• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fabrication of wavy type porous triple-layer SC-SOFC via in-situ observation of curvature evolution during co-sintering

Choi, Indae January 2015 (has links)
Wavy type Single Chamber Solid Oxide Fuel Cells (SC-SOFCs) have been shown to be conducive to improving the effective electrochemical reaction area contributing to higher performance, compared with planar type SC-SOFCs of the same diameter. This study presents a fabrication process for wavy type SC-SOFCs with a single fabrication step via co-sintering of a triple-layer structure. The monitoring and observation of the curvature evolution of bi- and triple-layer structures during co-sintering has resulted in an improved process with reduced manufacturing time and effort, as regards the co-sintering process for multi-layer structures. Investigation using in-situ monitoring helps different shrinkage behaviours of each porous layer to minimise mismatched stresses along with avoidance of severe warping and cracking. In the co-sintering of the multi-layer structures, the induced in-plane stresses contribute to curvature evolution in the structure, which can be utilised in the design of a curved multi-layer structure via the co-sintering process. For intermediate temperature SOFCs, the materials used are NiO/CGO for anode; CGO for electrolyte; and LSCF for cathode. These materials are tape-casted with 20μm thickness and assembled for bi- and triple-layer structures by hot pressing. Sintering mismatch stresses have been analysed in bi-layer structures, consisting of NiO/CGO-CGO and CGO-LSCF. The maximum sintering mismatch stress was calculated at interface of bi-layer structure in the top layer. In order to achieve the desired wavy type triple-layer structure, flexible green layers of each component were stacked up and laid on alumina rods to support the curvature during the process. In-situ observation, to monitor the shrinkage of each material and the curvature evolution of the structures, was performed using a long focus microscope (Infinity K-2). With these values, the main factors such as viscosity, shrinkage rate of each material, and curvature rate are investigated to determine the sintering mismatch stresses. This enables the prediction of curvature for triple-layer structure and the prediction is validated by in-situ monitoring of the triple-layer structure co-sintering process. Zero-deflection condition is confirmed to maintain initial shape during co-sintering and helps to minimise the development of undesired curvature in the triple-layer structure. Performance testing of the wavy cell was carried out in a methane-air mixture (CH4:O2 =1:1). In comparison with a planar SC-SOFC, it showed higher OCV which might be attributed to not only macro deformation, but also microstructural distribution affecting the effective gas diffusion paths and electrochemical active sites.
2

Investigation of single-step sintering and performance of planar and wavy single-chamber solid oxide fuel cells

