• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 21
  • 9
  • 7
  • 5
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 188
  • 188
  • 25
  • 19
  • 16
  • 16
  • 16
  • 16
  • 15
  • 15
  • 13
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Toward improved assessment of freshwater salinization as a benthic macroinvertebrate stressor

Timpano, Anthony J. 27 September 2017 (has links)
Salinization of freshwaters by human activities is of growing concern globally. Salt pollution can cause adverse effects to aquatic biodiversity, ecosystem function, ecosystem services, and human health. In many regions of the world, and in coal-mining-influenced streams of the temperate forests of Appalachia USA, specific conductance (SC), a surrogate measure for the dissolved major ions composing salinity, has been linked to decreased diversity of benthic macroinvertebrates. However, assessments used to reach this conclusion have generally not accounted for temporal variability of salinity, as most studies use "snapshot" SC data collected concurrently with biological data at a single point in time. Effective management of salinization requires tools to accurately monitor and predict salinity while accounting for temporal variability. To improve those tools, I conducted analyses of 4.5 years of salinity and benthic macroinvertebrate data from 25 forested headwater streams spanning a gradient of salinity where non-salinity stressors were minimized. My objectives were to: 1) model the annual pattern of salinity, 2) determine if salinity measures derived from continuous data are more precise than snapshot SC as predictors of aquatic biology, and 3) quantify response to salinity of the benthic macroinvertebrate community. A sinusoidal model of the annual cycle of SC using daily measurements for 4.5 years revealed that salinity naturally deviated ± 20% from annual mean levels, with minimum SC occurring in late winter and maximum SC occurring in late summer. The pattern was responsive to seasonal dilution as driven by catchment evapotranspiration dynamics. Alternative discrete sampling intervals can approximate the pattern revealed by continuous SC data if sampling intervals are ≤ 30 days. Continuous SC variables did not significantly improve precision for prediction of benthic macroinvertebrate metrics (p > 0.1) as compared to snapshot SC using generalized additive mixed models. Results suggest that snapshot SC is a capable predictor of benthic macroinvertebrate community structure if sampling is carefully timed. However, continuous SC data can quantify chronic salt exposure, which supports a hypothesis to explain how temporal variability of field-based observations of salt sensitivity of benthic macroinvertebrate taxa may be influenced by life stage. Benthic macroinvertebrate community structure diverged from reference condition as salinity increased, with stronger relationships in Spring than in Fall. Intra-seasonal variation in community structure was also revealed across sampling dates. Non-Baetidae Ephemeroptera were most sensitive to salinity, with richness and abundance lower than reference at SC > 200 =µS/cm in Spring based on snapshot SC. Equivalent effects were predicted by mean monthly SC of 250-300 µS/cm from the prior Fall. Continuous conductivity monitoring may improve assessment of salinity effects because they can describe life-cycle exposure, which may aid investigations of mechanisms driving field-based observations of benthic-macroinvertebrate community alteration. / Ph. D. / Freshwater ecosystems around the world are at risk of contamination from salt pollution resulting from a variety of human activities. All natural freshwaters contain low levels of dissolved minerals, or salts, the combined concentration of which is referred to as salinity. Activities such as crop irrigation, road de-icing, and mining can cause salt pollution in streams and rivers, and excessive salinity can be toxic to many aquatic organisms. In many regions of the world, including in coal-mining-influenced streams of Appalachia USA, elevated salinity has been linked to decreased diversity of benthic macroinvertebrates, which are primarily aquatic insects, a group critical to healthy stream ecosystems. However, assessments used to reach this conclusion have generally not accounted for annual variability of salinity, as most studies use “snapshot” salinity data collected concurrently with biological data at a single point in time. Effective management of salinity impacts requires tools to accurately monitor and predict salinity while accounting for annual variability. Toward improving those tools, I conducted analyses of 4.5 years of salinity and aquatic insect data from 25 small central Appalachian mountain streams spanning a gradient of salinity. My objectives were to: 1) characterize the annual pattern of salinity using high-frequency salinity data, 2) determine if high-frequency salinity data is better than snapshot data for predicting aquatic insect diversity, and 3) measure the response to salinity of the aquatic insect community and identify salinity levels associated with insect biodiversity loss. High-frequency (daily) data revealed that salinity exhibited a predictable cyclic annual pattern with seasonal deviations of ± 20% from annual average salinity levels. Minimum salinity occurred during late winter and maximum salinity occurred in late summer. Lower-frequency salinity data can approximate the annual pattern if sampling interval is ≤ 30 days. Snapshot salinity was equally capable as high-frequency data of predicting aquatic insect diversity provided that snapshot salinity sampling is carefully timed. Diversity of many aquatic insects, especially mayflies, declined with increasing salinity, with stronger relationships in Spring than in Fall. Variation in diversity measures was also somewhat related to sample timing within seasons. Alteration of aquatic insect communities was evident at total salt concentrations levels of approximately 130 – 200 parts per million, depending on time of year. Efforts to manage salinity impacts to aquatic life may be improved by integrating knowledge of annual salinity patterns with how aquatic insects respond to salt pollution.
62

