Spelling suggestions: "subject:"classification automatique."" "subject:"1classification automatique.""
51 |
Approches non supervisées pour la recommandation de lectures et la mise en relation automatique de contenus au sein d'une bibliothèque numérique / Unsupervised approaches to recommending reads and automatically linking content within a digital libraryBenkoussas, Chahinez 14 December 2016 (has links)
Cette thèse s’inscrit dans le domaine de la recherche d’information (RI) et la recommandation de lecture. Elle a pour objets :— La création de nouvelles approches de recherche de documents utilisant des techniques de combinaison de résultats, d’agrégation de données sociales et de reformulation de requêtes ;— La création d’une approche de recommandation utilisant des méthodes de RI et les graphes entre les documents. Deux collections de documents ont été utilisées. Une collection qui provient de l’évaluation CLEF (tâche Social Book Search - SBS) et la deuxième issue du domaine des sciences humaines et sociales (OpenEdition, principalement Revues.org). La modélisation des documents de chaque collection repose sur deux types de relations :— Dans la première collection (CLEF SBS), les documents sont reliés avec des similarités calculées par Amazon qui se basent sur plusieurs facteurs (achats des utilisateurs, commentaires, votes, produits achetés ensemble, etc.) ;— Dans la deuxième collection (OpenEdition), les documents sont reliés avec des relations de citations (à partir des références bibliographiques).Le manuscrit est structuré en deux parties. La première partie «état de l’art» regroupe une introduction générale, un état de l’art sur la RI et sur les systèmes de recommandation. La deuxième partie «contributions» regroupe un chapitre sur la détection de comptes rendus de lecture au sein de la collection OpenEdition (Revues.org), un chapitre sur les méthodes de RI utilisées sur des requêtes complexes et un dernier chapitre qui traite l’approche de recommandation proposée qui se base sur les graphes. / This thesis deals with the field of information retrieval and the recommendation of reading. It has for objects:— The creation of new approach of document retrieval and recommendation using techniques of combination of results, aggregation of social data and reformulation of queries;— The creation of an approach of recommendation using methods of information retrieval and graph theories.Two collections of documents were used. First one is a collection which is provided by CLEF (Social Book Search - SBS) and the second from the platforms of electronic sources in Humanities and Social Sciences OpenEdition.org (Revues.org). The modelling of the documents of every collection is based on two types of relations:— For the first collection (SBS), documents are connected with similarity calculated by Amazon which is based on several factors (purchases of the users, the comments, the votes, products bought together, etc.);— For the second collection (OpenEdition), documents are connected with relations of citations, extracted from bibliographical references.We show that the proposed approaches bring in most of the cases gain in the performances of research and recommendation. The manuscript is structured in two parts. The first part "state of the art" includes a general introduction, a state of the art of informationretrieval and recommender systems. The second part "contributions" includes a chapter on the detection of reviews of books in Revues.org; a chapter on the methods of IR used on complex queries written in natural language and last chapter which handles the proposed approach of recommendation which is based on graph.
|
52 |
Représentations parcimonieuses et apprentissage de dictionnaires pour la compression et la classification d'images satellites / Sparse representations and dictionary learning for the compression and the classification of satellite imagesAghaei Mazaheri, Jérémy 20 July 2015 (has links)
Cette thèse propose d'explorer des méthodes de représentations parcimonieuses et d'apprentissage de dictionnaires pour compresser et classifier des images satellites. Les représentations parcimonieuses consistent à approximer un signal par une combinaison linéaire de quelques colonnes, dites atomes, d'un dictionnaire, et ainsi à le représenter par seulement quelques coefficients non nuls contenus dans un vecteur parcimonieux. Afin d'améliorer la qualité des représentations et d'en augmenter la parcimonie, il est intéressant d'apprendre le dictionnaire. La première partie de la thèse présente un état de l'art consacré aux représentations parcimonieuses et aux méthodes d'apprentissage de dictionnaires. Diverses applications de ces méthodes y sont détaillées. Des standards de compression d'images sont également présentés. La deuxième partie traite de l'apprentissage de dictionnaires structurés sur plusieurs niveaux, d'une structure en arbre à une structure adaptative, et de leur application au cas de la compression d'images satellites en les intégrant dans un schéma de codage adapté. Enfin, la troisième partie est consacrée à l'utilisation des dictionnaires structurés appris pour la classification d'images satellites. Une méthode pour estimer la Fonction de Transfert de Modulation (FTM) de l'instrument dont provient une image est étudiée. Puis un algorithme de classification supervisée, utilisant des dictionnaires structurés rendus discriminants entre les classes à l'apprentissage, est présenté dans le cadre de la reconnaissance de scènes au sein d'une image. / This thesis explores sparse representation and dictionary learning methods to compress and classify satellite images. Sparse representations consist in approximating a signal by a linear combination of a few columns, known as atoms, from a dictionary, and thus representing it by only a few non-zero coefficients contained in a sparse vector. In order to improve the quality of the representations and to increase their sparsity, it is interesting to learn the dictionary. The first part of the thesis presents a state of the art about sparse representations and dictionary learning methods. Several applications of these methods are explored. Some image compression standards are also presented. The second part deals with the learning of dictionaries structured in several levels, from a tree structure to an adaptive structure, and their application to the compression of satellite images, by integrating them in an adapted coding scheme. Finally, the third part is about the use of learned structured dictionaries for the classification of satellite images. A method to estimate the Modulation Transfer Function (MTF) of the instrument used to capture an image is studied. A supervised classification algorithm, using structured dictionaries made discriminant between classes during the learning, is then presented in the scope of scene recognition in a picture.