Sayan, Yunus January 2018 (has links)
Single step co-sintering is proposed as a method to minimise the time and cost of fabricating solid oxide fuel cells (SOFCs). Such a methodology is attractive but challenging due to the differing sintering behaviours and thermal mismatch of the constituent materials of the anode, cathode and electrolyte in solid oxide fuel cells. As a result it is likely that compromises are made for one layer with respect to optimising another. The single chamber solid oxide fuel cell (SC-SOFC) has not seen widespread adoption due to poor selectivity and fuel utilisation, but relaxed some of the stringent SOFC requirements such as sealing, and the need for a dense electrolyte layer. Thus, to initiate the study into single step co-sintering, the single chamber SOFC is earmarked as the first candidate. The effect of single step co-sintering on cell performance is also an attractive area to investigate. Therefore, in this study, a new co-sintering process (single step co-sintering) was applied to fabricate three different types (in terms of the supporting structure) of planar SC-SOFCSs (the anode, cathode and electrolyte supported planar cells) and anode supported wavy types of SC-SOFC in order to reduce fabrication cost and time owing to effective fabrication process. In addition, their performances were tested to establish functionality of the sintered specimens as working electrochemical cells as well as to investigate the maximum performance possible with these cells under single chamber conditions. Moreover, it is also aimed to improve the performance of SC-SOFCs by extending TPB (Triple phase boundary) via wavy type. This study presents a single step co-sintering manufacturing process of planar and wavy single chamber solid oxide fuel cells with porous multilayer structures, consisting of NiO-CGO, CGO and CGO-LSCF as anode, electrolyte and cathode respectively. Pressure of 2 MPa, with the temperature at 60˚C for 5 minutes, was deemed optimal for the hot pressing of these layers. The best result of sintering profile was obtained with heating rate of 1˚C min-1 to 500˚C, 2˚C min-1 to 900˚C and 1˚C min-1 to 1200˚C with 1 hour dwelling; the cooling rate was 3˚C min-1. Hence anode supported SC-SOFC (thickness: 200:40:40 µm, thickness ratio: 10:2:2, anode (A): electrolyte (E): cathode (C)) was fabricated via a single co-sintering process, albeit with curvature formation at edges. Its performance was investigated in methane-oxygen mixtures at a temperature of 600˚C. Maximum open circuit voltage (OCV) and power density of the anode supported planar cell were obtained as 0.69 V and 2.83 mW cm-2, respectively, at a fuel-oxygen ratio of 1. Subsequently, anode thickness was increased to 800 µm and electrolyte thickness was reduced 20 µm (thickness ratio of cell 40:1:2) to obtain curvature-free anode-supported SOFCs with the help of a porous alumina cover plate placed on the top of the cell. The highest power density and OCV obtained from this cell was 30.69 mW cm-2 and 0.71 V, respectively, at the same mix ratio. In addition, the maximum residual stresses between cathode end electrolyte layers of anode supported cells after sintering were investigated using the fluorescence spectroscopy technique. The total mean residual stresses along the x-direction of the final anode supported planar cell after sintering were measured to range from -488.688 MPa to -270.781 MPa. Determination of optimum thickness and thickness ratio of the cell with the defined ideal hot pressing and sintering conditions for single step co-sintering were carried out for cathode and electrolyte supported planar cells using similar fabrication processes. Their performance changes with thickness ratio were examined. The results show that the cathode and electrolyte supported planar cells can be obtained successfully via single step co-sintering technique with the help of alumina cover plates, as with the anode supported cell. In addition, an anode supported wavy SC-SOFC was fabricated via single step co-sintering and its performance was also investigated. The maximum power density and OCV from the final curvature free cathode supported planar cell (thickness: 60:20:800 µm, thickness ratio: 3:1:20, A:E:C) was measured to be 1.71 mW cm-2 and 0.20 V, respectively, at a fuel-oxygen ratio of 1.6. Likewise, the maximum OCV and power density were found to be 0.55 V and 29.39 mW cm-2, respectively, at a fuel-oxygen ratio of 2.6, for the final electrolyte supported curvature free planar cell (thickness: 60:300:40 µm, thickness ratio: 3:15:2, A:E:C). Furthermore, a maximum OCV of 0.43 V and power density of 29.7 mW cm-2 were found from the final anode supported wavy cell (thickness: 800:20:40 µm, thickness ratio: 40:1:2, A:E:C) at a fuel-oxygen ratio of 1. In essence, this study can be divided into five chapters. The first chapter addresses the overview of the research background, problem statement, aims and objective of this study as well as that of novelty and impact. In the second chapter, fundamental information is provided regarding SOFCs and SC-SOFCs in terms of working principles, main components including electrodes electrolytes, advantages and disadvantages, types, material used for each cell components, losses in the system, and so forth. Moreover, the second chapter also contains essential sintering information in order to understand how to approach sintering of ceramics or cermet to fabricate SC-SOFCs. The overall methodology of this study is explained in detail in the third chapter while experimental works are described in the chapter 4, chapter 5, chapter 6, chapter 7 and chapter 8. Chapter 5 also contains background for the fluorescence spectroscopy and a modelling technique for residual stress measurement between ceramic layers. The results of experiments with discussion session are also in the same chapter. The last chapter presents conclusions and the possible routes for future works of the study.
3