Evaluating the use of soil amendments for shortleaf pine (Pinus echinata) restoration on post-mined landscapes

Iwamoto, Casey 13 August 2024 (has links) (PDF)
Coal strip mining leaves widespread degraded soil throughout the southeastern US. These soils tend to have low pH, high bulk density, impacted hydrologic processes, and an accumulation of heavy metals that limit revegetation and reforestation efforts. Shortleaf pine (Pinus echinata) can tolerate these poor conditions on post-mined sites and has the largest native pine range in the southeastern US, making it an ideal species for restoration efforts. Additionally, the use of soil amendments to improve soil physical and chemical parameters is expected to lead to improved plant establishment and growth. To address the challenges associated with degraded post-mined landscapes, two studies were conducted using a biochar (BC) and microbial amendment (MA). Few empirical studies have been conducted on the success of soil amendments for soil physical properties, chemical properties, and tree growth. To fill this knowledge gap, a three year field trial was established on a reclaimed mining site in Alabama. Shortleaf pine seedlings were planted in a complete randomized block design with two soil amendment treatments: BC and MA. The second study then evaluated how climate change impacts restoration efforts. Specifically, this study observed how precipitation uncertainty affects the effectiveness of existing restoration techniques. This comprehensive 6-month greenhouse experiment in Mississippi examined shortleaf pine restoration under dry and wet moisture regimes. Soil amendments were applied to one year old seedlings replicated across moisture treatments including the same mixtures of amendments as the field experiment in addition to a no tree treatment, a pot with only post-mined soil. Findings from both studies indicate that BC did not improve measured soil properties or tree growth as expected, while the MA induced short-term impacts on soil physical and chemical properties that impacted tree growth. The greenhouse results also indicated that changes in precipitation do not impact the effects of any soil amendment. Additionally, MA may have the potential to change the allocation of biomass for shortleaf pine, which has implications for survival and restoration. In the short-term, the application of commercially recommended levels of treatments were ineffective at supporting tree growth through improvements to measured soil characteristics.
63

