Spelling suggestions: "subject:"classification supervisé"" "subject:"1classification supervisé""
11 |
Évaluation de quelques sources d’erreur dans un inventaire de l’occupation du sol par terrain agricole à Sainte-Foy (Québec), produit à l’aide d’une image SPOT-1Dugas-Simard, Alain January 1991 (has links)
Un inventaire de l'occupation du sol pour chaque terrain agricole en milieu périurbain peut être produit par le croisement (automatisé) entre une image satellitaire classifiée et une image des terrains, provenant du cadastre numérisé. Trois sources d'erreur sont examinées. L'erreur planimétrique, créée par la ""rasteurisation"" des polygones-terrain, l'erreur dans les proportions des classes d'occupation du sol due à la résolution spatiale, et l'erreur de la classification elle-même. Les résultats démontrent que chacune de ces erreurs varie en fonction des terrains, donnant des inventaires de qualité inégale. Il est difficile de les corréler avec les dimensions des terrains, et de fixer ainsi des dimensions minimales nécessaires au succès de l'inventaire agricole.
|
12 |
Analyse des propriétés stationnaires et des propriétés émergentes dans les flux d'information changeant au cours du temps / Analysis of stationary and emerging properties in information flows changing over timeKassab, Randa 11 May 2009 (has links)
De nombreuses applications génèrent et reçoivent des données sous la forme de flux continu, illimité, et très rapide. Cela pose naturellement des problèmes de stockage, de traitement et d'analyse de données qui commencent juste à être abordés dans le domaine des flux de données. Il s'agit, d'une part, de pouvoir traiter de tels flux à la volée sans devoir mémoriser la totalité des données et, d'autre part, de pouvoir traiter de manière simultanée et concurrente l'analyse des régularités inhérentes au flux de données et celle des nouveautés, exceptions, ou changements survenant dans ce même flux au cours du temps. L'apport de ce travail de thèse réside principalement dans le développement d'un modèle d'apprentissage - nommé ILoNDF - fondé sur le principe de la détection de nouveauté. L'apprentissage de ce modèle est, contrairement à sa version de départ, guidé non seulement par la nouveauté qu'apporte une donnée d'entrée mais également par la donnée elle-même. De ce fait, le modèle ILoNDF peut acquérir constamment de nouvelles connaissances relatives aux fréquences d'occurrence des données et de leurs variables, ce qui le rend moins sensible au bruit. De plus, doté d'un fonctionnement en ligne sans répétition d'apprentissage, ce modèle répond aux exigences les plus fortes liées au traitement des flux de données. Dans un premier temps, notre travail se focalise sur l'étude du comportement du modèle ILoNDF dans le cadre général de la classification à partir d'une seule classe en partant de l'exploitation des données fortement multidimensionnelles et bruitées. Ce type d'étude nous a permis de mettre en évidence les capacités d'apprentissage pures du modèle ILoNDF vis-à-vis de l'ensemble des méthodes proposées jusqu'à présent. Dans un deuxième temps, nous nous intéressons plus particulièrement à l'adaptation fine du modèle au cadre précis du filtrage d'informations. Notre objectif est de mettre en place une stratégie de filtrage orientée-utilisateur plutôt qu'orientée-système, et ceci notamment en suivant deux types de directions. La première direction concerne la modélisation utilisateur à l'aide du modèle ILoNDF. Cette modélisation fournit une nouvelle manière de regarder le profil utilisateur en termes de critères de spécificité, d'exhaustivité et de contradiction. Ceci permet, entre autres, d'optimiser le seuil de filtrage en tenant compte de l'importance que pourrait donner l'utilisateur à la précision et au rappel. La seconde direction, complémentaire de la première, concerne le raffinement des fonctionnalités du modèle ILoNDF en le dotant d'une capacité à s'adapter à la dérive du besoin de l'utilisateur au cours du temps. Enfin, nous nous attachons à la généralisation de notre travail antérieur au cas où les données arrivant en flux peuvent être réparties en classes multiples. / Many applications produce and receive continuous, unlimited, and high-speed data streams. This raises obvious problems of storage, treatment and analysis of data, which are only just beginning to be treated in the domain of data streams. On the one hand, it is a question of treating data streams on