|
53 |
Data mining and volcanic eruption forcasting / Fouille de données et prédiction des éruptions volcaniquesBoué, Anaïs 30 April 2015 (has links)
L'intégration de méthodes de prédiction des éruptions volcaniques dans une stratégie de surveillance globale peut être un outil d'aide à la décision précieux pour la gestion des crises, si les limites des méthodes utilisées sont connues. La plupart des tentatives de prédictions déterministes des éruptions volcaniques et des glissements de terrain sont effectuées avec la méthode FFM (material Failure Forecast Method). Cette méthode consiste à ajuster une loi de puissance empirique aux précurseurs de sismicité ou de déformation des éruptions. Jusqu'à présent, la plupart des travaux de recherche se sont attachés à faire des prédictions a posteriori, basées sur la séquence complète de précurseurs, mais le potentiel de la méthode FFM pour la prédiction en temps réel, en n'utilisant qu'une partie de la séquence, n'a encore jamais été évaluée. De plus, il est difficile de conclure quant-à la capacité de la méthode pour prédire les éruptions volcaniques car le nombre d'exemples publiés est très limité et aucune évaluation statistique de son potentiel n'a été faite jusqu'à présent. Par conséquent, il est important de procéder à une application systématique de la FFM sur un nombre important d'éruptions, dans des contextes volcaniques variés. Cette thèse présente une approche rigoureuse de la FFM, appliquée aux précurseurs sismiques des éruptions volcaniques, développée pour une application en temps réel. J'utilise une approche Bayésienne basée sur la théorie de la FFM et sur un outil de classification automatique des signaux ayant des mécanismes à la source différents. Les paramètres d'entrée de la méthode sont les densités de probabilité des données, déduites de la performance de l'outil de classification. Le paramètre de sortie donne la distribution de probabilité du temps de prédiction à chaque temps d'observation précédant l'éruption. Je détermine deux critères pour évaluer la fiabilité d'une prédiction en temps réel : l'étalement de la densité de probabilité de la prédiction et sa stabilité dans le temps. La méthode développée ici surpasse les applications classiques de la FFM, que ce soit pour des applications en a posteriori ou en temps réel, en particulier parce que l'information concernant l'incertitude sur les donnée est précisément prise en compte. La classification automatique des signaux sismo-volcaniques permet une application systématique de cette méthode de prédiction sur des dizaines d'années de données pour des contextes volcaniques andésitiques, au volcan Colima (Mexique) et au volcan Mérapi (Indonésie), et pour un contexte basaltique au Piton de la Fournaise (La Réunion, France). Je quantifie le nombre d'éruptions qui ne sont pas précédées de précurseurs, ainsi que les crises sismiques qui ne sont pas associées à des épisodes volcaniques. Au total, 64 séquences de précurseurs sont étudiées et utilisées pour tester la méthode de prédiction des éruptions développée dans cette thèse. Ce travail permet de déterminer dans quelles conditions la FFM peut être appliquée avec succès et de quantifier le taux de réussite de la méthode en temps réel et en a posteriori. Seulement 62% des séquences précurseurs étudiées dans cette thèse sont utilisable dans le cadre de la FFM et la moitié du nombre total d'éruptions sont prédites a posteriori. En temps réel, seulement 36% du nombre total d'éruptions auraient pu être prédites. Cependant, ces prédictions sont précises dans 83% des cas pour lesquels les critères de fiabilités sont satisfaites. Par conséquent, il apparaît que l'on peut avoir confiance en la méthode de prédiction en temps réel développée dans cette thèse mais que la FFM semble être applicable en temps réel uniquement si elle est intégrée dans une statégie de prédiction plus globale. Cependant, elle pourrait être potentiellement utile combinée avec d'autres méthodes de prédictions et supervisée par un observeur. Ces résultats reflètent le manque de connaissances actuelles concernant les mécanismes pré-éruptifs. / Eruption forecasting methods are valuable tools for supporting decision making during volcanic crises if they are integrated in a global monitoring strategy and if their potentiality and limitations are known. Many attempts for deterministic forecasting of volcanic eruptions and landslides have been performed using the material Failure Forecast Method (FFM). This method consists in adjusting an empirical power law on precursory patterns of seismicity or deformation. Until now, most of the studies have presented hindsight forecasts, based on complete time series of precursors, and do not evaluate the method's potential for carrying out real-time forecasting with partial precursory sequences. Moreover, the limited number of published examples and the absence of systematic application of the FFM makes it difficult to conclude as to the ability of the method to forecast volcanic