Hydrologic and hydrochemical processes on mine spoil fills

Clark, Elyse V. 26 April 2017 (has links)
Appalachian surface coal mining operations fracture rocks (termed mine spoils), resulting in the weathering of minerals and release of water-soluble ions to streams. Collectively, the concentration of water-soluble ions in streams is called total dissolved solids (TDS) and streams with elevated TDS often have altered biota. The surficial, subsurface, and discharge properties of mine spoils influence TDS discharge concentrations. This study aimed to improve understanding of how hydrologic and hydrochemical processes occur and function in coal mining areas. These processes were characterized by infiltration and dye staining tests, mine spoil leaching experiments and modeling, and mining-influenced stream discharge monitoring. Results indicate that many factors influence hydrologic and hydrochemical processes in Appalachian coal mining areas, but these processes evolve over time as subsurface flow paths develop, mine rocks weather, and TDS is released from mine spoils. Fourteen years after placement, mean infiltration rates of mine soils reclaimed with trees were statistically greater than areas reclaimed with grasses, and different subsurface flow types were evident, indicating vegetation type influenced hydrologic processes. Specific conductance (SC) leaching patterns from mine spoils conformed to an exponential decay and linear segmented regression model. Maximum SC values (1108 ± 161 µS cm⁻¹) occurred initially during leaching, exponentially decayed, then exhibited linear SC releases (276 ± 25 µS cm⁻¹) that were elevated relative to natural background levels at the end of leaching. Major element (S, Ca, Mg, K, Na) leaching patterns resembled those of SC, whereas trace elements (As, Cd, Cu, Ni, Pb, Se) transitioned to linear release earlier in the leaching period. Mining-influenced stream SC discharge patterns varied by season and by precipitation amounts during storm events. Storm responses were characterized by either infiltration-excess overland flow or delayed SC releases due to internal flow through the VF. Given these results, mining companies wishing to control TDS discharges may be selective and pre-test mine spoils for total S and paste SC to determine TDS-generation potential. Isolation of spoils with high-TDS release potentials (i.e. unweathered sandstones and mudstones) from water-rock contact may help improve TDS discharges. / Ph. D. / The Appalachian surface coal mining process removes rock from above a coal seam by fracturing it with explosives. The fractured rock is then used to reconstruct the original shape of the mountain, and any rock left over after that reconstruction is often placed adjacent to the mining area in landforms constructed to direct water from the mine site to a natural stream. During the mining process, the minerals in the rocks rapidly break down, and when rainwater causes the weathering products (e.g. elements such as calcium, magnesium, sulfur, selenium, and arsenic) to discharge to a stream, the aquatic ecosystem of that stream is usually affected. The objective of this study was to characterize the processes occurring in coal mining areas that ultimately influence the water quality discharged by the mine. Results indicate that many factors influence how rainwater travels through coal mining rocks and the eventual quality of waters discharged from mine rocks, and that these factors evolve over time. A study of 14-year-old mine soils indicated that the type of vegetation (i.e. trees vs. grass) planted after mining influences how water infiltrates into soils and the pathways water travels through once infiltrated. Laboratory studies of mine rocks found that many of those rocks conformed to a single mathematical model that described their elemental release patterns. The model indicated that the quality of waters discharged from mining areas is elevated above natural conditions in the initial phase after mining. Those levels appear to decline over time, but may still have long-term effects on aquatic ecosystems. Field studies of five mining-influenced streams also found that the water quality in those streams was above levels which are detrimental to aquatic ecosystems at all flow levels. It may be helpful to mining companies to test mine rocks prior to mining to determine the best location to place the rocks after mining for mitigation of water quality issues. Isolating mine rocks with the highest potentials to impact water quality may improve post-mining water quality effects.
64

Selenium Dynamics in Headwater Streams of the Central Appalachian Coalfields: An Investigation of Enrichment and Bioaccumulation

Whitmore, Keridwen McLeyne 06 February 2017 (has links)
Surface coal-mining is a source of selenium (Se) contamination in streams of the Appalachian coalfields. Selenium dynamics in aquatic systems are complex and largely controlled by site-specific factors, but have been understudied in Appalachian headwater streams. In this study, we evaluated the degree and dynamics of Se enrichment and bioaccumulation in headwater streams influenced by coal-mining. Based on Se concentrations in macroinvertebrates collected from 23 headwater streams, nine sites were selected for further study: three reference streams with no history of coal-mining, and six streams influenced by coal mining. Mining-influenced streams were further separated into high-Se and low-Sestreams based on macroinvertebrate tissue Se concentrations. Water-column, sediment, biofilm, leaf detritus, and prey and predator macroinvertebrates were collected and analyzed for Se concentration during two sample periods, Sept. - Oct. 2015 and Feb.-March 2016. Selenium concentrations in all media were found to be elevated in mining-influenced over reference streams and in high-Se over low-Se streams. Selenium dynamics, enrichment in particulate media (sediment, biofilm and leaf detritus) and trophic transfer of Se to prey from particulate media and to predators from prey, did not exhibit major differences among streams of differing Se levels. Water column Se concentrations were predicative of Se concentrations in macroinvertebrate tissues. Findings from this study indicate headwater streams influenced by coal-mining are capable of a high degree of Se bioaccumulation in macroinvertebrate populations. / Master of Science / Surface coal-mining is a source of selenium (Se) contamination in streams of the Appalachian coalfields. Selenium dynamics in aquatic systems are complex and largely controlled by sitespecific factors, but have been understudied in Appalachian headwater streams. In this study, we evaluated the degree and dynamics of Se enrichment and bioaccumulation in headwater streams influenced by coal-mining. Based on Se concentrations in macroinvertebrates collected from 23 headwater streams, nine sites were selected for further study: three reference streams with no history of coal-mining, and six streams influenced by coal mining. Mining-influenced streams were further separated into “high-Se” and “low-Se” streams based on macroinvertebrate tissue Se concentrations. Water-column, sediment, biofilm, leaf detritus, and prey and predator macroinvertebrates were collected and analyzed for Se concentration during two sample periods, Sept. - Oct. 2015 and Feb.- March 2016. Selenium concentrations in all media were found to be elevated in mining-influenced over reference streams and in high-Se over low-Se streams. Selenium dynamics, enrichment in particulate media (sediment, biofilm and leaf detritus) and trophic transfer of Se to prey from particulate media and to predators from prey, did not exhibit major differences among streams of differing Se levels. Water column Se concentrations were predicative of Se concentrations in macroinvertebrate tissues. Findings from this study indicate headwater streams influenced by coal-mining are capable of a high degree of Se bioaccumulation in macroinvertebrate populations.
65