Processing of a Hybrid Solid Oxide Fuel Cell Platform

Oh, Raymond H. 09 January 2006 (has links)
Solid oxide fuel cell platforms consisting of alternating cellular layers of yttria-stabilized zirconia electrolyte and Fe-Ni metallic interconnects (Fe45Ni, Fe47.5Ni, Fe50Ni) were produced through the co-extrusion of two particulate pastes. Subsequent thermal treatment in a hydrogen atmosphere was used to reduce iron and nickel oxides and co-sinter the entire structure. Issues surrounding this process include the constrained sintering of the layers and the evolution of residual stress between the dense, fired layers. Sintering curves for individual components of the layers were measured by dilatometry to ascertain each materials impact on overall sintering mismatch. X-ray diffraction, scanning electron microscopy and weight loss were utilized to examine phase evolution within the Fe-Ni alloys during reduction. YSZ powders densified above ~1050C and shrinkage was rapid above the sintering temperature. Shrinkage of the interconnect occurred in two stages: reduction and the initial stages of sintering concluded around ~600C, plateauing shortly and continuing at ~900C as pore removal and grain growth ensued simultaneously. Constrained sintering resulted in the formation of remnant porosity within the interconnect layers. Interconnect compositions were chosen in efforts to minimize disparities in thermal expansion with the electrolyte. Residual strains on the surfaces of the layers were measured by x-ray diffraction. Corresponding stresses were calculated using the sin2y method. Grain growth within the interconnect prohibited random planes to be measured so stress measurements were confined to the ceramic layers. Various material properties such as thermal expansion were collected and employed in a modified finite element model to estimate residual stresses in the platform. A method for determining a crucial parameter, the zero stress temperature was outlined and incorporated. Modeled values were found to agree well with XRD values, providing indirect confirmation of the zero stress temperature calculations. Discrepancies were attributed to microcracks found within the layer that arose due to residual stress values surpassing the tensile strength of the zirconia.
4

The Role of Bi/Material Interface in Integrity of Layered Metal/Ceramic / The Role of Bi/Material Interface in Integrity of Layered Metal/Ceramic

Masini, Alessia January 2019 (has links)
The present doctoral thesis summarises results of investigation focused on the characterisation of materials involved in Solid Oxide Cell technology. The main topic of investigation was the ceramic cell, also known as MEA. Particular attention was given to the role that bi-material interfaces, co-sintering effects and residual stresses play in the resulting mechanical response. The first main goal was to investigate the effects of the manufacturing process (i.e. layer by layer deposition) on the mechanical response; to enable this investigation, electrode layers were screen-printed one by one on the electrolyte support and experimental tests were performed after every layer deposition. The experimental activity started with the measurement of the elastic characteristics. Both elastic and shear moduli were measured via three different techniques at room and high temperature. Then, uniaxial and biaxial flexural strengths were determined via two loading configurations. The analysis of the elastic and fracture behaviours of the MEA revealed that the addition of layers to the electrolyte has a detrimental effect on the final mechanical response. Elastic characteristics and flexural strength of the electrolyte on the MEA level are sensibly reduced. The reasons behind the weakening effect can be ascribed to the presence and redistribution of residual stresses, changes in the crack initiation site, porosity of layers and pre-cracks formation in the electrode layers. Finally, the coefficients of thermal expansion were evaluated via dilatometry on bulk materials serving as inputs for finite elements analyses supporting experiments and results interpretation. The second most important goal was to assess the influence of operating conditions on the integrity of the MEA. Here interactions of ceramic–metal interfaces within the repetition unit operating at high temperatures and as well at both oxidative and reductive atmospheres were investigated. The elastic and fracture responses of MEA extracted from SOC stacks after several hours of service were analysed. Layer delamination and loss of mechanical strength were observed with increasing operational time. Moreover, SEM observations helped to detect significant microstructural changes of the electrodes (e.g. demixing, coarsening, elemental migration and depletion), which might be responsible for decreased electrochemical performances. All the materials presented in this work are part of SOC stacks produced and commercialised by Sunfire GmbH, which is one of the world leading companies in the field.
5

Elaboration et maitrise de la structure d'une cellule de pile à combustible à base de zircone scandiée. / Fabrication and control of the structure of a fuel cell based on scandia-stabilized zirconia