the fly without having to memorize all the data. On the other hand, it is also a question of analyzing, in a simultaneous and concurrent manner, the regularities inherent in the data stream as well as the novelties, exceptions, or changes occurring in this stream over time. The main contribution of this thesis concerns the development of a new machine learning approach - called ILoNDF - which is based on novelty detection principle. The learning of this model is, contrary to that of its former self, driven not only by the novelty part in the input data but also by the data itself. Thereby, ILoNDF can continuously extract new knowledge relating to the relative frequencies of the data and their variables. This makes it more robust against noise. Being operated in an on-line mode without repeated training, ILoNDF can further address the primary challenges for managing data streams. Firstly, we focus on the study of ILoNDF's behavior for one-class classification when dealing with high-dimensional noisy data. This study enabled us to highlight the pure learning capacities of ILoNDF with respect to the key classification methods suggested until now. Next, we are particularly involved in the adaptation of ILoNDF to the specific context of information filtering. Our goal is to set up user-oriented filtering strategies rather than system-oriented in following two types of directions. The first direction concerns user modeling relying on the model ILoNDF. This provides a new way of looking at user's need in terms of specificity, exhaustivity and contradictory profile-contributing criteria. These criteria go on to estimate the relative importance the user might attach to precision and recall. The filtering threshold can then be adjusted taking into account this knowledge about user's need. The second direction, complementary to the first one, concerns the refinement of ILoNDF's functionality in order to confer it the capacity of tracking drifting user's need over time. Finally, we consider the generalization of our previous work to the case where streaming data can be divided into multiple classes.
|
13 |
Assessment of supervised classification methods for the analysis of RNA-seq data / Développement, évaluation et application de méthodes statistiques pour l'analyse de données multidimensionnelles de comptage produites par les technologies de séquençage à haut débit ("Next Generation Sequencing")Abuelqumsan, Mustafa 20 December 2018 (has links)
Les technologies « Next Generation Sequencing» (NGS), qui permettent de caractériser les séquences génomiques à un rythme sans précédent, sont utilisées pour caractériser la diversité génétique humaine et le transcriptome (partie du génome transcrite en acides ribonucléiques). Les variations du niveau d’expression des gènes selon les organes et circonstances, sous-tendent la différentiation cellulaire et la réponse aux changements d’environnement. Comme les maladies affectent souvent l’expression génique, les profils transcriptomiques peuvent servir des fins médicales (diagnostic, pronostic). Différentes méthodes d’apprentissage artificiel ont été proposées pour classer des individus sur base de données multidimensionnelles (par exemple, niveau d’expression de tous les gènes dans des d’échantillons). Pendant ma thèse, j’ai évalué des méthodes de « machine learning » afin d’optimiser la précision de la classification d’échantillons sur base de profils transcriptomiques de type RNA-seq. / Since a decade, “Next Generation Sequencing” (NGS) technologies enabled to characterize genomic sequences at an unprecedented pace. Many studies focused of human genetic diversity and on transcriptome (the part of genome transcribed into ribonucleic acid). Indeed, different tissues of our body express different genes at different moments, enabling cell differentiation and functional response to environmental changes. Since many diseases affect gene expression, transcriptome profiles can be used for medical purposes (diagnostic and prognostic). A wide variety of advanced statistical and machine learning methods have been proposed to address the general problem of classifying individuals according to multiple variables (e.g. transcription level of thousands of genes in hundreds of samples). During my thesis, I led a comparative assessment of machine learning methods and their parameters, to optimize the accuracy of sample classification based on RNA-seq transcriptome profiles.