eruptions. Thus it appears important to gain experience by carrying out systematic forecasting attempts in various eruptive contexts. In this thesis, I present a rigorous approach of the FFM designed for real-time applications on volcano-seismic precursors. I use a Bayesian approach based on the FFM theory and an automatic classification of the seismic events that do not have the same source mechanisms. The probability distributions of the data deduced from the performance of the classification are used as input. As output, the method provides the probability of the forecast time at each observation time before the eruption. The spread of the posterior probability density function of the prediction time and its stability with respect to the observation time are used as criteria to evaluate the reliability of the forecast. I show that the method developed here outperforms the classical application of the FFM both for hindsight and real-time attempts because it accurately takes the uncertainty of the data information into account. The automatic classification of volcano-seismic signals allows for a systematic application of this forecasting method to decades of seismic data from andesitic volcanoes including Volcan de Colima (Mexico) and Merapi volcano (Indonesia), and from the basaltic volcano of Piton de la Fournaise (Reunion Island, France). The number of eruptions that are not preceded by precursors is quantified, as well as the number of seismic crises that are not followed by eruptions. Then, I use 64 precursory sequences and apply the forecasting method developed in this thesis. I thus determine in which conditions the FFM can be successfully applied and I quantify the success rate of the method in real-time and in hindsight. Only 62% of the precursory sequences analysed in this thesis were suitable for the application of FFM and half of the total number of eruptions are successfully forecast in hindsight. In real-time, the method allows for the successful predictions of only 36% of the total of all eruptions considered. Nevertheless, real-time predictions are successful for 83% of the cases that fulfil the reliability criteria. Therefore, we can have a good confidence on the method when the reliability criteria are met, but the deterministic real-time forecasting tool developed in this thesis is not sufficient in itself. However, it could potentially be informative combined with other forecasting methods and supervised by an observer. These results reflect the lack of knowledge concerning the pre-eruptive mechanisms.
|
54 |
Automatic target classification based on radar backscattered ultra wide band signals / Classification automatique des cibles en utilisant les signaux rétrodiffusés par un radar ultra large bandeKhodjet-Kesba, Mahmoud 06 November 2014 (has links)
L’objectif de cette thèse est la classification automatique des cibles (ATC) en utilisant les signaux rétrodiffusés par un radar ultra large bande (UWB). La classification des cibles est réalisée en comparant les signatures des cibles et les signatures stockées dans une base de données. Premièrement, une étude sur la théorie de diffusion nous a permis de comprendre le sens physique des paramètres extraits et de les exprimer mathématiquement. Deuxièmement, des méthodes d’extraction de paramètres sont appliquées afin de déterminer les signatures des cibles. Un bon choix des paramètres est important afin de distinguer les différentes cibles. Différentes méthodes d’extraction de paramètres sont comparées notamment : méthode de Prony, Racine-classification des signaux multiples (Root-MUSIC), l’estimation des paramètres des signaux par des techniques d’invariances rotationnels (ESPRIT), et la méthode Matrix Pencil (MPM). Troisièmement, une méthode efficace de classification supervisée est nécessaire afin de classer les cibles inconnues par l’utilisation de leurs signatures extraites. Différentes méthodes de classification sont comparées notamment : Classification par la distance de Mahalanobis (MDC), Naïve Bayes (NB), k-plus proches voisins (k-NN), Machines à Vecteurs de Support (SVM). Une bonne technique de classification doit avoir une bonne précision en présence de signaux bruités et quelques soit l’angle d’émission. Les différents algorithmes ont été validés en utilisant les simulations des données rétrodiffusées par des objets canoniques et des cibles de géométries complexes modélisées par des fils minces et parfaitement conducteurs. Une méthode de classification automatique de cibles basée sur l’utilisation de la méthode Matrix Pencil dans le domaine fréquentiel (MPMFD) pour l’extraction des paramètres et la classification par la distance de Mahalanobis est proposée. Les résultats de simulation montrent que les paramètres extraits par MPMFD présentent une solution plausible pour la classification automatique des cibles. En outre, nous avons prouvé que la méthode proposée a une bonne tolérance aux bruits lors de la classification des cibles. Enfin, les différents algorithmes sont validés