Reynier, Thibault 08 November 2012 (has links)
Dans le domaine des piles SOFC, un des principaux objectifs actuels est la réduction de latempérature de fonctionnement des cellules en deçà de 700°C, afin de garantir une plusgrande durabilité des systèmes électrochimiques et des matériaux de cellules. En outre, leprocédé d’élaboration d’une cellule complète comprend actuellement deux voire trois étapesde frittage; une seule opération de frittage pourrait conduire à une diminution conséquente ducoût de production de la cellule. Le but de ce travail de thèse est d’apporter une contribution àces deux problématiques en proposant un procédé d’élaboration d’une cellule de pile àcombustible SOFC en une seule opération dite de cofrittage et avec une sélection dematériaux à hautes performances électrochimiques.Cette thèse a été abordée selon trois thématiques principales : mécanique, microstructurale etélectrochimique.Après la caractérisation du comportement en frittage des matériaux retenus pour l’étude, uncycle de frittage conduisant à une microstructure d’électrolyte acceptable (porosité fermée) aété sélectionné. Le cofrittage a ensuite été étudié selon un aspect mécanique. Les phénomènesde courbure engendrés par le cofrittage ont été expliquées à l’aide d’une modélisationanalytique et confrontées à des observations in situ. Le travail s’est ensuite orienté dans uneapproche microstructurale avec l’optimisation de la microstructure de la cathode en utilisantune modélisation numérique basée sur la méthode des éléments discrets. Les composants de lacellule complète ont finalement été caractérisés par spectroscopie d’impédanceélectrochimique afin d’optimiser leurs performances. Enfin, une cellule complète exempt defissure a été réalisée par cofrittage et ses performances électrochimiques ont été estimées. / In the field of SOFCs, a major objective is the reduction of the cell operating temperaturebelow 700°C, in order to ensure greater durability of electrochemical systems and cellmaterials. In addition, the fabrication process of a complete cell currently includes two orthree stages of sintering. Thus one sintering process could lead to a consequent decrease in theproduction cost of the cell. The purpose of this thesis is to contribute to these two issues byproposing a method for manufacturing a SOFC fuel cell in a single operation called cofiringand with a selection of high electrochemical performance materials.This thesis is addressed in three main areas: mechanical, microstructural and electrochemical.After sintering behavior characterization of the selected materials, a sintering cycle leading toan acceptable electrolyte microstructure (closed porosity) was selected. The cofiring was thenapproached by a mechanical aspect. The curvature Phenomena caused by of cofiring wereexplained using an analytical model and compared with in situ observations. The work is thencontinued with a microstructural approach. The optimization of the cathode microstructurewas done using a numerical modeling based on the discrete element method. Cell componentswere finally characterized by electrochemical impedance spectroscopy to optimize theirperformances. Finally, a free crack complete cell was obtained by co-sintering process and herelectrochemical performance was estimated.
6

Co-frittage du système LTCC/or : approches couplées expérimentale, analytique et numérique / Co-sintering of LTCC/gold system : experimental, analytical and numerical coupled approaches

Heux, Adrien 03 December 2018 (has links)
Les systèmes multicouches à base de LTCC (Low Temperature Co-fired Ceramic) et d’or sont largement utilisés dans l’élaboration de composants multi-matériaux pour applications radiofréquences civiles et militaires. Cette technologie présente un fort potentiel de développement car elle constitue une solution de packaging des puces électroniques. Lors du processus d’élaboration de ces composants multi-matériaux (céramique-métal), la phase de co-frittage est une étape clé et critique, car elle est source d’endommagement du fait des potentiels différentiels de coefficients de dilatation et de cinétiques de retrait. Ainsi, ce travail vise le développement d’un modèle numérique simulant fidèlement le comportement thermomécanique des composants au cours de l’étape de co-frittage. A cet effet, les comportements thermomécanique et au frittage des matériaux céramiques et métalliques sélectionnés ont été finement caractérisés. Les lois de comportement ainsi identifiées ont été implémentées dans le code de calcul par éléments finis Comsol Multiphysics. La robustesse du modèle développé a été analysée par confrontation à des essais expérimentaux conduits grâce à la mise en place d’un dispositif original de suivi in situ de la déformation par ombroscopie. Ainsi, les cambrures générées lors du frittage contraint d’un bicouche à base de LTCC et lors du co-frittage d’un bicouche LTCC-or ont été caractérisées et comparées aux simulations numériques. / LTCC (Low Temperature Co-fired Ceramic) and gold multilayers systems are extensively used in the development of multi-materials components for civil and military radio-frequency applications. This technology presents a high potential of development because it provides a packaging solution for electronic chips. During the process of drafting of these multi-materials components (ceramic metal), the co-sintering step is a key and critical one, indeed it leads to damages because of potential thermal expansion coefficients and shrinkage kinetics differentials. Thus, the aim of this work is to develop a numerical model able to faithfully simulate the components thermomechanical behavior during the co-sintering stage. To achieve this, the sintering and thermomechanical behavior of the selected ceramic and metal materials have been carefully characterized. The behavior laws so identified have been implemented in the software based on the finite elements method Comsol Multiphysics. The developed model robustness has been analyzed by confrontation with experimental tests driven by the establishment of an original shadowscopy apparatus which allows the in situ strain recording. Thus, the generated curvatures during the constrained sintering of a LTCC bilayer and during a gold-LTCC bilayer co-sintering have been characterized and compared with the numerical simulations.
7