|
14 |
Spectroscopie optique multi-modalités in vivo : instrumentation, extraction et classification diagnostique de tissus sains et hyperplasiques cutanés / Multi-modality optical spectroscopy in vivo : instrumentation, extraction and classification diagnosis of normal and hyperplastic cutaneous tissueDiaz-Ayil, Gilberto 16 November 2009 (has links)
L’incidence des cancers cutanés est en constante progression. Leur diagnostic précoce et leur caractérisation in vivo constituent donc un enjeu important. Une approche multimodale et non invasive en spectroscopie fibrée résolue spatialement a été implémentée. L’instrumentation développée permet des mesures co-localisées en multiple excitation d’AutoFluorescence (AF, 7 pics entre 360 et 430 nm) et en Réflectance Diffuse (RD, 390 à 720 nm) résolues spatialement à 5 distances inter-fibres (entre 271 et 1341 µm). Le protocole expérimental a porté sur les stades précoces de cancers cutanés UV-induits sur un modèle pré-clinique. L’analyse histopathologique a permis de définir 4 classes de référence de tissus cutanés : Sain (S), Hyperplasie Compensatoire (HC), Hyperplasie Atypique (HA) et Dysplasie (D), menant à 6 combinaisons de paires histologiques à discriminer. Suite au prétraitement des spectres bruts acquis, puis à l’extraction, la sélection et la réduction de jeux de caractéristiques spectroscopiques, les performances de trois algorithmes de classification supervisée ont été comparées : k-Plus Proches Voisins, Analyse Discriminante Linéaire et Machine à Vecteur de Support. Différentes modalités ont également été évaluées : mono-excitation d’AF seule, Matrices d’Excitation-Emission en AF seules (EEMs), RD seule, couplage EEMs – RD et couplage EEMs – RD résolue spatialement. L’efficacité finale de notre méthode diagnostique a été évaluée en termes de sensibilité (Se) et de spécificité (Sp). Les meilleures résultats obtenus sont : Se et Sp ≈ 100% pour discriminer HC vs autres ; Sp ≈ 100% et Se > 95% pour discriminer S vs HA ou D ; Sp ≈ 74% et Se ≈ 63% pour HA vs D / The incidence of skin cancers is steadily increasing. Their in vivo early diagnosis and characterization is an important issue. An approach noninvasive: the spatially resolved multi-modality spectroscopy has been implemented. The instrumentation developed allows to co-localized measures in multiple AutoFluorescence excitation (AF, 7 peaks between 360 and 430 nm) and Diffuse Reflectance (DR, 390 to 720 nm) spatially resolved at 5 inter-fiber distances (between 271 and 1341 μm). The experimental protocol was focused on the early stages of skin cancer UV-induced in a preclinical model. Four reference classes were defined based on the histopathological analysis of the skin samples: Healthy (H), Compensatory Hyperplasia (CH), Atypical Hyperplasia (AH) and Dysplasia (D), leading to 6 combinations of class pairs to be discriminated. After preprocessing of the raw spectra, extraction, selection and reduction of the most discriminative spectroscopic data set were performed. Then, the efficacy of three supervised classification algorithms was compared: k-Nearest Neighbors, Linear Discriminant Analysis and Support Vector Machine. The contribution of the different modalities was also evaluated: single AF excitation alone, Excitation-Emission Matrices AF (EEMs) alone, DR alone, coupling of EEMs and RD, coupling of EEMs and DR with spatial resolution. The final efficiency of our diagnostic method was evaluated in terms of sensitivity (Se) and specificity (Sp). The best results obtained are: Se and Sp ≈ 100% for discriminating CH vs others; Sp ≈ 100% and Se> 95% for discriminating AH or D vs H; Sp ≈ 74% and Se ≈ 63% to discriminate AH vs D
|
15 |
Etude et extraction des règles associatives de classification en classification supervisée / Study and mining associative classification rules in Supervised classificationBouzouita-Bayoudh, Inès 01 December 2012 (has links)
Dans le cadre de cette thèse, notre intérêt se porte sur la précision de la classification et l'optimalité du parcours de l'espace de recherche. L'objectif recherché est d'améliorer la précision de classification en étudiant les différents types de règles et de réduire l'espace de recherche des règles. Nous avons proposé une approche de classification IGARC permettant de générer un classifieur formé d'une base de règles de classification génériques permettant de mieux classer les nouveaux objets grâce à la flexibilité de petites prémisses caractérisant ces règles. De plus cette approche manipule un nombre réduit de règles en comparaison avec les autres approches de classification associative en se basant sur le principe des bases génériques des règles associatives. Une étude expérimentale inter et intra approches a été faite sur 12 bases Benchmark.Nous avons également proposé une approche Afortiori. Notre travail a été