sur des données expérimentales et cibles réelles. / The objective of this thesis is the Automatic Target Classification (ATC) based on radar backscattered Ultra WideBand (UWB) signals. The classification of the targets is realized by making comparison between the deduced target properties and the different target features which are already recorded in a database. First, the study of scattering theory allows us to understand the physical meaning of the extracted features and describe them mathematically. Second, feature extraction methods are applied in order to extract signatures of the targets. A good choice of features is important to distinguish different targets. Different methods of feature extraction are compared including wavelet transform and high resolution techniques such as: Prony’s method, Root-Multiple SIgnal Classification (Root-MUSIC), Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) and Matrix Pencil Method (MPM). Third, an efficient method of supervised classification is necessary to classify unknown targets by using the extracted features. Different methods of classification are compared: Mahalanobis Distance Classifier (MDC), Naïve Bayes (NB), k-Nearest Neighbors (k-NN) and Support Vector Machine (SVM). A useful classifier design technique should have a high rate of accuracy in the presence of noisy data coming from different aspect angles. The different algorithms are demonstrated using simulated backscattered data from canonical objects and complex target geometries modeled by perfectly conducting thin wires. A method of ATC based on the use of Matrix Pencil Method in Frequency Domain (MPMFD) for feature extraction and MDC for classification is proposed. Simulation results illustrate that features extracted with MPMFD present a plausible solution to automatic target classification. In addition, we prove that the proposed method has better ability to tolerate noise effects in radar target classification. Finally, the different algorithms are validated on experimental data and real targets.
|
55 |
Modélisation et classification dynamique de données temporelles non stationnaires / Dynamic classification and modeling of non-stationary temporal dataEl Assaad, Hani 11 December 2014 (has links)
Cette thèse aborde la problématique de la classification non supervisée de données lorsque les caractéristiques des classes sont susceptibles d'évoluer au cours du temps. On parlera également, dans ce cas, de classification dynamique de données temporelles non stationnaires. Le cadre applicatif des travaux concerne le diagnostic par reconnaissance des formes de systèmes complexes dynamiques dont les classes de fonctionnement peuvent, suite à des phénomènes d'usures, des déréglages progressifs ou des contextes d'exploitation variables, évoluer au cours du temps. Un modèle probabiliste dynamique, fondé à la fois sur les mélanges de lois et sur les modèles dynamiques à espace d'état, a ainsi été proposé. Compte tenu de la structure complexe de ce modèle, une variante variationnelle de l'algorithme EM a été proposée pour l'apprentissage de ses paramètres. Dans la perspective du traitement rapide de flux de données, une version séquentielle de cet algorithme a également été développée, ainsi qu'une stratégie de choix dynamique du nombre de classes. Une série d'expérimentations menées sur des données simulées et des données réelles acquises sur le système d'aiguillage des trains a permis d'évaluer le potentiel des approches proposées / Nowadays, diagnosis and monitoring for predictive maintenance of railway components are important key subjects for both operators and manufacturers. They seek to anticipate upcoming maintenance actions, reduce maintenance costs and increase the availability of rail network. In order to maintain the components at a satisfactory level of operation, the implementation of reliable diagnostic strategy is required. In this thesis, we are interested in a main component of railway infrastructure, the railway switch; an important safety device whose failure could heavily impact the availability of the transportation system. The diagnosis of this system is therefore essential and can be done by exploiting sequential measurements acquired successively while the state of the system is evolving over time. These measurements consist of power consumption curves that are acquired during several switch operations. The shape of these curves is indicative of the operating state of the system. The aim is to track the temporal dynamic evolution of railway component state under different operating contexts by analyzing the specific data in order to detect and diagnose problems that may lead to functioning failure. This thesis tackles the problem of temporal data clustering within a broader context of developing innovative tools and decision-aid methods. We propose a new dynamic probabilistic approach within a temporal data clustering framework. This approach is based on both Gaussian mixture models and state-space models. The main challenge facing this work is the estimation of model parameters associated with this approach because of its complex structure. In order to meet this challenge, a variational approach has been developed. The results obtained on both synthetic and real data highlight the advantage of the proposed algorithms compared to other state of the art methods in terms of clustering and estimation accuracy