Characterisation of airborne dust in South African underground and opencast coal mines : a pilot study / Machiel Jacobus Wentzel

Wentzel, Machiel Jacobus January 2015 (has links)
Dust is a well-known occupational hygiene challenge and has been throughout the years, especially in the coal mining industry. The hazards arising from coal dust will differ between geographical areas due to the unique characteristics of dust from the coal mining environment. It is therefore of upmost importance to identify these qualities or characteristics of coal dust in order to understand the potential hazards it may pose. It is also important to consider the presence of nanoparticles which until recently remained neglected due to the absence of methods to study them. Aim: The aim of this study was to collect significant quantities of airborne dust through static sampling to characterise the physical, morphological as well as elemental properties of inhalable and respirable dust produced at two South African underground and two opencast coal mines. Personal exposure quantification was therefore not the primary concern in this study. Method: Static dust sampling was done at two mining areas of the two opencast and underground coal mines using four Institute of Occupational Medicine (IOM) and four cyclone samplers per area at each mine. A condensation particle counter (CPC) was also used at the opencast areas. The opencast areas included blast hole drilling, drag line and power shovel operations. The underground areas included the continuous miner and roof bolter operations. Gravimetric analyses of the cyclone and IOM samples were done as well as scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis. Results: Mine A (opencast and underground) produces higher grade coal in comparison to mine B (opencast and underground). Gravimetric analysis indicated higher average inhalable (55.35 mg/m3) and respirable (2.13 mg/m3) concentrations of dust in the underground areas when compared to the opencast areas (34.73 mg/m3 and 0.33 mg/m3). Blast hole drilling operations indicated higher average inhalable and respirable dust concentrations (39.02 mg/m3 and 0.41 mg/m3) when compared to the drag line and power shovel operations (30.44 mg/m3 and 0.246 mg/m3). CPC results showed higher average concentrations of sub-micron particles at the blast hole drilling areas per cubic metre (63132 x 106) compared to the drag line and power shovel operations (38877 x 106). EDS analysis from the opencast areas indicated much higher concentrations of impurities (with lower concentrations of carbon – 33.33%) when compared to samples taken from the underground mining activities (65.41%). The EDS results from the opencast areas differed substantially. The highest concentrations of silica were found at the blast hole drilling areas. EDS results from the underground areas indicated that mine A has slightly higher concentrations of carbon (66.2%) with less impurities when compared to mine B (64.62%). The continuous miner operations showed a higher concentration of impurities when compared to the dust from the roof bolter. SEM results from the opencast areas revealed that the majority of particles are irregularly shaped and the presence of quartz and agglomerations are evident. SEM results from the underground areas were similar except that the roof bolter produced smaller sized particles when compared to the continuous miner. It also seemed that the areas with higher levels of impurities produced more sub-micron particles. Conclusions: It is possible to identify the majority of physical and elemental characteristics of coal dust by means of gravimetric analysis, particle counting, SEM and EDS. There were differences found, regarding the morphological; chemical and physical characteristics, between the different opencast and underground areas at mine A and mine B due to the type of mining activity and amount of overburden present. Silicosis, Pneumoconiosis and Chronic obstructive pulmonary disease are some of the possible health concerns. It has been seen that dust from higher grade coal mines contributed to more developed stages of these diseases. / MSc (Occupational Hygiene), North-West University, Potchefstroom Campus, 2015
66