DEVELOPMENT OF INNOVATIVE SOFCS BY COLLOIDAL PROCESSES AND CO-SINTERING TO BE USED BY BIOFUELS

Yousefi Javan, Kimia 23 April 2024 (has links)
Climate change and environmental degradation, in addition to the challenges of limited fossil fuel resources, have driven governments to pursue creative renewable energy sources. Natural gas and biofuels are limitless energy sources produced from both fossil fuels and biomass that is renewable. SOFCs (Solid Oxide Fuel Cells) are a type of renewable energy system that can convert biofuels into power and heat whenever needed. They often operate at high temperatures (> 850 °C), which allows for fuel flexibility; nevertheless, such high temperatures are associated by rapid material deterioration and performance loss, usually before 40,000 hours of operation. As a result, many recent studies and activities have concentrated on lowering the operating temperature of SOFCs. Lowering the temperature causes decreased ionic conductivity, decreased catalytic activity, and increased carbon deposition on the anode side catalysts. This project aimed at developing an innovative cathode-supported SOFC to be fed by biofuels and operating at low-intermediate temperatures. Colloidal processes and co-sintering were selected to fabricate the final SOFC owing to their flexibility in optimizing the final desired properties and saving more manufacturing costs. The first chapter of this thesis provides an introduction to the essential concepts as well as professional specifics and previous work. The cell design and component materials are defined, as are additional requirements for lowering the operating temperature in SOFCs. Commercialization challenges and recommended solutions are also discussed, which involve the development of both new anode materials and production procedures. The project's goal is detailed at the end of Chapter 1, along with the reasons why various approaches were chosen. Molybdenum was chosen as a suitable anodic material to be doped into LSCF, and tape casting was developed further to create the cathode. The cathode support layer should have a consistent thickness, balanced flexibility and mechanical strength, and better shrinkage qualities. The plasticizer is a high molecular weight polyethylene glycol (PEG 4000), which improves these characteristics. Chapter 2 covers the steps involved in creating the button SOFC, starting with powder synthesis and ending with cathode tape casting. SOFC performance and anode catalytic activity are investigated to assess SOFC durability while fed by biogas. In Chapter 3, the findings are presented and explored in various contexts. Meanwhile, the anode material performance and cathode design and structure receive the greatest attention. Molybdenum was doped into LSCF via auto-combustion, yielding a fine and porous powder form. X-ray diffraction patterns demonstrated that increasing the Mo dopant increases anodic stability. In parallel, flat and crack-free green cathodes with 47% solid loading can be obtained by adjusting the PEG 4000 to binder quantity ratio at 1.00 wt% and drying the tapes at 70% relative humidity. The tapes had an excellent mechanical strength to flexibility ratio, which allowed them to be readily handled and rolled. The tapes benefited from a strong balance of flexibility and mechanical strength, allowing them to be easily handled and rolled while also exhibiting very low residual stresses during subsequent lamination and co-sintering procedures. The final manufactured SOFC revealed a porous anode structure and a less porous cathode layer using electron microscopy. Whereas the electrolyte was dense enough to ensure gas tightness. There was no delamination throughout the cell. The cells were then electrochemically measured, and the reactivity of LSCFMo to various fuels and temperatures was investigated. LSCFMo performed best when fed by methanol at 700 °C, leaving no carbon traces after operation. The very low ohmic resistance of the electrodes indicates a very good design and manufacture technique. A conclusion is presented in the final section of this thesis to highlight the most significant achievements of this research.
8