motivé par la recherche d'un algorithme efficace permettant l'extraction des règles génériques aussi bien fréquentes que rares de classification en évitant la génération d'un grand nombre de règles. L'algorithme que nous proposons est particulièrement intéressant dans le cas de bases de données bien spécifiques composées d'exemples positifs et négatifs et dont le nombre d'exemples négatifs est très réduit par rapport aux exemples positifs. La recherche des règles se fait donc sur les exemples négatifs afin de déterminer des règles qui ont un faible support et ce même par rapport à la population des exemples positifs et dont l'extraction pourrait être coûteuse. / Within the framework of this thesis, our interest is focused on classification accuracy and the optimalité of the traversal of the search. we introduced a new direct associative classification method called IGARC that extracts directly a classifier formed by generic associative classification rules from a training set in order to reduce the number of associative classification rules without jeopardizing the classification accuracy. Carried out experiments outlined that IGARC is highly competitive in comparison with popular classification methods.We also introduced a new classification approach called AFORTIORI. We address the problem of generating relevant frequent and rare classification rules. Our work is motivated by the long-standing open question of devising an efficient algorithm for finding rules with low support. A particularly relevant field for rare item sets and rare associative classification rules is medical diagnosis. The proposed approach is based on the cover set classical algorithm. It allows obtaining frequent and rare rules while exploring the search space in a depth first manner. To this end, AFORTIORI adopts the covering set algorithm and uses the cover measure in order to guide the traversal of the search space and to generate the most interesting rules for the classification framework even rare ones. We describe our method and provide comparisons with common methods of associative classification on standard benchmark data set.
|
16 |
Modélisation, détection et classification d'objets urbains à partir d’images photographiques aériennes / Modeling, detection and classification of urban objects from aerial imagesPasquet, Jérôme 03 November 2016 (has links)
Cette thèse aborde des problèmes liés à la localisation et reconnaissance d'objets urbains dans des images aériennes de très haute définition. Les objets urbains se caractérisent par une représentation très variable en terme de forme, texture et couleur. De plus, ils sont présents de multiples fois sur les images à analyser et peuvent être collés les uns aux autres. Pour effectuer la localisation et reconnaissance automatiquement des différents objets nous proposons d'utiliser des approches d'apprentissage supervisé. De part leurs caractéristiques, les objets urbains sont difficilement détectables et les approches classiques de détections n'offrent pas de performances satisfaisantes. Nous avons proposé l'utilisation d'un réseau de séparateurs à vaste marge (SVM) afin de mieux fusionner les informations issues des différentes résolutions et donc d'améliorer la représentativité de l'objet urbain. L'utilisation de réseau de SVM permet d'améliorer les performances mais à un coût calculatoire important. Nous avons alors proposé d'utiliser un chemin d'activation permettant de réduire la complexité sans perdre en efficacité. Ce chemin va activer le réseau de manière séquentielle et stoppera l'exploration lorsque la probabilité de détection d'un objet est importante. Dans le cas d'une localisation basée sur l'extraction de caractéristiques puis la classification, la réduction calculatoire est d'un facteur cinq. Par la suite, nous avons montré que nous pouvons combiner le réseau de SVM avec les cartes de caractéristiques issues de réseaux de neurones convolutifs. Cette architecture combinée avec le chemin d'activation permet une réduction théorique du coût d'activation pouvant aller jusqu'à 97% avec un gain de performances d'environ 8% sur les données utilisées. Les méthodes développées ont pour objectif d'être intégrées dans un logiciel de la société Berger-Levrault afin de faciliter et d'améliorer la gestion de cadastre dans les collectivités locales. / This thesis deals with the problems of automatic localization and recognition of urban objects in high-definition aerial images. Urban object detection is a challenging problem because they vary in appearance, color and size. Moreover, there are many urban objects which can be very close to each other in an image. The localization and the automatic recognition of different urban objects, considering these characteristics, are very difficult to detect and classical image processing algorithms do not lead