Characterisation of airborne dust in South African underground and opencast coal mines : a pilot study / Machiel Jacobus Wentzel

Wentzel, Machiel Jacobus January 2015 (has links)
Dust is a well-known occupational hygiene challenge and has been throughout the years, especially in the coal mining industry. The hazards arising from coal dust will differ between geographical areas due to the unique characteristics of dust from the coal mining environment. It is therefore of upmost importance to identify these qualities or characteristics of coal dust in order to understand the potential hazards it may pose. It is also important to consider the presence of nanoparticles which until recently remained neglected due to the absence of methods to study them. Aim: The aim of this study was to collect significant quantities of airborne dust through static sampling to characterise the physical, morphological as well as elemental properties of inhalable and respirable dust produced at two South African underground and two opencast coal mines. Personal exposure quantification was therefore not the primary concern in this study. Method: Static dust sampling was done at two mining areas of the two opencast and underground coal mines using four Institute of Occupational Medicine (IOM) and four cyclone samplers per area at each mine. A condensation particle counter (CPC) was also used at the opencast areas. The opencast areas included blast hole drilling, drag line and power shovel operations. The underground areas included the continuous miner and roof bolter operations. Gravimetric analyses of the cyclone and IOM samples were done as well as scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis. Results: Mine A (opencast and underground) produces higher grade coal in comparison to mine B (opencast and underground). Gravimetric analysis indicated higher average inhalable (55.35 mg/m3) and respirable (2.13 mg/m3) concentrations of dust in the underground areas when compared to the opencast areas (34.73 mg/m3 and 0.33 mg/m3). Blast hole drilling operations indicated higher average inhalable and respirable dust concentrations (39.02 mg/m3 and 0.41 mg/m3) when compared to the drag line and power shovel operations (30.44 mg/m3 and 0.246 mg/m3). CPC results showed higher average concentrations of sub-micron particles at the blast hole drilling areas per cubic metre (63132 x 106) compared to the drag line and power shovel operations (38877 x 106). EDS analysis from the opencast areas indicated much higher concentrations of impurities (with lower concentrations of carbon – 33.33%) when compared to samples taken from the underground mining activities (65.41%). The EDS results from the opencast areas differed substantially. The highest concentrations of silica were found at the blast hole drilling areas. EDS results from the underground areas indicated that mine A has slightly higher concentrations of carbon (66.2%) with less impurities when compared to mine B (64.62%). The continuous miner operations showed a higher concentration of impurities when compared to the dust from the roof bolter. SEM results from the opencast areas revealed that the majority of particles are irregularly shaped and the presence of quartz and agglomerations are evident. SEM results from the underground areas were similar except that the roof bolter produced smaller sized particles when compared to the continuous miner. It also seemed that the areas with higher levels of impurities produced more sub-micron particles. Conclusions: It is possible to identify the majority of physical and elemental characteristics of coal dust by means of gravimetric analysis, particle counting, SEM and EDS. There were differences found, regarding the morphological; chemical and physical characteristics, between the different opencast and underground areas at mine A and mine B due to the type of mining activity and amount of overburden present. Silicosis, Pneumoconiosis and Chronic obstructive pulmonary disease are some of the possible health concerns. It has been seen that dust from higher grade coal mines contributed to more developed stages of these diseases. / MSc (Occupational Hygiene), North-West University, Potchefstroom Campus, 2015
67

MODERN ROCK DUST DEVELOPMENT AND EVALUATION FOR USE IN UNDERGROUND COAL MINES

Eades, Robert 01 January 2016 (has links)
Following the promulgation of new permissible respirable dust standards by MSHA in 2014, new alternative rock dusts were created that combined the advantages of current industry applications while potentially reducing miner exposure to respirable dust. Research was performed to compare the explosion suppressing and ejection characteristics of three new types of rock dust to existing rock dust types. Explosion suppression tests were conducted in a 38-L chamber where pressures were recorded. Angle of ejection tests were conducted using a high explosive shock tube and high speed photography to determine angle of ejection and lift velocity. A comprehensive comparison of the results of these tests shows that these newly developed dusts have improved results for flame suppression and ejection when compared to typical wet dust applications.
68

