• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 819
  • 301
  • 164
  • 115
  • 62
  • 42
  • 32
  • 26
  • 17
  • 16
  • 14
  • 8
  • 7
  • 6
  • 5
  • Tagged with
  • 1899
  • 244
  • 222
  • 214
  • 173
  • 152
  • 151
  • 135
  • 132
  • 118
  • 115
  • 105
  • 104
  • 101
  • 101
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
601

Attachment of macromolecular heparin conjugate to gelatin scaffolds improves endothelial cell infiltration

Leijon, Jonas, Carlsson, Fredrik, Brännström, Johan, Sanchez, Javier, Larsson, Rolf, Nilsson, Bo, Magnusson, Peetra, Rosenquist, Magnus January 2013 (has links)
Long-term survival of implanted cells requires oxygen and nutrients, the need for which is met by vasculari- zation of the implant. The use of scaffolds with surface-attached heparin as anchoring points for angiogenic growth factors has been reported to improve this process. We examined the potential role of surface modification of gelatin scaffolds in promoting endothelial cell infiltration by using a unique macromolecular conjugate of heparin as a coating. Compared to other heparin coatings, this surface modification provides flexible heparin chains, representing a new concept in heparin conjugation. In vitro cell infiltration of scaffolds was assessed using a three-dimensional model in which the novel heparin surface, without growth factors, showed a 2.5-fold increase in the number of infiltrating endothelial cells when compared to control scaffolds. No additional improvement was achieved by adding growth factors (vascular endothelial growth factor and/or fibroblast growth factor-2) to the scaffold. In vivo experiments confirmed these results and also showed that the addition of angiogenic growth factors did not significantly increase the endothelial cell infiltration but increased the number of inflammatory cells in the implanted scaffolds. The endothelial cell-stimulating ability of the heparin surface alone, combined with its growth factor-binding capacity, renders it an interesting candidate surface treatment to create a prevascularized site prepared for implantation of cells and tissues, in particular those sensitive to inflammation but in need of supportive revascularization, such as pancreatic islets of Langerhans. / <p>De två sista författarna delar sistaförfattarskapet.</p>
602

Ab Initio Modeling of Thermal Barrier Coatings: Effects of Dopants and Impurities on Interface Adhesion, Diffusion and Grain Boundary Strength

Ozfidan, Asli Isil 09 May 2011 (has links)
The aim of this thesis is to investigate the effects of additives, reactive elements and impurities, on the lifetime of thermal barrier coatings. The thesis consists of a number of studies on interface adhesion, impurity diffusion, grain boundary sliding and cleavage processes and their impact on the mechanical behaviour of grain boundaries. The effects of additives and impurity on interface adhesion were elaborated by using total energy calculations, electron localization and density of states, and by looking into the atomic separations. The results of these calculations allow the assessment of atomic level contributions to changes in the adhesive trend. Formation of new bonds across the interface is determined to improve the adhesion in reactive element(RE)-doped structures. Breaking of the cross interface bonds and sulfur(S)-oxygen(O) repulsion is found responsible for the decreased adhesion after S segregation. Interstitial and vacancy mediated S diffusion and the effects of Hf and Pt on the diffusion rate of S in bulk NiAl are studied. Hf is shown to reduce the diffusion rate, and the preferred diffusion mechanism of S and the influence of Pt are revealed to be temperature dependent. Finally, the effects of reactive elements on alumina grain boundary strength are studied. Reactive elements are shown to improve both the sliding and cleavage resistance, and the analysis of atomic separations suggest an increased ductility after the addition of quadrivalent Hf and Zr to the alumina grain boundaries.
603

Characterization of enzyme sensitive responsive hydrogel/lipid system for triggered release

Jónsson, Pétur January 2013 (has links)
This master thesis aimed to create and characterize multilayer coatings upon mesoporous silica particles (MSP). The properties of the coating aimed for, was to have a triggerable controlled release, where a targeted enzyme within the intestine, alpha-amylase, is supposed to degrade the coating. The coating was created from a bilayer consisting of DOTAP and DOPC in a 1:3 molar ratio, which serves as a protective coating. The second layer interacting with the surroundings consisted of a starch component, amylopectin, which is degraded by alpha-amylase. The study of the coating was performed with ellipsometry, where the adsorption of the different layers of the coating on a planar silica surface and the enzyme-triggered degradation was recorded. The adsorbed amount of DOTAP/DOPC was 4,22 ± 0,11 mg/m2 and amylopectin 1,82 ± 0,94. The effects of different pH where performed, simulating the coated particle going through the gastro-intestinal system. Two enzymes alpha-amylase and phospholipase A2 (PLA2) where used for degradation of the coating. The knowledge from ellipsometry was applied to coating mesoporous silica particles and it was confirmed that the two layers had formed with zeta- potential measurement.
604

