• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 819
  • 301
  • 164
  • 115
  • 62
  • 42
  • 32
  • 26
  • 17
  • 16
  • 14
  • 8
  • 7
  • 6
  • 5
  • Tagged with
  • 1899
  • 244
  • 222
  • 214
  • 173
  • 152
  • 151
  • 135
  • 132
  • 118
  • 115
  • 105
  • 104
  • 101
  • 101
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
671

Oxygen-reducing enzymes in coatings and films for active packaging

Johansson, Kristin January 2013 (has links)
Oxygen scavengers are used in active packages to protect the food against deteriorative oxidation processes. The aim of this work was to investigate the possibilities to produce oxygen-scavenging packaging materials based on oxygen-reducing enzymes. The enzymes were incorporated into a dispersion coating formulation applied onto a food-packaging board using conventional laboratory coating techniques. Various enzymes were used: a glucose oxidase, an oxalate oxidase and three laccases originating from different organisms. All of the enzymes were successfully incorporated into a coating layer and could be reactivated after drying. For at least two of the enzymes, re-activation was possible not only by using liquid water but also by using water vapour. Re-activation of the glucose oxidase and a laccase required relative humidities of greater than 75% and greater than 92%, respectively. Catalytic reduction of oxygen gas by glucose oxidase was promoted by creating an open structure through addition of clay to the coating at a level above the critical pigment volume concentration. Migration of the enzyme and the substrate was reduced by adding an extrusion-coated liner of polypropylene on top of the coating. For the laccase-catalysed reduction of oxygen it was possible to use lignin derivatives as substrates for the enzymatic reaction. The laccase-catalysed reaction created a polymeric network by cross-linking of lignin-based entities, which resulted in increased stiffness and increased water-resistance of biopolymer films. The laccases were also investigated with regard to their potential to function as oxygen scavengers at low temperatures. At 7°C all three laccases retained more than 20% of the activity they had at room temperature (25°C), which suggests that the system is also useful for packaging of refrigerated food.
672

Structuring porous adsorbents and composites for gas separation and odor removal

Keshavarzi, Neda January 2014 (has links)
Porous zeolite, carbon and aluminophosphate powders have been colloidally assembled and post-processed in the form of monoliths, flexible free standing films and coatings for gas separation and odor removal. Zeolite 13X monoliths with macroporosites up to 50 vol% and a high CO2 uptake were prepared by colloidal processing and sacrificial templating. The durability of silicalite-I supports produced in a binder-free form by pulsed current processing (PCP) were compared with silicalite-I supports produced using clay-binders and conventional thermal treatment. Long-term acid and alkali treatment of the silicalite-I substrates resulted in removal of the clay binder and broadened the size-distribution of the interparticle macropores. Furthermore, strong discs of hydrothermally treated beer waste (HTC-BW) were produced by PCP and the discs were activated by physical activation in CO2 at high temperatures. The activated carbon discs showed high strength up to 7.2 MPa while containing large volume of porosities at all length scales. PCP was further used to structure aluminomphosphate powders (AlPO4-17 and AlPO4-53) into strong functional monoliths. The aluminophosphate monoliths had strengths of 1 MPa, high CO2 uptake and were easy to regenerate. Zeolite Y, silicalite and ZSM5 were selected as potential zeolite adsorbents for removal of sulfur containing compound, e.g. ethyl mercaptan (EM) and propyl mercaptan (PM). A novel processing procedure was used to fabricate free-standing films and coatings of cellulose nanofibrils (CNF) with a high content of nanoporous zeolite; 89 w/w% and 96 w/w%, respectively. Thin flexible free-standing films and coatings of zeolite-CNF on paperboards with thickness around 100 µm and 40 µm, respectively, were produced. Headspace solid phase microextraction (SPME) coupled to gas chromatography- mass spectroscopy (GC/MS) analysis showed that the zeolite-CNF films can efficiently remove considerable amount of odors below concentration levels that can be sensed by the human olfactory system. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 5: Manuscript.</p>
673

Growth Control and Manipulation of Morphology, Crystallinity, and Physical Properties of Tin (IV) Oxide Nanostructures: Granular Nanocrystalline Films and One-Dimensional Nanostructures