to good performances. We propose then to use the supervised learning approach. In a first time, we have built a Support Vector Machine (SVM) network to merge different resolutions in an efficient way. However, this method highly increases the computational cost. We then proposed to use an “activation path” which reduces the complexity without any loss of efficiency. This path activates sequentially the network and stops the exploration when an urban object has a high probability of detection. In the case of localizations based on a feature extraction step followed by a classification step, this may reduce by a factor 5 the computational cost. Thereafter, we show that we can combine an SVM network with feature maps which have been extracted by a Convolutional Neural Network. Such an architecture associated with the activation path increased the performance by 8% on our database while giving a theoretical reduction of the computational costs up to 97%. We implemented all these new methods in order to be integrated in the software framework of Berger-Levrault company, to improve land registry for local communities.
|
17 |
Structuration de collections d'images par apprentissage actif crédibilisteGoëau, Hervé 25 May 2009 (has links) (PDF)
L'indexation des images est une étape indispensable pour valoriser un fond d'archive professionnel ou des collections d'images personnelles. Le "documentaliste" se doit de décrire précisément chaque document collecté dans la perspective de le retrouver. La difficulté est alors d'interpréter les contenus visuels et de les associer entre eux afin de couvrir différentes catégories qui peuvent être souvent très subjectives. Dans ce travail, nous nous inspirons du principe de l'apprentissage actif pour aider un utilisateur dans cette tâche de structuration de collections d'images. A partir de l'analyse des contenus visuels des images, différentes stratégies de sélection active sont développées afin d'aider un utilisateur à identifier et cerner des catégories pertinentes selon son point de vue. Nous proposons d'exprimer ce problème de classification d'images avec apprentissage actif dans le cadre du Modèle des Croyances Transférables (MCT). Ce formalisme facilite la combinaison, la révision et la représentation des connaissances que l'on peut extraire des images et des classes existantes à un moment donné. La méthode proposée dans ce cadre permet ainsi une représentation détaillée de la connaissance, notamment en représentant explicitement les cas d'appartenances à aucune ou à de multiples catégories, tout en quantifiant l'incertitude (liée entre autre au fossé sémantique) et le conflit entrainé par l'analyse des images selon différentes modalités (couleurs, orientations). Une interface homme-machine a été développée afin de valider notre approche sur des jeux de tests de référence, des collections d'images personnelles et des photographies professionnelles issues de l'Institut National de l'Audiovisuel. Une évaluation a été conduite auprès d'utilisateurs professionnels et a montré des résultats très positifs en termes d'utilité, d'utilisabilité et de satisfaction.
|
18 |
Structures arborescentes et apprentissage automatiqueTommasi, Marc 23 November 2006 (has links) (PDF)
Le programme de recherches présenté dans cette synthèse s'inscrit dans la double problématique de l'étude des langages d'arbres et de l'apprentissage automatique à partir de données arborescentes. <br /> À la base de ce travail se trouve la question de l'accès et de la manipulation automatique d'informations au format XML au sein d'un réseau d'applications réparties dans internet. La réalisation de ces applications est toujours du ressort de programmeurs spécialistes d'XML et reste hors de portée de l'utilisateur final. De plus, les développements récents d'internet poursuivent l'objectif d'automatiser les communications entre applications s'échangeant des flux de données XML. Le recours à des techniques d'apprentissage automatique est une réponse possible à cette situation. <br /> Nous considèrons que les informations sont décrites dans un langage XML, et dans la perspective de ce mémoire, embarquées dans des données structurées sous forme arborescente. Les applications sont basées alors sur des opérations élémentaires que sont l'interrogation ou les requêtes dans ces documents arborescents ou encore la transformation de tels documents. <br /> Nous abordons alors la question sous l'angle de la réalisation automatique de programmes d'annotation d'arbres, permettant de dériver des procédures de transformation ou d'exécution de requêtes. Le mémoire décrit les contributions apportées pour la manipulation et l'apprentissage d'ensembles d'arbres d'arité non bornée (comme le sont les arbres XML), et l'annotation par des méthodes de classification supervisée ou d'inférence statistique.