Splashing and Breakup of Droplets Impacting on a Solid Surface

Dhiman, Rajeev 24 September 2009 (has links)
Two new mechanisms of droplet splashing and breakup during impact have been identified and analyzed. One is the internal rupture of spreading droplet film through formation of holes, and the other is the splashing of droplet due to its freezing during spreading. The mechanism of film rupture was investigated by two different methods. In the first method, circular water films were produced by directing a 1 mm diameter water jet onto a flat, horizontal plate for 10 ms. In the second method, films were produced by making 0.6 mm water droplets impact a solid surface mounted on the rim of a rotating flywheel. Substrate wettability was varied over a wide range, including superhydrophobic. In both cases, the tendency to film rupture first increased and then decreased with contact angle. A thermodynamic stability analysis predicted this behavior by showing that films would be stable at very small or very large contact angle, but unstable in between. Film rupture was also found to be promoted by increasing surface roughness or decreasing film thickness. To study the effect of solidification, the impact of molten tin droplets (0.6 mm diameter) on solid surfaces was observed for a range of impact velocities (10 to 30 m/s), substrate temperatures (25 to 200°C) and substrate materials (stainless steel, aluminum and glass) using the rotating flywheel apparatus. Droplets splashed extensively on a cold surface but on a hot surface there was no splashing. Splashing could be completely suppressed by either increasing the substrate temperature or reducing its thermal diffusivity. An analytical model was developed to predict this splashing behavior. The above two theories of freezing-induced splashing and film rupture were combined to predict the morphology of splats typically observed in a thermal spray process. A dimensionless solidification parameter, which takes into account factors such as the droplet diameter and velocity, substrate temperature, splat and substrate thermophysical properties, and thermal contact resistance between the two, was developed. Predictions from the model were compared with a wide range of experimental data and found to agree well.
605

A Thick Multilayer Thermal Barrier Coating: Design, Deposition, and Internal Stresses

Samadi, Hamed 23 February 2010 (has links)
Yttria Partially Stabilized Zirconia (Y-PSZ) plasma-sprayed coatings are widely used in turbine engines as thermal barrier coatings. However, in diesel engines Y-PSZ TBCs have not met with wide success. To reach the desirable temperature of 850-900˚C in the combustion chamber from the current temperature of 400-600˚C, a coating with a thickness of approximately 1mm is required. This introduces different considerations than in the case of turbine blade coatings, which are on the order of 100µm thick. Of the many factors affecting the durability and failure mechanism of TBCs, in service and residual stresses play an especially important role as the thickness of the coating increases. For decreasing the residual stress in the system, a multi-layer coating is helpful. The design of a multilayer coating employing relatively low cost materials with complementary thermal properties is described. Numerical models were used to describe the residual stress after deposition and under operating conditions for a multilayer coating that exhibited the desired temperature gradient. Results showed that the multilayer coating had a lower maximum stress under service conditions than a conventional Y-PSZ coating. Model validation with experiments showed a good match between the two.
606

The Influence of Thermal Barrier Coating Surface Roughness on Spark Ignition Engine Performance and Emissions

Memme, Silvio 21 March 2012 (has links)
The effects on heat transfer of piston crown surface finish and use of a metal based thermal barrier coating (TBC) on the piston crown were studied in an SI engine. Measured engine parameters such as power, fuel consumption, emissions and cylinder pressure were used to identify the effects of the coating and its surface finish. Two piston coatings were tested: a baseline copper coating and a metal TBC. Reducing surface roughness of both coatings increased in-cylinder temperature and pressure as a result of reduced heat transfer through the piston crown. These increases resulted in small improvements in both power and fuel consumption, while also having measurable effect on emissions. Oxides of nitrogen emissions were increased while total hydrocarbon emissions were decreased. Improvements attributed to the TBC were found to be small, but statistically significant. At an equivalent surface finish, the TBC performed better than the baseline copper finish.
607

The Influence of Thermal Barrier Coating Surface Roughness on Spark Ignition Engine Performance and Emissions