|
56 |
Classification automatique de commentaires synchrones dans les vidéos de danmakuPeng, Youyang 01 1900 (has links)
Le danmaku désigne les commentaires synchronisés qui s’affichent et défilent directement en surimpression sur des vidéos au fil du visionnement. Bien que les danmakus proposent à l’audience une manière originale de partager leur sentiments, connaissances, compréhensions et prédictions sur l’histoire d’une série, etc., et d’interagir entre eux, la façon dont les commentaires s’affichent peut nuire à l’expérience de visionnement, lorsqu’une densité excessive de commentaires dissimule complètement les images de la vidéo ou distrait l’audience. Actuellement, les sites de vidéo chinois emploient principalement des méthodes par mots-clés s’appuyant sur des expressions régulières pour éliminer les commentaires non désirés. Ces approches risquent fortement de surgénéraliser en supprimant involontairement des commentaires intéressants contenant certains mots-clés ou, au contraire, de sous-généraliser en étant incapables de détecter ces mots lorsqu’ils sont camouflés sous forme d’homophones. Par ailleurs, les recherches existantes sur la classification automatique du danmaku se consacrent principalement à la reconnaissance de la polarité des sentiments exprimés dans les commentaires. Ainsi, nous avons cherché à regrouper les commentaires par classes fonctionnelles, à évaluer la robustesse d’une telle classification et la possibilité de l’automatiser dans la perspective de développer de meilleurs systèmes de filtrage des commentaires. Nous avons proposé une nouvelle taxonomie pour catégoriser les commentaires en nous appuyant sur la théorie des actes de parole et la théorie des gratifications dans l’usage des médias, que nous avons utilisées pour produire un corpus annoté. Un fragment de ce corpus a été co-annoté pour estimer un accord inter-annotateur sur la classification manuelle. Enfin, nous avons réalisé plusieurs expériences de classification automatique. Celles-ci comportent trois étapes : 1) des expériences de classification binaire où l’on examine si la machine est capable de faire la distinction entre la classe majoritaire et les classes minoritaires, 2) des expériences de classification multiclasses à granularité grosse cherchant à classifier les commentaires selon les catégories principales de notre taxonomie, et 3) des expériences de classification à granularité fine sur certaines sous-catégories. Nous avons expérimenté avec des méthodes d’apprentissage automatique supervisé et semi-supervisé avec différents traits. / Danmaku denotes synchronized comments which are displayed and scroll directly on top of videos as they unfold. Although danmaku offers an innovative way to share their sentiments, knowledge, predictions on the plot of a series, etc., as well as to interact with each other, the way comments display can have a negative impact on the watching experience, when the number of comments displayed in a given timespan is so high that they completely hide the pictures, or distract audience.
Currently, Chinese video websites mainly ressort to keyword approaches based on regular expressions to filter undesired comments. These approaches are at high risk to overgeneralize, thus deleting interesting comments coincidentally containing some keywords, or, to the contrary, undergeneralize due to their incapacity to detect occurrences of these keywords disguised as homophones. On another note, existing research focus essentially on recognizing the polarity of sentiments expressed within comments. Hence, we have sought to regroup comments into functional classes, evaluate the robustness of such a classification and the feasibility of its automation, under an objective of developping better comments filtering systems. Building on the theory of speech acts and the theory of gratification in media usage, we have proposed a new taxonomy of danmaku comments, and applied it to produce an annotated corpus. A fragment of the corpus has been co-annotated to estimate an interannotator agreement for human classification. Finally, we performed several automatic classification experiments. These involved three steps: 1) binary classification experiments evaluating whether the machine can distinguish the most frequent class from all others, 2) coarse-grained multi-class classification experiments aiming at classifying comments within the main categories of our taxonomy, and 3) fine-grained multi-class classification experiments on specific subcategories. We experimented both with supervised and semi-supervised learning algorithms with diffrent features.