|
19 |
Apprentissage de vote de majorité pour la classification supervisée et l'adaptation de domaine : approches PAC-Bayésiennes et combinaison de similaritésMorvant, Emilie 18 September 2013 (has links) (PDF)
De nos jours, avec l'expansion d'Internet, l'abondance et la diversité des données accessibles qui en résulte, de nombreuses applications requièrent l'utilisation de méthodes d'apprentissage automatique supervisé capables de prendre en considération différentes sources d'informations. Par exemple, pour des applications relevant de l'indexation sémantique de documents multimédia, il s'agit de pouvoir efficacement tirer bénéfice d'informations liées à la couleur, au texte, à la texture ou au son des documents à traiter. La plupart des méthodes existantes proposent de combiner ces informations multimodales, soit en fusionnant directement les descriptions, soit en combinant des similarités ou des classifieurs, avec pour objectif de construire un modèle de classification automatique plus fiable pour la tâche visée. Ces aspects multimodaux induisent généralement deux types de difficultés. D'une part, il faut être capable d'utiliser au mieux toute l'information a priori disponible sur les objets à combiner. D'autre part, les données sur lesquelles le modèle doit être appliqué ne suivent nécessairement pas la même distribution de probabilité que les données utilisées lors de la phase d'apprentissage. Dans ce contexte, il faut être à même d'adapter le modèle à de nouvelles données, ce qui relève de l'adaptation de domaine. Dans cette thèse, nous proposons plusieurs contributions fondées théoriquement et répondant à ces problématiques. Une première série de contributions s'intéresse à l'apprentissage de votes de majorité pondérés sur un ensemble de votants dans le cadre de la classification supervisée. Ces contributions s'inscrivent dans le contexte de la théorie PAC-Bayésienne permettant d'étudier les capacités en généralisation de tels votes de majorité en supposant un a priori sur la pertinence des votants. Notre première contribution vise à étendre un algorithme récent, MinCq, minimisant une borne sur l'erreur du vote de majorité en classification binaire. Cette extension permet de prendre en compte une connaissance a priori sur les performances des votants à combiner sous la forme d'une distribution alignée. Nous illustrons son intérêt dans une optique de combinaison de classifieurs de type plus proches voisins, puis dans une perspective de fusion de classifieurs pour l'indexation sémantique de documents multimédia. Nous proposons ensuite une contribution théorique pour des problèmes de classification multiclasse. Cette approche repose sur une analyse PAC-Bayésienne originale en considérant la norme opérateur de la matrice de confusion comme mesure de risque. Notre seconde série de contributions concerne la problématique de l'adaptation de domaine. Dans cette situation, nous présentons notre troisième apport visant à combiner des similarités permettant d'inférer un espace de représentation de manière à rapprocher les distributions des données d'apprentissage et des données à traiter. Cette contribution se base sur la théorie des fonctions de similarités (epsilon,gamma,tau)-bonnes et se justifie par la minimisation d'une borne classique en adaptation de domaine. Pour notre quatrième et dernière contribution, nous proposons la première analyse PAC-Bayésienne appropriée à l'adaptation de domaine. Cette analyse se base sur une mesure consistante de divergence entre distributions permettant de dériver une borne en généralisation pour l'apprentissage de votes de majorité en classification binaire. Elle nous permet également de proposer un algorithme adapté aux classifieurs linéaires capable de minimiser cette borne de manière directe.
