da Rho GTPase. Esse mecanismo foi evidenciado utilizando-se ácido lisofosfatídico (LPA), um ativador específico da RhoA, o qual preveniu os efeitos causados pelos CACR em culturas de astrócitos. É importante salientar que as alterações morfológicas e a morte celular induzida pelos CACR em culturas de astrócitos foram totalmente evitadas com a suplementação de creatina às culturas. Também verificamos que a atividade da creatina quinase foi inibida pelos metabólitos, indicando que a homeostase energética provavelmente estaria envolvida nos efeitos causados pelos CACR. XI Sabe-se que as alterações do citoesqueleto estão relacionadas com inúmeras doenças neurodegenerativas. Portanto, é provável que as alterações causadas pelos CACR nos mecanismos de membrana que regulam níveis de segundos mensageiros intracelulares e cascatas de sinalização celular, na perda do equilíbrio fisiológico do sistema fosforilante associado ao citoesqueleto e conseqüentemente na sua reorganização, possam ter importantes conseqüências para a função neural. Com base nos presentes resultados demonstramos que os CACR que se acumulam na DXB levam à desorganização do citoesqueleto em um modelo experimental podendo ser uma contribuição importante para o estudo da patogênese do sistema nervoso central característica dos pacientes portadores de DXB.
20

Efeitos da hiperamonemia sobre a homeostase do citoesqueleto em células neurais de ratos jovens