|
57 |
Plus loin avec la mission spatiale Gaia grâce à l'analyse des objets étendusGarcez de Oliveira Krone Martins, Alberto 18 March 2011 (has links)
Ce travail a comme objectif principal de vérifier s’il est possible de faire de la science avec les observations d’objets étendus qui seront réalisées par la mission spatiale Gaia. Cette mission, l’un des plus ambitieux projets de l’Astronomie moderne,observera plus d’un milliard d’objets dans tout le ciel avec des précisions inédites, fournissant des données astrométriques, photométriques et spectroscopiques. Naturellement, en fonction de sa priorité astrométrique, Gaia a été optimisé pour l’étude d’objets ponctuels. Néanmoins, diverses sources associées à des émissions étendues seront observées. Ces émissions peuvent avoir une origine intrinsèque, telles que les galaxies, ou extrinsèque, telles que les projections d’objets distincts sur la même ligne de visée, et présenteront probablement de solutions astrométriques moins bonnes.Pour étudier ces émissions, leurs images bidimensionnelles doivent être analysées.Néanmoins, comme Gaia ne produit pas de telles données, nous avons commencé ce travail en vérifiant si à partir de ses observations unidimensionnelles il serait possible de reconstruire des images 2D d’objets dans tout le ciel.Nous avons ainsi estimé la quantité de cas sujets à la présence d’émissions étendues extrinsèques, et nous avons présenté une méthode que nous avons développée pour analyser leurs images reconstruites. Nous avons montré que l’utilisation de cette méthode permettra d’étendre le catalogue final de façon fiable à des millions de sources ponctuelles dont beaucoup dépasseront la magnitude limite de l’instrument.D’un autre coté, dans le cas d’émissions intrinsèques, nous avons premièrement obtenu une estimation supérieure du nombre de cas que Gaia pourra observer. Nous avons alors vérifié qu’après les reconstructions d’images, les codes que nous avons développés permettront de classifier morphologiquement des millions de galaxies dans les types précoce/tardif et elliptique/spirale/irrégulière. Nous avons de plus présenté une méthode que nous avons développée pour réaliser la décomposition bulbe/disque directement à partir des observations unidimensionnelles de Gaia de façon complètement automatique.Finalement nous avons conclu qu’il est possible d’utiliser beaucoup de ces données qui pourraient être ignorées pour faire de la science. Et que le fait de les exploiter permettra aussi bien la détection de millions d’objets qui dépassent la limite de magnitude de Gaia, que de mener des études sur la morphologie de millions de galaxies dont les structures ne peuvent être révélées qu’à partir de l’espace ou au moyen d’optique adaptative, augmentant un peu plus les horizons de cette mission déjà immense. / The main objective of this work is to determine whether it is possible to do science from the observations of extended objects that will be performed by the Gaia space mission. One of the most ambitious projects of modern Astronomy, this mission will observe more than one billion objects through out the sky, thus providing astrometric, photometric and spectroscopic data with unprecedented precision. Naturally, Gaia has been optimized for the study of point-like sources due to its astrometrical priority. Nevertheless, many sources associated with extended emission will be observed. The origins of these extended sources can be either intrinsic, such as galaxies, or extrinsic, such as projections of objects in the same line of sight. In both cases, these sources will have less than optimal astrometric solutions.In order to study those emissions, their two-dimensional images will be analyzed. Nonetheless, since Gaia will not acquire such images, we begin this work by checking whether it will be possible to reconstruct images anywhere in the sky from the satellite’s one-dimensional observations.Consequently, we, on the one hand, estimate the number of cases which will be subjected to the extrinsic extended emissions, present a method which we developed to analyze the reconstructed images by segregating the different sources and show that the adoption of this method will allow extending the catalogue reliably by millions of point sources, many of which are beyond the limiting magnitude of the instrument. On the other hand, regarding intrinsic extended emissions, we first obtain an upper limit estimate for the number of cases which Gaia will be able to observe ; then,we verify that the combination of image reconstructions and the use of the codes introduced here in will allow performing the morphological classification of millions of galaxies in early/late types and elliptical/spiral/irregular classes. Afterward,we present a method which we developed to decompose those galaxies into their bulge/disk components directly from the one-dimensional Gaia data in a completely automatic way. Finally, we conclude that it is possible to harness the data of many of the observations that might other wise be ignored to do science. Saving these data will allow the detection of millions of objects beyond Gaia’s limiting magnitude and the study of the morphology of millions of galaxies whose structures can only be probed from space or through the adoption of adaptive optics, thus somewhat expanding the horizons of this already comprehensive mission.