Memme, Silvio 21 March 2012 (has links)
The effects on heat transfer of piston crown surface finish and use of a metal based thermal barrier coating (TBC) on the piston crown were studied in an SI engine. Measured engine parameters such as power, fuel consumption, emissions and cylinder pressure were used to identify the effects of the coating and its surface finish. Two piston coatings were tested: a baseline copper coating and a metal TBC. Reducing surface roughness of both coatings increased in-cylinder temperature and pressure as a result of reduced heat transfer through the piston crown. These increases resulted in small improvements in both power and fuel consumption, while also having measurable effect on emissions. Oxides of nitrogen emissions were increased while total hydrocarbon emissions were decreased. Improvements attributed to the TBC were found to be small, but statistically significant. At an equivalent surface finish, the TBC performed better than the baseline copper finish.
608

Feedback active coatings based on mesoporous silica containers

Borisova, Dimitriya January 2012 (has links)
Metalle werden oft während ihrer Anwendung korrosiven Bedingungen ausgesetzt, was ihre Alterungsbeständigkeit reduziert. Deswegen werden korrosionsanfällige Metalle, wie Aluminiumlegierungen mit Schutzbeschichtungen versehen, um den Korrosionsprozess aktiv oder passiv zu verhindern. Die klassischen Schutzbeschichtungen funktionieren als physikalische Barriere zwischen Metall und korrosiver Umgebung und bieten einen passiven Korrosionsschutz nur, wenn sie unbeschädigt sind. Im Gegensatz dazu kann die Korrosion auch im Fall einer Beschädigung mittels aktiver Schutzbeschichtungen gehemmt werden. Chromathaltige Beschichtungen bieten heutzutage den besten aktiven Korrosionsschutz für Aluminiumlegierungen. Aufgrund ihrer Giftigkeit wurden diese weltweit verboten und müssen durch neue umweltfreundliche Schutzbeschichtungen ersetzt werden. Ein potentieller Ersatz sind Schutzbeschichtungen mit integrierten Nano- und Mikrobehältern, die mit ungiftigem Inhibitor gefüllt sind. In dieser Arbeit werden die Entwicklung und Optimierung solcher aktiver Schutzbeschichtungen für die industriell wichtige Aluminiumlegierung AA2024-T3 dargestellt Mesoporöse Silika-Behälter wurden mit dem ungiftigen Inhibitor (2-Mercaptobenzothiazol) beladen und dann in die Matrix anorganischer (SiOx/ZrOx) oder organischer (wasserbasiert) Schichten dispergiert. Zwei Sorten von Silika-Behältern mit unterschiedlichen Größen (d ≈ 80 and 700 nm) wurden verwendet. Diese haben eine große spezifische Oberfläche (≈ 1000 m² g-1), eine enge Porengrößenverteilung mit mittlerer Porenweite ≈ 3 nm und ein großes Porenvolumen (≈ 1 mL g-1). Dank dieser Eigenschaften können große Inhibitormengen im Behälterinneren adsorbiert und gehalten werden. Die Inhibitormoleküle werden bei korrosionsbedingter Erhöhung des pH-Wertes gelöst und freigegeben. Die Konzentration, Position und Größe der integrierten Behälter wurden variiert um die besten Bedingungen für einen optimalen Korrosionsschutz zu bestimmen. Es wurde festgestellt, dass eine gute Korrosionsschutzleistung durch einen Kompromiss zwischen ausreichender Inhibitormenge und guten Barriereeigenschaften hervorgerufen wird. Diese Studie erweitert das Wissen über die wichtigsten Faktoren, die den Korrosionsschutz beeinflussen. Somit wurde die Entwicklung effizienter, aktiver Schutzbeschichtungen ermöglicht, die auf mit Inhibitor beladenen Behältern basieren. / Metals are often used in environments that are conducive to corrosion, which leads to a reduction in their mechanical properties and durability. Coatings are applied to corrosion-prone metals such as aluminum alloys to inhibit the destructive surface process of corrosion in a passive or active way. Standard anticorrosive coatings function as a physical barrier between the material and the corrosive environment and provide passive protection only when intact. In contrast, active protection prevents or slows down corrosion even when the main barrier is damaged. The most effective industrially used active corrosion inhibition for aluminum alloys is provided by chromate conversion coatings. However, their toxicity and worldwide restriction provoke an urgent need for finding environmentally friendly corrosion preventing systems. A promising approach to replace the toxic chromate coatings is to embed particles containing nontoxic inhibitor in a passive coating matrix. This work presents the development and optimization of effective anticorrosive coatings for the industrially important aluminum alloy, AA2024-T3 using this approach. The protective coatings were prepared by dispersing mesoporous silica containers, loaded with the nontoxic corrosion inhibitor 2-mercaptobenzothiazole, in a passive sol-gel (SiOx/ZrOx) or organic water-based layer. Two types of porous silica containers with different sizes (d ≈ 80 and 700 nm, respectively) were investigated. The studied robust containers exhibit high surface area (≈ 1000 m² g-1), narrow pore size distribution (dpore ≈ 3 nm) and large pore volume (≈ 1 mL g-1) as determined by N2 sorption measurements. These properties favored the subsequent adsorption and storage of a relatively large amount of inhibitor as well as its release in response to pH changes induced by the corrosion process. The concentration, position and size of the embedded containers were varied to ascertain the optimum conditions for overall anticorrosion performance. Attaining high anticorrosion efficiency was found to require a compromise between delivering an optimal amount of corrosion inhibitor and preserving the coating barrier properties. This study broadens the knowledge about the main factors influencing the coating anticorrosion efficiency and assists the development of optimum active anticorrosive coatings doped with inhibitor loaded containers.
609