Microextrusion 3D-Printing of Solid Oxide Fuel Cell Components

Baderuddin, Feroze Khan January 2016 (has links)
No description available.
9

Pulverspritzgießen von Metall-Keramik-Verbunden

Baumann, Andreas 14 January 2011 (has links) (PDF)
Die in der vorliegenden Arbeit untersuchten Metall-Keramik-Verbunde wurden mittels Pulverspritzgießen hergestellt. Unter Anwendung der teilautomatisierten Verfahrensoptionen Mehrkomponentenspritzgießen und Inmould-Labelling, welches u. a. die Verwendung tiefgezogener Grünfolien beinhaltete, wurden hierzu 2K-Prüfkörpergeometrien (Zugstab, Biegebruchstab, Ringverbund) und 2K-Demonstratoren (Innenzahnrad, Fadenführer, Greifer) jeweils bestehend aus Stahl 17-4PH und ZrO2 (3%Y2O3), im Co-Sinterverfahren unter H2-Atmosphäre bei 1350°C, entwickelt. Schlüssel zur Darstellung schwindungskonformer ZrO2- und Stahl 17-4PH-Formgebungsmassen war der Angleich der Pulverpackungsdichte. Untersucht wurde neben der Werkstoff- und Gefügeausbildung das sich während dem Formgebungs- und Sinterprozess ausbildende Metall-Keramik-Interface sowie die sich bevorzugt in diesem Bereich manifestierenden Verbundeigenspannungen. Neben der stoffschlüssigen Versinterung beider Partner konnte eine Steigerung der Verbundfestigkeit durch Legierungsmodifikation unter Ausschluss technologischer Fehlerquellen erreicht und spezifiziert werden.
10