|
58 |
Apprentissage neuronal de caractéristiques spatio-temporelles pour la classification automatique de séquences vidéo / Neural learning of spatio-temporal features for automatic video sequence classificationBaccouche, Moez 17 July 2013 (has links)
Cette thèse s'intéresse à la problématique de la classification automatique des séquences vidéo. L'idée est de se démarquer de la méthodologie dominante qui se base sur l'utilisation de caractéristiques conçues manuellement, et de proposer des modèles qui soient les plus génériques possibles et indépendants du domaine. Ceci est fait en automatisant la phase d'extraction des caractéristiques, qui sont dans notre cas générées par apprentissage à partir d'exemples, sans aucune connaissance a priori. Nous nous appuyons pour ce faire sur des travaux existants sur les modèles neuronaux pour la reconnaissance d'objets dans les images fixes, et nous étudions leur extension au cas de la vidéo. Plus concrètement, nous proposons deux modèles d'apprentissage des caractéristiques spatio-temporelles pour la classification vidéo : (i) Un modèle d'apprentissage supervisé profond, qui peut être vu comme une extension des modèles ConvNets au cas de la vidéo, et (ii) Un modèle d'apprentissage non supervisé, qui se base sur un schéma d'auto-encodage, et sur une représentation parcimonieuse sur-complète des données. Outre les originalités liées à chacune de ces deux approches, une contribution supplémentaire de cette thèse est une étude comparative entre plusieurs modèles de classification de séquences parmi les plus populaires de l'état de l'art. Cette étude a été réalisée en se basant sur des caractéristiques manuelles adaptées à la problématique de la reconnaissance d'actions dans les vidéos de football. Ceci a permis d'identifier le modèle de classification le plus performant (un réseau de neurone récurrent bidirectionnel à longue mémoire à court-terme -BLSTM-), et de justifier son utilisation pour le reste des expérimentations. Enfin, afin de valider la généricité des deux modèles proposés, ceux-ci ont été évalués sur deux problématiques différentes, à savoir la reconnaissance d'actions humaines (sur la base KTH), et la reconnaissance d'expressions faciales (sur la base GEMEP-FERA). L'étude des résultats a permis de valider les approches, et de montrer qu'elles obtiennent des performances parmi les meilleures de l'état de l'art (avec 95,83% de bonne reconnaissance pour la base KTH, et 87,57% pour la base GEMEP-FERA). / This thesis focuses on the issue of automatic classification of video sequences. We aim, through this work, at standing out from the dominant methodology, which relies on so-called hand-crafted features, by proposing generic and problem-independent models. This can be done by automating the feature extraction process, which is performed in our case through a learning scheme from training examples, without any prior knowledge. To do so, we rely on existing neural-based methods, which are dedicated to object recognition in still images, and investigate their extension to the video case. More concretely, we introduce two learning-based models to extract spatio-temporal features for video classification: (i) A deep learning model, which is trained in a supervised way, and which can be considered as an extension of the popular ConvNets model to the video case, and (ii) An unsupervised learning model that relies on an auto-encoder scheme, and a sparse over-complete representation. Moreover, an additional contribution of this work lies in a comparative study between several sequence classification models. This study was performed using hand-crafted features especially designed to be optimal for the soccer action recognition problem. Obtained results have permitted to select the best classifier (a bidirectional long short-term memory recurrent neural network -BLSTM-) to be used for all experiments. In order to validate the genericity of the two proposed models, experiments were carried out on two different problems, namely human action recognition (using the KTH dataset) and facial expression recognition (using the GEMEP-FERA dataset). Obtained results show that our approaches achieve outstanding performances, among the best of the related works (with a recognition rate of 95,83% for the KTH dataset, and 87,57% for the GEMEP-FERA dataset).
|
59 |
Model-based clustering and model selection for binned data. / Classification automatique à base de modèle et choix de modèles pour les données discrétiséesWu, Jingwen 28 January 2014 (has links)
Cette thèse étudie les approches de classification automatique basées sur les modèles de mélange gaussiens et les critères de choix de modèles pour la classification automatique de données discrétisées. Quatorze algorithmes binned-EM et quatorze algorithmes bin-EM-CEM sont développés pour quatorze modèles de mélange gaussiens parcimonieux. Ces nouveaux algorithmes combinent les avantages des données discrétisées en termes de réduction du temps d’exécution et les avantages des modèles de mélange gaussiens parcimonieux en termes de simplification de l'estimation des paramètres. Les complexités des algorithmes binned-EM et bin-EM-CEM sont calculées et comparées aux complexités des algorithmes EM et CEM respectivement. Afin de choisir le bon modèle qui s'adapte bien aux données et qui satisfait les exigences de précision en classification avec un temps de calcul raisonnable, les critères AIC, BIC, ICL, NEC et AWE sont étendus à la classification automatique de données discrétisées lorsque l'on utilise les algorithmes binned-EM et bin-EM-CEM proposés. Les avantages des différentes méthodes proposées sont illustrés par des études expérimentales. / This thesis studies the Gaussian mixture model-based clustering approaches and the criteria of model selection for binned data clustering. Fourteen binned-EM algorithms and fourteen bin-EM-CEM algorithms are developed for fourteen parsimonious Gaussian mixture models. These new algorithms combine the advantages in computation time reduction of binning data and the advantages in parameters estimation simplification of parsimonious Gaussian mixture models. The complexities of the binned-EM and the bin-EM-CEM algorithms are calculated and compared to the complexities of the EM and the CEM algorithms respectively. In order to select the right model which fits well the data and satisfies the clustering precision requirements with a reasonable computation time, AIC, BIC, ICL, NEC, and AWE criteria, are extended to binned data clustering when the proposed binned-EM and bin-EM-CEM algorithms are used. The advantages of the different proposed methods are illustrated through experimental studies.
