• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • Tagged with
  • 14
  • 14
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Correlations among surfactant drag reduction additive chemical structures, rheological properties and microstructures in water and water/co-solvent systems

Zhang, Ying 12 September 2005 (has links)
No description available.
12

Experimental investigation of the effect of increasing the temperature on ASP flooding

Walker, Dustin Luke 20 February 2012 (has links)
Chemical EOR processes such as polymer flooding and surfactant polymer flooding must be designed and implemented in an economically attractive manner to be perceived as viable oil recovery options. The primary expenses associated with these processes are chemical costs which are predominantly controlled by the crude oil properties of a reservoir. Crude oil viscosity dictates polymer concentration requirements for mobility control and can also negatively affect the rheological properties of a microemulsion when surfactant polymer flooding. High microemulsion viscosity can be reduced with the introduction of an alcohol co-solvent into the surfactant formulation, but this increases the cost of the formulation. Experimental research done as part of this study combined the process of hot water injection with ASP flooding as a solution to reduce both crude oil viscosity and microemulsion viscosity. The results of this investigation revealed that when action was taken to reduce microemulsion viscosity, residual oil recoveries were greater than 90%. Hot water flooding lowered required polymer concentrations by reducing oil viscosity and lowered microemulsion viscosity without co-solvent. Laboratory testing of viscous microemulsions in core floods proved to compromise surfactant performance and oil recovery by causing high surfactant retention, high pressure gradients that would be unsustainable in the field, high required polymer concentrations to maintain favorable mobility during chemical flooding, reduced sweep efficiency and stagnation of microemulsions due to high viscosity from flowing at low shear rates. Rough scale-up chemical cost estimations were performed using core flood performance data. Without reducing microemulsion viscosity, field chemical costs were as high as 26.15 dollars per incremental barrel of oil. The introduction of co-solvent reduced chemical costs to as low as 22.01 dollars per incremental barrel of oil. This reduction in cost is the combined result of increasing residual oil recovery and the added cost of an alcohol co-solvent. Heating the reservoir by hot water flooding resulted in combined chemical and heating costs of 13.94 dollars per incremental barrel of oil. The significant drop in cost when using hot water is due to increased residual oil recovery, reduction in polymer concentrations from reduced oil viscosity and reduction of microemulsion viscosity at a fraction of the cost of co-solvent. / text
13

Production and characterization of biofuel from waste cooking

Emeji, Ikenna Chibuzor 08 1900 (has links)
At present, the use of other sources of energy other than energy source from crude oil has accelerated. This is due to limited resources of fossil fuel, increasing prices of crude oil and environmental concerns. Alternative fuels such as biofuel are becoming more important because it can serve as a replacement for petroleum diesel due to its comparable fuel properties and cleaner emission. For use in a standard diesel engine, biodiesel can be blended (mixed) with petroleum diesel at any concentration. In this study, transesterification of waste cooking oil with methanol was catalyzed by heterogeneous catalyst TiO2-supported-MgO and the biodiesel produced was characterised. Waste cooking oil (WCO) was used because it is regarded as one of the cheapest feedstock for biodiesel production in that most oils from oil crops are used as food. Waste cooking oil is available in vast amounts each day in every restaurants and fast food outlets worldwide. The waste cooking oil used in this study was laboratory prepared by the addition of 5 wt. % of oleic acid into 95 wt. % of soybeans oil.10 wt. % of titanium-supported-magnesium oxide catalyst (MgO/TiO2) used was prepared by incipient wetness impregnation and characterized using XRF, BET and XRD. These materials were tested with the catalyst for the conversion of waste vegetable oil to biodiesel in presence of methanol and hexane co-solvent. Methanol to oil mole ratio of 18:1 was employed in the transesterification process. When hexane was used as cosolvent, methanol to oil mole ratio of 18:1 and methanol to hexane mole ratio of 1:1 was used. The effects of reaction time, reaction temperature and hexane co-solvent on the waste vegetable oil conversion has been established. The 1HNMR analysis was used to estimate the structure of FAME produced. It was observed that the oil conversion increases with the increased reaction time, reaction temperature and use of hexane as co-solvent. / Chemical Engineering / M. Tech. (Chemical Engineering)
14

Production and characterization of biofuel from waste cooking

Emeji, Ikenna Chibuzor 08 1900 (has links)
At present, the use of other sources of energy other than energy source from crude oil has accelerated. This is due to limited resources of fossil fuel, increasing prices of crude oil and environmental concerns. Alternative fuels such as biofuel are becoming more important because it can serve as a replacement for petroleum diesel due to its comparable fuel properties and cleaner emission. For use in a standard diesel engine, biodiesel can be blended (mixed) with petroleum diesel at any concentration. In this study, transesterification of waste cooking oil with methanol was catalyzed by heterogeneous catalyst TiO2-supported-MgO and the biodiesel produced was characterised. Waste cooking oil (WCO) was used because it is regarded as one of the cheapest feedstock for biodiesel production in that most oils from oil crops are used as food. Waste cooking oil is available in vast amounts each day in every restaurants and fast food outlets worldwide. The waste cooking oil used in this study was laboratory prepared by the addition of 5 wt. % of oleic acid into 95 wt. % of soybeans oil.10 wt. % of titanium-supported-magnesium oxide catalyst (MgO/TiO2) used was prepared by incipient wetness impregnation and characterized using XRF, BET and XRD. These materials were tested with the catalyst for the conversion of waste vegetable oil to biodiesel in presence of methanol and hexane co-solvent. Methanol to oil mole ratio of 18:1 was employed in the transesterification process. When hexane was used as cosolvent, methanol to oil mole ratio of 18:1 and methanol to hexane mole ratio of 1:1 was used. The effects of reaction time, reaction temperature and hexane co-solvent on the waste vegetable oil conversion has been established. The 1HNMR analysis was used to estimate the structure of FAME produced. It was observed that the oil conversion increases with the increased reaction time, reaction temperature and use of hexane as co-solvent. / Chemical Engineering / M. Tech. (Chemical Engineering)

Page generated in 0.0321 seconds