Water scarcity and electricity generation in South Africa

Wassung, Natalie 12 1900 (has links)
Thesis (MPhil)--Stellenbosch University, 2010. / ENGLISH ABSTRACT: South Africa has a mean annual precipitation far lower than the global average. This is a fundamental constraint to development, especially when the country has already run out of surplus water and dilution capacity. To add further pressure, Southern Africa’s water resources are expected to decrease as a result of climate change. Despite the potential devastation, the country’s response to climate change has been limited. South Africa’s energy sector is dominated by coal power stations and is the country’s primary emitter of carbon dioxide. Given the significantly higher water usage of coal-fired power plants compared to that of most renewable energy power plants, the transition to a clean energy infrastructure might be more successfully motivated by water scarcity than by the promise of reduced carbon emissions. This article analyses more critically the impact of coal-fired electricity generation on South Africa’s water resources, by estimating a water-use figure that extends backwards from the power plant to include water used during extraction of the coal. This figure can then be compared to the water usage of alternative electricity generation options. It is then possible to estimate how much water could be saved by substituting these alternatives in place of additional coal-fired plants. / AFRIKAANSE OPSOMMING: Suid-Afrika se gemiddelde jaarlikse neerslag is baie laer as die wêreldwye gemiddelde. Dit plaas ’n wesenlike beperking op ontwikkeling, veral aangesien die land se surplus water- en verdunningskapasiteit reeds uitgeput is. Om die saak verder te vererger, word verwag dat Suidelike Afrika se waterbronne gaan kleiner word as gevolg van klimaatsverandering. Ten spyte van die potensiële ramp, was die land se reaksie op klimaatsverandering tot dusver baie beperk. Steenkoolkragstasies, wat Suid-Afrika se energiesektor oorheers, is die land se primêre bron van koolstofdioksieduitlating. Gegewe die beduidend hoër waterverbruik van steenkoolkragstasies teenoor dié van die meeste kragstasies wat met hernubare energie werk, kan die verandering na ’n skoonenergie-infrastruktuur meer suksesvol gemotiveer word deur waterskaarste as deur die belofte van verminderde koolstofuitlatings. Hierdie artikel analiseer die impak van steenkoolgedrewe elektrisiteitsopwekking op Suid-Afrika se waterbronne meer krities deur te beraam hoeveel water verbruik word van die kragstasie terug tot by die ontginning van die steenkool. Hierdie syfer kan dan vergelyk word met die waterverbruik van alternatiewe kragopwekkingsopsies. Dit is dan moontlik om te beraam hoeveel water gespaar kan word deur hierdie alternatiewe op te rig in plaas van bykomende steenkoolkragstasies.
69

Energy-water nexus : sustainability of coal and water resources

Hebel, Anna Kathleen 01 November 2010 (has links)
Energy and water are two precious natural resources with which demand will continue to grow with increased population growth. Coal provides a cheap and abundant source of energy but with important environmental effects on air and water. An analysis of the current coal production in Texas, one of the leading providers of energy in the United States, will be discussed along with the possibility of creating a coal-to-liquids market in Texas from existing and future coal mining operations. An in-depth discussion into the water requirements for traditional coal production and coal-to-liquids will assist in analyzing its possible production and sustainability. / text
70

We Hear the Whistle Call: The Second World War in Glace Bay, Cape Breton

MacGillivray, Shannon A. 13 September 2012 (has links)
Many historians have presented the narrative of Canada’s Second World War experience as a “good” war. Individuals and communities came together in patriotism and a common purpose to furnish the national war effort with military manpower, labour, financial contributions, and voluntary efforts. As the dark years of the Great Depression gave way to unprecedented levels of industrial and economic growth, falling unemployment rates, increased urbanization, and a wealth of social programs, Canada’s future was bright. However, this optimistic picture is not representative of Canada as a whole. Some regions fared better than others, and industrial Cape Breton was one of those that benefited the least from the opportunities presented by the war. Glace Bay, Cape Breton’s largest mining town and long-time hotbed of industrial strife and labour radicalism, serves as an ideal case study of the region’s largely unprofitable and unchanging wartime experience. Long plagued by poverty, poor living conditions, and underdeveloped industry, and desperately seeking to break free of its destitution, Glace Bay tried and failed to take advantage of wartime opportunities for industrial diversification and local improvement.

Page generated in 0.0887 seconds