|
60 |
Exploitation du signal pénétrométrique pour l'aide à l'obtention d'un modèle de terrain / Exploitation of penetrometer signal in order to obtain a ground modelSastre Jurado, Carlos 07 February 2018 (has links)
Ce travail porte sur la reconnaissance de sols à faible profondeur grâce aux données de résistance de pointe recueillies à l'aide de l'essai de pénétration dynamique à énergie variable, Panda®. L'objectif principal est d'étudier et de proposer un ensemble d'approches dans le cadre d'une méthode globale permettant d'exploiter les mesures issues d'une campagne de sondages Panda afin de bâtir un modèle géotechnique du terrain.Ce manuscrit est structuré en quatre parties, chacune abordant un objectif spécifique :dans un premier temps, on rappelle les principaux moyens de reconnaissance des sols, notamment l'essai de pénétration dynamique Panda. Ensuite on réalise un bref aperçu sur le modèle géotechnique et les techniques mathématiques pour décrire l'incertitude dans la caractérisation des propriétés du sol;la deuxième partie porte sur l'identification automatique des unités homogènes du terrain, à partir du signal pénétrométrique Panda. Suite à l'étude réalisée sur l'identification "experte" des couches à partir du signal Panda, des approches statistiques basées sur une fenêtre glissante ont été proposées. Ces techniques ont été étudiées et validées sur la base d'un protocole d'essais en laboratoire et sur des essais effectués en sites naturels et en conditions réelles;la troisième partie porte sur l'identification automatique des matériaux composant les unités homogènes détectées dans le signal Panda à partir des méthodes proposées en partie II. Une méthode de classification automatique basée sur des réseaux de neurones artificiels a été proposée et appliquée aux deux cas d'étude : la caractérisation de sols naturels et la classification d'un matériau granulaire argileux industrialisé (bentonite) ; enfin, la dernière partie est consacrée à la production d'un modèle de terrain basé sur la modélisation et la simulation de la résistance de pointe dynamique au moyen de fonctions aléatoires de l'espace. Cette modélisation est basée sur une approche par champs aléatoires conditionnés par les sondages Panda du terrain. Sa mise en œuvre a été étudiée pour un terrain expérimental situé dans la plaine deltaïque méditerranéenne en Espagne. Des études complémentaires en vue de raffiner cette démarche ont été réalisées pour un deuxième site expérimental dans la plaine de la Limagne en France. / This research focuses on the site characterization of shallow soils using the dynamic cone penetrometer Panda® which uses variable energy. The main purpose is to study and propose several techniques as part of an overall method in order to obtain a ground model through a geotechnical campaign based on the Panda test.This work is divided into four parts, each of them it is focused on a specific topic :first of all, we introduce the main site characterization techniques, including the dynamic penetrometer Panda. Then, we present a brief overview of the geotechnical model and the mathematical methods for the characterization of uncertainties in soil properties;the second part deals with the automatic identification of physical homogeneous soil units based on penetration's mechanical response of the soil using the Panda test. Following a study about the soil layers identification based only on expert's judgment, we have proposed statistical moving window procedures for an objective assessment. The application of these statistical methods have been studied for the laboratory and in situ Panda test;the third part focuses on the automatic classification of the penetrations curves in the homogeneous soil units identified using the statistical techniques proposed in part II. An automatic methodology to predict the soil grading from the dynamic cone resistance using artificial neural networks has been proposed. The framework has been studied for two different research problems: the classification of natural soils and the classification of several crushed aggregate-bentonite mixtures;finally, the last chapter was devoted to model the spatial variability of the dynamic cone resistance qd based on random field theory and geostatistics. In order to reduce uncertainty in the field where Panda measurements are carried out, we have proposed the use of conditional simulation in a three dimensional space. This approach has been applied and studied to a real site investigation carried out in an alluvial mediterranean deltaic environment in Spain. Complementary studies in order to improve the proposed framework have been explored based on another geotechnical campaign conducted on a second experimental site in France.
|
Page generated in 0.1698 seconds