Carvalho, Ronan Vivian January 2015 (has links)
Uma elevação da concentração de amônia no sangue é tóxica e pode levar a convulsões, coma e morte. A suscetibilidade do cérebro em desenvolvimento a alterações neurológicas é maior do que no adulto. O citoesqueleto e, em particular, os filamentos intermediários (FIs) são um alvo de neurotoxinas e metabólitos tóxicos. No SNC temos os FIs neuronais, representados pelos neurofilamentos de alto, médio e baixo peso molecular (NF-H, NF-M, NF-L), e os astrocitários, proteína glial fibrilar ácida e vimentina (GFAP e VIM), entre outros. A fosforilação é uma modificação pós-traducional bem descrita como um dos principais mecanismos de regulação da dinâmica dos FIs. No presente trabalho, estudamos os efeitos de concentrações tóxicas de amônia sobre o citoesqueleto, com ênfase na homeostase do sistema fosforilante direcionado para os FIs e alguns mecanismos moleculares envolvidos nesses efeitos. Para tanto, utilizamos dois modelos experimentais de hiperamonemia aguda em animais de 10 e 21 dias de idade: in vivo e in vitro. No modelo in vivo, os animais foram injetados intraperitonealmente com acetato de amônio (7 mmol/Kg) e o nível de fosforilação das proteínas do citoesqueleto foi analisado no córtex cerebral e no hipocampo. No modelo in vitro, fatias de córtex cerebral e hipocampo de ratos nas mesmas idades foram incubadas com diferentes concentrações de NH4Cl. Nos dois modelos experimentais utilizados as alterações no sistema fosforilante foram dependentes da idade e da estrutura cerebral. A injeção de acetato de amônio não alterou o nível de fosforilação dos FIs no córtex cerebral de ratos de 10 dias, 30 e 60 min após a injeção. No entanto, observamos hipofosforilação dos FIs astrocitários (GFAP e VIM) e neuronais (NF-L, NF-M e NF-H) 30 min após a injeção, sendo que esse efeito foi revertido 60 min após a injeção. O sistema fosforilante associado aos FIs das células neurais de hipocampo não foi alterado com relação aos controles nas duas idades e nos dois tempos estudados. No modelo in vitro a resposta ao NH4Cl foi estrutura-dependente e dose-dependente para as concentrações de 0,5, 1 e 5 mM. Fatias de hipocampo de ratos de 10 dias de idade apresentaram hipofosforilação de GFAP, VIM e NFL em resposta à incubação com 5 mM de NH4Cl, sem alteração na homeostase do citoesqueleto nas células neurais de córtex cerebral. Por outro lado, fatias de córtex cerebral de ratos de 21 dias de idade apresentaram hipofosforilação dos FIs astrocitários (GFAP e VIM) sem alteração no sistema fosforilante direcionado aos FIs de hipocampo. A hipofosforilação em resposta a sinais celulares está frequentemente associada à ativação de proteínas fosfatases. Portanto, em uma tentativa de estudar as vias de sinalização buscamos identificar as fosfatases envolvidas no efeito do NH4Cl, utilizando fatias de córtex cerebral. As proteínas fosfatases 1 (PP1) e 2B (PP2B) foram ativadas em resposta a 5 mM de NH4Cl aos 30 min e esse evento envolveu alterações nos níveis intra e extracelulares de Ca2+ via ativação do sistema glutamatérgico por receptores N-metil-D-aspartato (NMDA). O conjunto dos nossos dados evidenciam a neurotoxicidade da amônia por meio de um desequilíbrio no sistema fosforilante direcionado para os FIs tanto neuronais quanto astrocitários e de uma desregulação nos mecanismos de sinalização celular envolvidos na homeostase do citoesqueleto de astrócitos. Essas alterações podem ser parte integrante dos danos neurológicos associados à hiperamonemia aguda, principalmente no cérebro em desenvolvimento, como retardo mental e paralisia cerebral. Acreditamos que esses resultados são relevantes para a compreensão das bases moleculares envolvidas com a toxicidade da amônia no SNC. / High ammonia levels in the blood are toxic to brain and can lead to seizures, coma and death. The susceptibility of the developing brain to neurological abnormalities is greater than in adults. The cytoskeleton and, in particular, the intermediate filaments (IFs) are a target of neurotoxins and toxic metabolites. The intermediate dilaments (IFs) in the CNS are mainly represented by neurofilaments of high, medium and light molecular weight (NF-H, NF-M, NF-L) in neurons, glial fibrillary acidic protein and vimentin (GFAP and VIM), in astrocytes. Phosphorylation is a post-translational modification described as one of the major mechanisms regulating the dynamics of IFs. In the present work, we studied the effects of toxic concentrations of ammonia on the cytoskeleton, with emphasis in the homeostasis of the phosphorylating system directed to the IFs and we focused in some molecular mechanisms involved in these effects. For this, we use two experimental models of acute hyperammonemia in animals of 10 and 21 days of age: in vivo and in vitro models. In the in vivo model, animals were injected intraperitoneally with ammonium acetate (7 mmol/Kg) and the phosphorylation level of the cytoskeletal proteins was analyzed in the cerebral cortex and hippocampus.The injected acetate did not alter the phosphorylation level of IFs in the cerebral cortex of 10 day-old rats, 30 and 60 min after injection. However, we noted hypophosphorylation of the astrocytic (GFAP and VIM) as well as neuronal IFs (NF-L, NF-M and NF-H) 30 min after injection, and this effect was reversed 60 min after injection. The phosphorylating system associated with IFs of neural cells of the hippocampus was not altered as compared with controls at both ages and in the two studied times. In the in vitro model, the response to NH4Cl was structure-dependent and dose-dependent at the concentrations of 0.5, 1 and 5 mM. Hippocampal slices of 10-day-old rats showed hypophosphorylation of GFAP VIM and NFL in response to incubation with 5 mM NH4Cl, and unaltered homeostasis of the phosphorylating system directed to the cytoskeleton in the neural cells of the cerebral cortex. On the other hand, slices of cerebral cortex of 21-day-old rats showed hypophosphorylation of astrocytic IFs (GFAP and VIM) without altering the phosphorylating system directed to hippocampal IFs. The hypophosphorylation in response to cellular signals is often associated with activation of protein phosphatases. Therefore, in an attempt to study the signaling pathways we seek identify phosphatases involved in the effect of NH4Cl, using cerebral cortex slices. The protein phosphatases 1 (PP1) and 2B (PP2B) were activated in response to 5 mM NH4Cl 30 min after injection and this event was associated with in intra and extracellular Ca2+ levels via activation of glutamate N-methyl-D-aspartate (NMDA) receptors. Taken together, our data show that the neurotoxicity of ammonia is directed to the phosphorylating imbalance of both neuronal as astrocytic IFs through disruption of the homeostasis of the NMDA-mediated signaling mechanisms of cortical astrocytes of 21-day-old rats. These changes may be part of the neurological damage associated with acute hyperammonemia, in the developing brain, as mental retardation and cerebral palsy. We believe that these results are relevant for understanding the molecular basis involved in the toxicity of ammonia in the CNS.

Page generated in 0.0483 seconds