Numerical Assessment Of Negative Skin Friction Effects On Diaphragm Walls

Gencoglu, Cansu 01 January 2013 (has links) (PDF)
Within the confines of this study, numerical simulations of time dependent variation of downdrag forces on the diaphragm walls are analyzed for a generic soil site, where consolidation is not completed. As part of the first generic scenario, consolidation of a clayey site due to the application of the embankment is assessed. Then two sets of diaphragm walls, with and without bitumen coating, are analyzed. For comparison purposes, conventional analytical calculation methods (i.e., rigid-plastic and elastic-plastic soil models) are also used, the results of which, establish a good basis of comparison with finite-element based simulation results. Additionaly, the same generic cases are also analyzed during the stages of excavation, when diaphragm walls are laterally loaded. As the concluding remark, on the basis of time dependent stress and displacement responses of bitumen coated and uncoated diaphragm walls, it was observed that negative skin friction is a rather complex time-dependent soil-structure and loading interaction problem. This problem needs to be assessed through methods capable of modeling the complex nature of the interaction. Current analytical methods may significantly over-estimate the amount of negative skin friction applied on the system, hence they are judged to be over-conservative. However, if negative skin friction is accompanied by partial unloading as expected in diaphragm walls or piles used for deep excavations, then they may be subject to adverse combinations of axial load and moment, which may produce critical combinations expressed in interaction diagrams. Neglecting the axial force and moment interaction may produce unconservative results.
610

Splashing and Breakup of Droplets Impacting on a Solid Surface

Dhiman, Rajeev 24 September 2009 (has links)
Two new mechanisms of droplet splashing and breakup during impact have been identified and analyzed. One is the internal rupture of spreading droplet film through formation of holes, and the other is the splashing of droplet due to its freezing during spreading. The mechanism of film rupture was investigated by two different methods. In the first method, circular water films were produced by directing a 1 mm diameter water jet onto a flat, horizontal plate for 10 ms. In the second method, films were produced by making 0.6 mm water droplets impact a solid surface mounted on the rim of a rotating flywheel. Substrate wettability was varied over a wide range, including superhydrophobic. In both cases, the tendency to film rupture first increased and then decreased with contact angle. A thermodynamic stability analysis predicted this behavior by showing that films would be stable at very small or very large contact angle, but unstable in between. Film rupture was also found to be promoted by increasing surface roughness or decreasing film thickness. To study the effect of solidification, the impact of molten tin droplets (0.6 mm diameter) on solid surfaces was observed for a range of impact velocities (10 to 30 m/s), substrate temperatures (25 to 200°C) and substrate materials (stainless steel, aluminum and glass) using the rotating flywheel apparatus. Droplets splashed extensively on a cold surface but on a hot surface there was no splashing. Splashing could be completely suppressed by either increasing the substrate temperature or reducing its thermal diffusivity. An analytical model was developed to predict this splashing behavior. The above two theories of freezing-induced splashing and film rupture were combined to predict the morphology of splats typically observed in a thermal spray process. A dimensionless solidification parameter, which takes into account factors such as the droplet diameter and velocity, substrate temperature, splat and substrate thermophysical properties, and thermal contact resistance between the two, was developed. Predictions from the model were compared with a wide range of experimental data and found to agree well.

Page generated in 0.0743 seconds