• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 7
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyses of Reaction Rate Data for the Simple Hydrolysis of Acetic Anhydride in the Acetonitrile/Water and Acetone/Water Cosolvent Systems Using Recently Developed Thermodynamic Rate Equations

Wiseman, F. L., Scott, D. W., Tamine, J., O'Connell, R., Smarra, A., Olowoyo, S. 01 January 2020 (has links)
This article presents reaction rate data for the simple hydrolysis of acetic anhydride in the acetonitrile/water and acetone/water cosolvent systems and regression analyses using recently developed thermodynamic rate equations that contain electrostatic and solvent-solute terms. The isomole fraction plots for these reaction systems are linear, and previous theoretical work has shown that the electrostatic term is negligible for such systems. On the other hand, the reaction rates are dependent upon the cosolvent mole fraction, indicating that the solvent-solute term, which is modeled empirically, is significant. The results of the analyses provide the foundation for a paradigm shift away from the emphasis on electrostatic effects to more tenable explanations of kinetic behavior in solvent systems.
2

Product-Conformation-Driven Ligation of Peptides by V8 Protease

Srinivasulu, Sonati, Seetharama Acharya, A. 03 June 2002 (has links)
Organic co-solvent-induced secondary conformation of α17-40 of human hemoglobin facilitates the splicing of E30-R31 in a mixture of its complementary segments by V8 protease. The amino acid sequence of α17-40 has been conceptualized by the general structure FR1-EALER-FRII and the pentapeptide sequence EALER playing a major role in inducing the α-helical conformation. The primary structure of α17-40 has been engineered in multiple ways to perturb one, two, or all three regions and the influence of the organic co-solvent-induced conformation and the concomitant resistance of E30-R31 peptide bond to V8 protease digestion has been investigated. The central pentapeptide (EALER), referred to here as splicedon,3 appears to dictate a primary role in facilitating the splicing reaction. When the same flanking regions are used, (1) splicedons that carry amino acid residues of low α-helical potential, for example G at position 2 or 3 of the splicedon, generate a conformational trap of very low thermodynamic stability, giving an equilibrium yield of only 3%-5%; (2) splicedons with amino acid residues of good α-helical potential generate a conformational trap of medium thermodynamic stability and give an equilibrium yield of 20%-25%; (3) the splicedons with amino residues of good α-helical potential and also an amino acid that can generate an i, i + 4 side-chain carboxylate-guanidino (amino) interaction, a conformational trap of maximum thermodynamic stability is generated, giving an equilibrium yield of 45%-50%; and (4) the thermodynamic stability of the conformational trap of the spliced peptide is also influenced by the amino acid composition of the flanking regions. The V8 protease resistance of the spliced peptide bond is not a direct correlate of the amount of α-helical conformation induced into the product. The results of this study reflect the unique role of the splicedon in translating the organic co-solvent-induced product conformation as a site-specific stabilization of the spliced peptide bond. It is speculated that the splicedon with higher α-helical potential as compared to either one of the flanking regions achieves this by integrating its potential with that of the flanking region(s). Exchange of flanking regions with the products of other V8 protease-catalyzed splicing reactions will help to establish the general primary structural requirements of this class of splicing reactions and facilitate their application in modular construction of proteins.
3

Eyring Activation Energy Analysis of Acetic Anhydride Hydrolysis in Acetonitrile Cosolvent Systems

Mitchell, Nathan 01 May 2018 (has links) (PDF)
Acetic anhydride hydrolysis in water is considered a standard reaction for investigating activation energy parameters using cosolvents. Hydrolysis in water/acetonitrile cosolvent is monitored by measuring pH vs. time at temperatures from 15.0 to 40.0 °C and mole fraction of water from 1 to 0.750. This work utilizes a temperature controlled water bath and a Vernier glass-body pH probe with Vernier Logger Pro 3.10.1 software for automated data collection. Data analysis is used to determine observed kinetic rate constants under the assumption that hydrolysis is a pseudo-first-order reaction. Eyring plots were used to compare activation energy parameters under iso-mole fraction conditions. The hydrolysis reaction of acetic anhydride was enthalpically stabilized and entropically destabilized at mole fractions of acetonitrile greater than 0.17 and the reverse occurred at mole fractions less than 0.17. Activation enthalpy and entropy result in the reaction being less favorable to form products as mole fraction of acetonitrile increased.
4

Kinetics and Activation Energy Parameters for Hydrolysis of Acetic Anhydride in a Water-Acetone Cosolvent System