|
20 |
Cartographie des formations végétales naturelles à l’échelle régionale par classification de séries temporelles d’images satellitaires / Mapping of the natural vegetable trainings on a regional scale by classification of temporal series of satellite imagesCano, Emmanuelle 15 June 2016 (has links)
La cartographie du couvert végétal est un outil essentiel au suivi et à la gestion et des milieux « naturels ». Des cartes caractérisant les essences forestières à l'échelle régionale sont nécessaires pour la gestion des milieux forestiers. Les séries temporelles d'images satellitaires optiques à moyenne résolution spatiale, peuvent permettre de satisfaire ce besoin. L'objectif de cette thèse est d'améliorer la classification supervisée d'une série temporelle afin de produire des cartes à l'échelle régionale détaillant la composition en essences de la végétation forestière. Nous avons d'abord évalué l'apport de la stratification du site d'étude pour améliorer les résultats de la classification d'une série temporelle d'images MODIS. Le recours à une stratification à partir d'une segmentation orientée objet améliore la classification supervisée, avec une augmentation de la valeur de Kappa et du taux de rejet des pixels à classer. Un seuil minimal et un seuil maximal de la surface de végétation à classer ont été identifiés, correspondant respectivement à un taux de rejet trop élevé et à une absence d'effet de la stratification. Nous avons ensuite évalué l'influence de l'organisation de la série temporelle d'images à moyenne résolution spatiale et du choix de l'algorithme de classification. Cette évaluation a été effectuée pour trois algorithmes (maximum de vraisemblance, Support Vector Machine, Random Forest) en faisant varier les caractéristiques de la série temporelle. On observe un effet de la temporalité et de la radiométrie sur la précision de la classification particulièrement significatif et la supériorité de l'algorithme Random Forest. Sur le plan thématique, des confusions subsistent et certains mélanges d'essences sont mal distingués. Nous avons alors cherché à évaluer l'apport du changement de résolution spatiale des images composant la série temporelle pour améliorer les résultats de classification. Les conclusions effectuées précédemment avec les données MODIS sont confortées, ce qui permet de conclure qu'elles sont indépendantes des données d'entrée et de leur résolution spatiale. Une amélioration significative est apportée par le changement de résolution spatiale, avec une augmentation de l'indice de Kappa de 0,60 à 0,72 obtenue grâce à la diminution de la proportion de pixels mixtes. Quelle que soit la résolution spatiale des images utilisées, les résultats obtenus montrent que la définition d'une procédure optimale améliore sensiblement les résultats de la classification. / Forest cover mapping is an essential tool for forest management. Detailed maps, characterizing forest types at a régional scale, are needed. This need can be fulfilled by médium spatial resolution optical satellite images time sériés. This thesis aims at improving the supervised classification procédure applied to a time sériés, to produce maps detailing forest types at a régional scale. To meet this goal, the improvement of the results obtained by the classification of a MODIS time sériés, performed with a stratification of the study area, was assessed. An improvement of classification accuracy due to stratification built by object-based image analysis was observed, with an increase of the Kappa index value and an increase of the reject fraction rate. These two phenomena are correlated to the classified végétation area. A minimal and a maximal value were identified, respectively related to a too high reject fraction rate and a neutral stratification impact.We carried out a second study, aiming at assessing the influence of the médium spatial resolution time sériés organization and of the algorithm on classification quality. Three distinct classification algorithms (maximum likelihood, Support Vector Machine, Random Forest) and several time sériés were studied. A significant improvement due to temporal and radiométrie effects and the superiority of Random Forest were highlighted by the results. Thematic confusions and low user's and producer's accuracies were still observed for several classes. We finally studied the improvement brought by a spatial resolution change for the images composing the time sériés to discriminate classes of mixed forest species. The conclusions of the former study (MODIS images) were confirmed with DEIMOS images. We can conclude that these effects are independent from input data and their spatial resolution. A significant improvement was also observed with an increase of the Kappa index value from 0,60 with MODIS data to 0,72 with DEIMOS data, due to a decrease of the mixed pixels rate.
|
Page generated in 0.1237 seconds