Pulverspritzgießen von Metall-Keramik-Verbunden

Baumann, Andreas 13 December 2010 (has links)
Die in der vorliegenden Arbeit untersuchten Metall-Keramik-Verbunde wurden mittels Pulverspritzgießen hergestellt. Unter Anwendung der teilautomatisierten Verfahrensoptionen Mehrkomponentenspritzgießen und Inmould-Labelling, welches u. a. die Verwendung tiefgezogener Grünfolien beinhaltete, wurden hierzu 2K-Prüfkörpergeometrien (Zugstab, Biegebruchstab, Ringverbund) und 2K-Demonstratoren (Innenzahnrad, Fadenführer, Greifer) jeweils bestehend aus Stahl 17-4PH und ZrO2 (3%Y2O3), im Co-Sinterverfahren unter H2-Atmosphäre bei 1350°C, entwickelt. Schlüssel zur Darstellung schwindungskonformer ZrO2- und Stahl 17-4PH-Formgebungsmassen war der Angleich der Pulverpackungsdichte. Untersucht wurde neben der Werkstoff- und Gefügeausbildung das sich während dem Formgebungs- und Sinterprozess ausbildende Metall-Keramik-Interface sowie die sich bevorzugt in diesem Bereich manifestierenden Verbundeigenspannungen. Neben der stoffschlüssigen Versinterung beider Partner konnte eine Steigerung der Verbundfestigkeit durch Legierungsmodifikation unter Ausschluss technologischer Fehlerquellen erreicht und spezifiziert werden.:1 Einleitung und Zielstellung .................................................................................................5 2 Stand der Technik ..............................................................................................................6 2.1 Metall-Keramische-Verbundwerkstoffe und Werkstoffverbunde.....................................6 2.2 Werkstoffsystem ............................................................................................................6 2.2.1 Oxidkeramische Metall-Keramik-Verbunde.................................................................9 2.2.2 Nichtoxidkeramische Metall-Keramik-Verbunde........................................................15 2.3 Metall-Keramik-Interface..............................................................................................17 2.3.1 Stahl-Keramik-Komposite.........................................................................................21 2.3.2 Stahl-Keramik-Schichtverbunde................................................................................25 2.4 Konventionelle Verbindungs- und Fügetechnik.............................................................27 2.4.1 Kraft- und Formschluss.............................................................................................28 2.4.2 Lösbare Verbindungen .............................................................................................28 2.4.3 Nicht lösbare Verbindungen .....................................................................................29 2.4.4 Stoffschlüssige Verbindungen ..................................................................................30 2.5 Pulvertechnologische Verbindungs- und Fügetechnik ...................................................32 2.5.1 Co-Shaping..............................................................................................................34 2.5.2 Co-Firing..................................................................................................................38 2.6 Pulverspritzgießen........................................................................................................42 2.6.1 Prozesskette.............................................................................................................43 2.6.2 Werkstoffe...............................................................................................................45 2.6.3 Verfahrenscharakteristik...........................................................................................46 2.6.4 PIM in der industriellen Praxis ...................................................................................48 2.6.5 Mehrkomponentenspritzguss...................................................................................49 2.7 Prüfung und Spezifikation für spritzgegossene Metall-Keramik-Verbunde.....................52 2.7.1 zerstörende Prüfverfahren........................................................................................52 2.7.2 zerstörungsfreie Prüfverfahren .................................................................................55 2.7.3 Prädikative Methoden ..............................................................................................55 3 Experimenteller Teil..........................................................................................................57 3.1 Pulveranmusterung ......................................................................................................57 3.1.1 Feedstockherstellung und Charakterisierung ............................................................58 3.1.2 Grünfolienherstellung und Charakterisierung ...........................................................60 3.1.3 Thermische Analyse..................................................................................................62 3.2 Fertigungstechnologie..................................................................................................62 3.2.1 2-Komponentenpulverspritzgießen...........................................................................64 3.2.2 Folienhinterspritzen..................................................................................................64 3.2.3 Entbinderung und Sinterung ....................................................................................65 3.3 Werkstoff- und Verbundspezifikation...........................................................................66 3.3.1 Bestimmung der Dichte............................................................................................66 3.3.2 Dilatometrie.............................................................................................................66 3.5.2 Optische Interfaceanalyse.........................................................................................67 3.5.3 Mechanische Festigkeit ............................................................................................67 3.5.4 Röntgenographische Eigenspannungsanalyse ...........................................................68 4 Ergebnisdiskussion ...........................................................................................................70 4.1 Werkstoff- und Pulverauswahl .....................................................................................70 4.1.1 Untersuchungen zum Co-Sinterverhalten von Metall- und Keramikpulvern........................................................................................................78 4.1.2 Werkstoff- und Gefügeausbildung während der Co-Sinterung .................................85 4.2 Feedstock- und Bindersystem .......................................................................................92 4.2.1 Rheologische Eigenschaften .....................................................................................95 4.2.2 Thermisches Verhalten und Entbinderung ................................................................99 4.2.3 Verarbeitung von Feedstock und Grünfolie.............................................................101 4.3 Prüfkörperentwicklung...............................................................................................105 4.3.1 Gestaltungsoptionen..............................................................................................105 4.3.2 Verfahrensverifizierung ..........................................................................................106 4.3.3 Qualitative Bewertung der Verfahrensoption Inmould-Labelling..............................109 4.4 Werkstoffverbund.........................................................................................................112 4.4.1 Metall-Keramik-Interface........................................................................................112 4.4.2 Zugfestigkeit..........................................................................................................119 4.4.3 Verbundeigenspannungen .....................................................................................122 5 Zusammenfassung.........................................................................................................126 6 Literaturverzeichnis ........................................................................................................130 7 Abkürzungsverzeichnis...................................................................................................140 Anhang ................................................................................................................................141 A1 Spezifikation ZrO2-Feedstock Z1 .................................................................................142 A2 Spezifikation Stahl-17-4PH-Feedstock M1 ..................................................................143 A3 Rezeptur ZrO2-Folien ..................................................................................................144 A4 Rezeptur Stahl 17-4PH-Folien.....................................................................................145 A5 Prozessparameter – Spritzgießen (Bsp. Biegebruchstab 7x7x70mm)............................146 A6 Folienkonfektionierung – Bsp.- Demonstrator Greifer .................................................147 A7 Prozessautomatisierung – Bsp. Demonstrator Fadenführer..........................................148 A8 Spritzgegossene Demonstratoren – 2K-Spritzgießen...................................................149 A9 Spritzgegossene Demonstratoren – Inmould-Labelling................................................150 A10 Dilatometerschaubilder ..............................................................................................151 A11 Mikrozugproben ........................................................................................................152 A12 studentische Arbeiten ................................................................................................153

Page generated in 0.1228 seconds