Olowoyo, Samson 01 May 2018 (has links) (PDF)
The hydrolysis of acetic anhydride is a widely-studied liquid phase reaction studied since 1906. Different approaches have been used to study the kinetics of this reaction. Approaches used by researchers have involved the use of sophisticated experimental set-ups. In this work, the pH technique has been adopted which involves the use of a pH meter to monitor the hydrolysis reaction. Analysis of the hydrolysis reaction has been performed for water/acetone cosolvent systems over a range of temperatures and mole fractions. Eyring analysis was performed under isomole fraction conditions and activation enthalpy, entropy, and Gibbs free energy for hydrolysis of acetic anhydride have been determined. The isomole fraction Eyring plots are linear, because, activation enthalpy and entropy are independent of temperature under these conditions. Activation free Gibbs energy increases with increasing temperature at a constant water mole fraction, while it decreases with increasing water mole fraction at constant temperature.
5

Experimental investigation of the effect of increasing the temperature on ASP flooding

Walker, Dustin Luke 20 February 2012 (has links)
Chemical EOR processes such as polymer flooding and surfactant polymer flooding must be designed and implemented in an economically attractive manner to be perceived as viable oil recovery options. The primary expenses associated with these processes are chemical costs which are predominantly controlled by the crude oil properties of a reservoir. Crude oil viscosity dictates polymer concentration requirements for mobility control and can also negatively affect the rheological properties of a microemulsion when surfactant polymer flooding. High microemulsion viscosity can be reduced with the introduction of an alcohol co-solvent into the surfactant formulation, but this increases the cost of the formulation. Experimental research done as part of this study combined the process of hot water injection with ASP flooding as a solution to reduce both crude oil viscosity and microemulsion viscosity. The results of this investigation revealed that when action was taken to reduce microemulsion viscosity, residual oil recoveries were greater than 90%. Hot water flooding lowered required polymer concentrations by reducing oil viscosity and lowered microemulsion viscosity without co-solvent. Laboratory testing of viscous microemulsions in core floods proved to compromise surfactant performance and oil recovery by causing high surfactant retention, high pressure gradients that would be unsustainable in the field, high required polymer concentrations to maintain favorable mobility during chemical flooding, reduced sweep efficiency and stagnation of microemulsions due to high viscosity from flowing at low shear rates. Rough scale-up chemical cost estimations were performed using core flood performance data. Without reducing microemulsion viscosity, field chemical costs were as high as 26.15 dollars per incremental barrel of oil. The introduction of co-solvent reduced chemical costs to as low as 22.01 dollars per incremental barrel of oil. This reduction in cost is the combined result of increasing residual oil recovery and the added cost of an alcohol co-solvent. Heating the reservoir by hot water flooding resulted in combined chemical and heating costs of 13.94 dollars per incremental barrel of oil. The significant drop in cost when using hot water is due to increased residual oil recovery, reduction in polymer concentrations from reduced oil viscosity and reduction of microemulsion viscosity at a fraction of the cost of co-solvent. / text
6

Estudos laboratoriais para avaliação do ootencial de contaminação de água e de solo por gasolina oxigenada. / Laboratory studies to evaluation of the potential of groundwater and soil contamination by oxygenated gasoline.

Ferreira, Sayonara Brederode 24 January 2000 (has links)
Em muitos países e principalmente no Brasil, compostos oxigenados tais como etanol e metil terta-butil-éter (MTBE) têm sido adicionados à gasolina em cerca de 26% do seu volume para aumentar a octanagem do motor e diminuir a emissão de monóxido de carbono e os níveis de ozônio na atmosfera. O derramamento de tais gasolinas, referidas como gasolina oxigenada tem um efeito cosolvente, provocando um aumento da concentração dos hidrocarbonetos na água subterrânea. A taxa de dissolução em água da gasolina oxigenada, que é dependente das propriedades químicas dos compostos orgânicos, determinam o grau e a severidade de contaminação da água subterrânea nas vizinhanças do derramamento. O objetivo do trabalho foi analisar e quantificar o potencial de contaminação da água subterrânea e de solos arenosos residuais dos arenitos da Formação Botucatu por derramamento de gasolina oxigenada. As análises realizadas buscam fornecer dados para a modelagem numérica em casos envolvendo derramamento de gasolina. Ensaios de equilíbrio em lote e de dissolução em colunas foram realizados objetivando a determinação da concentração aquosa de hidrocarbonetos da gasolina em equilíbrio de fases e a avaliação do tempo estimado para total dissolução em água dos hidrocarbonetos da gasolina pura. Ambos os ensaios analisaram também o efeito cosolvente do etanol na mistura. Verificou-se a validade da lei de Raoult e do modelo log-linear na determinação da concentração aquosa da gasolina pura e oxigenada. Em colunas de solos não saturados avaliou-se a difusão na fase vapor dos compostos orgânicos da gasolina em função do tempo. Finalizando as análises, fez-se uma simulação numérica do transporte da gasolina em zonas não saturadas fazendo-se uso do programa R-UNSAT. / In many countries and mainly in Brazil oxygenated compounds such as ethanol and MTBE have been added to gasoline up to 26% to increase the octane level and to reduce carbon monoxide and ozone levels in the air. The spill of such gasolines, referred as oxygenated gasoline has a potential cosolvent effect, resulting in an increased groundwater concentration of hydrocarbons. The rate of oxygenated gasoline dissolution, which is dependent of the chemical properties of the compounds, determines the degree and severity of groundwater contamination in the vicinity of the spill. The goal of this research was to analyze and to quantify the potential of contamination of the groundwater and of the residual sandy soils from Botucatu sandstone due to the spill of oxigenated gasoline. The performed analysis supply data to the numerical model in case of gasoline spills. Laboratory batch and column leaching tests were carried out in order to determine the equilibrium aqueous concentration of the hydrocarbons compounds of gasoline and to evaluate the time scale for aqueous dissolution of the hydrocarbons compounds. Both tests have analyzed the cosolvent effect of ethanol in the mixture. It was verified the validity of the Raoult's law and the log-linear cosolvency model to estimate the solubility of the hydrocarbons compounds from unamended gasoline and from oxygenated gasoline. Column tests with unsaturated undisturbed soil samples were carried out to investigate the vapor-phase diffusion of aromatic hydrocarbons compounds with time. Finally the transport of gasoline in unsaturated zones was simulated with the R-UNSAT model.
7

Estudos laboratoriais para avaliação do ootencial de contaminação de água e de solo por gasolina oxigenada. / Laboratory studies to evaluation of the potential of groundwater and soil contamination by oxygenated gasoline.

Sayonara Brederode Ferreira 24 January 2000 (has links)
Em muitos países e principalmente no Brasil, compostos oxigenados tais como etanol e metil terta-butil-éter (MTBE) têm sido adicionados à gasolina em cerca de 26% do seu volume para aumentar a octanagem do motor e diminuir a emissão de monóxido de carbono e os níveis de ozônio na atmosfera. O derramamento de tais gasolinas, referidas como gasolina oxigenada tem um efeito cosolvente, provocando um aumento da concentração dos hidrocarbonetos na água subterrânea. A taxa de dissolução em água da gasolina oxigenada, que é dependente das propriedades químicas dos compostos orgânicos, determinam o grau e a severidade de contaminação da água subterrânea nas vizinhanças do derramamento. O objetivo do trabalho foi analisar e quantificar o potencial de contaminação da água subterrânea e de solos arenosos residuais dos arenitos da Formação Botucatu por derramamento de gasolina oxigenada. As análises realizadas buscam fornecer dados para a modelagem numérica em casos envolvendo derramamento de gasolina. Ensaios de equilíbrio em lote e de dissolução em colunas foram realizados objetivando a determinação da concentração aquosa de hidrocarbonetos da gasolina em equilíbrio de fases e a avaliação do tempo estimado para total dissolução em água dos hidrocarbonetos da gasolina pura. Ambos os ensaios analisaram também o efeito cosolvente do etanol na mistura. Verificou-se a validade da lei de Raoult e do modelo log-linear na determinação da concentração aquosa da gasolina pura e oxigenada. Em colunas de solos não saturados avaliou-se a difusão na fase vapor dos compostos orgânicos da gasolina em função do tempo. Finalizando as análises, fez-se uma simulação numérica do transporte da gasolina em zonas não saturadas fazendo-se uso do programa R-UNSAT. / In many countries and mainly in Brazil oxygenated compounds such as ethanol and MTBE have been added to gasoline up to 26% to increase the octane level and to reduce carbon monoxide and ozone levels in the air. The spill of such gasolines, referred as oxygenated gasoline has a potential cosolvent effect, resulting in an increased groundwater concentration of hydrocarbons. The rate of oxygenated gasoline dissolution, which is dependent of the chemical properties of the compounds, determines the degree and severity of groundwater contamination in the vicinity of the spill. The goal of this research was to analyze and to quantify the potential of contamination of the groundwater and of the residual sandy soils from Botucatu sandstone due to the spill of oxigenated gasoline. The performed analysis supply data to the numerical model in case of gasoline spills. Laboratory batch and column leaching tests were carried out in order to determine the equilibrium aqueous concentration of the hydrocarbons compounds of gasoline and to evaluate the time scale for aqueous dissolution of the hydrocarbons compounds. Both tests have analyzed the cosolvent effect of ethanol in the mixture. It was verified the validity of the Raoult's law and the log-linear cosolvency model to estimate the solubility of the hydrocarbons compounds from unamended gasoline and from oxygenated gasoline. Column tests with unsaturated undisturbed soil samples were carried out to investigate the vapor-phase diffusion of aromatic hydrocarbons compounds with time. Finally the transport of gasoline in unsaturated zones was simulated with the R-UNSAT model.

Page generated in 0.0655 seconds