Bazargan, Samad January 2011 (has links)
A variety of nanostructures of tin (IV) oxide (TO) are synthesized using two fabrication methods: a solution spin-coating method followed by post-annealing in an oxygen flow and a newly developed catalyst-assisted pulsed laser deposition (PLD) technique. The spin-coating method is used to fabricate granular TO films with monodisperse, stable, ultra-small nanocrystallites (4-5 nm in size), the size of which is found to increase exponentially with post-anneal above 500??C. These nanocrystalline films are conductive and highly transparent, and their bandgap shows broadening due to a high carrier concentration. Their resistivity behavior as a function of temperature in the 50-280 K range can be explained by a two-medium transport model, i.e. transport through the crystalline grains and across the grain boundaries, and through the charge-depletion layer, where a potential barrier is found for transport across the grain boundaries. Electronic transport in these films follows a 3D-variable range hopping model, which reveals an increase in the localization length of carriers with increasing the TAnneal above the onset of exponential growth at TAnneal= 500??C. By homogenously doping Eu3+ in these nanocrystalline films up to a high doping level of ~ 8%, optical luminescence and magnetic orderings can be introduced into these nanocrystalline TO films. Both characteristic Eu3+ emission and defect-related TO emissions are observed in the otherwise transparent TO films upon UV-excitation. In spite of the non-magnetic nature of Eu3+ ions, magnetic orderings appear in the highly doped TO films below 50 K upon the emergence of Eu2Sn2O7 phase. In the second part of this work, we employ a layer of gold nanoislands with controlled sizes (10-50 nm) as catalysts for pulsed laser deposition of TO nanostructures. Highly crystalline TO nanobricks, cuboid nanoparticles, nanowires and nanobelts are obtained for the first time through vapour-solid or vapour-liquid-solid (VLS) mechanisms. Of particular interest are the micron long one-dimensional (1D) nanowires and nanobelts, with the smallest square and rectangular cross-sections, respectively, ever reported. These single-crystalline nanostructures are obtained at relatively low temperatures of 600??C, for nanowires, and 500??C, for nanobelts, and their cross-sectional sizes can be easily controlled by the size of the gold nanoislands. The nanobelts are found to grow along the [100] and [101] axes, while the nanowires appear to grow along the [100] axis. The growth evolution of the nanobelts are also investigated in detail revealing their VLS growth mode and their single-crystalline structure throughout the growth, which opens the prospect of controlling their growth axis and consequently their side-surface planes by pinning the base to the substrate at the desired crystalline orientation. Together, the two fabrication methods developed in the present work offer facile approaches to growing two scientifically and technologically important classes of TO nanostructures, i.e., nanocrystalline film and 1D nanostructures. Thorough characterization of the resulted nanostructured materials using advanced microscopic, spectroscopic and other techniques, including Helium Ion Microscopy, has been provided. Modification of structure, morphology and physical properties of these functional nanostructured materials are also illustrated by controlling the growth parameters and by (Eu-)doping, which pave the way for introducing new properties for applications in chemical sensing, (opto)electronics and displays.
674

Integration of Nanostructures and Quantum Dots into Spherical Silicon Solar Cells

Esfandiarpour, Behzad January 2013 (has links)
In order to improve the optical losses of spherical silicon solar cells, new fabrication designs were presented. The new device structures are fabricated based on integration of nanostructures into spherical silicon solar cells. These new device structures include: spherical silicon solar cells integrated with nanostructured antireflection coating layers, spherical silicon solar cells with hemispherical nanopit texturing, and cells integrated with colloidal quantum dots. Silicon spheres were characterized by means of transmission electron microscopy (TEM), single-crystal x-ray diffraction and x-ray powder diffraction to establish the crystallinity nature of the silicon spheres. Furthermore, the material properties of silicon spheres including surface morphology, microwave photoconductivity decay lifetime, and impurity elemental distributions were studied. Silicon nitride antireflection coating layers were developed and deposited onto the spherical silicon solar cells, using a PECVD system. A low temperature hydrogenation plasma technique was developed to improve the passivation quality of the spherical silicon solar cells. The spectral response of silicon spheres with and without a silicon nitride antireflection coating was studied. We have successfully developed and integrated a nanostructured antireflection coating layer into spherical silicon solar cells. The nanostructured porous layer consists of graded-size silicon nanocrystals and quantum-size Si nanoparticles embedded in an oxide matrix. This layer has been characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), Scanning tunneling TEM, energy filtered TEM, transmission electron diffraction (TED), electron energy loss spectroscopy (EELS), energy dispersive x-ray (EDX), Raman spectroscopy and photoluminescence spectroscopy (PL). We developed a novel technique of electrochemical etching for silicon surface texturing using a liquid-phase deposition of oxide mask. Using a focus ion-beam (FIB) technique, cross-sectional TEM samples were prepared to investigate the nature of texturing and the composition of the deposited mask. The hemispherical nanopit texturing was successfully integrated into spherical silicon solar cells and the etching mechanisms and the chemical reactions were discussed. CdSe colloidal quantum dots with diameter of about 2.8nm were integrated into a graded-density nanoporous layer. This structure was implemented on the emitter of the spherical silicon solar cells and the spectral response with and without incorporation of QDs was studied.
675

An evaluation of the germination and establishment of three selected coated grass species in different soil types for rehabilitation / Marguerite Westcott

Westcott, Marguerite January 2011 (has links)
The primary impacts of mining on the environment include the deterioration of soil properties and the loss of vegetation cover and density, often leading to increased erosion. In order to encumber further degeneration of such ecosystems and all subsequent other negative environmental impacts, active rehabilitation practices are often implemented. Active rehabilitation involves the introduction of species by different re–seeding (re–vegetation) methodologies. A higher vegetation cover and density is needed to increase soil quality, combat erosion and contribute to species richness, diversity and ground cover. Several Acts regarding environmental legislation and the conservation of the natural resource in South Africa are used to ensure that sustainable development, rehabilitation and effective environmental management of disturbed areas are enforced. Legislation therefore provides a measure to prevent pollution and ecological degradation, promotes conservation, secure ecologically sustainable development and the use of natural resources, while promoting justifiable economic and social development. Legislation also enforces and regulates the remediation of disturbed ecosystems, such as the rehabilitation of mine tailing areas. Some of this legislation mentioned above is described in the thesis. Species selected for the compilation of seed mixtures for re–seeding and re–vegetation purposes should comply with the standards determined by the regional biodiversity framework where the disturbed area is situated. Only seed of species with non–invasive potential, that are adapted to the specific environmental conditions and have specific genetic traits, should be included in the seed mixture for rehabilitation. Since seed from local ecotype species are often not available, seed companies use seed from especially grass species that might be adapted to the environmental conditions and type of disturbance or degradation to help remediate the poor soil conditions and improve the vegetation cover. The problem is that if the morphological and physiological aspects of the seed type have not been researched properly, it may lead to poor germination and establishment results when used for the rehabilitation of certain degraded and disturbed areas, such as rangelands or mine tailings. Advance Seed Company tries to enhance seed by adding a coating around the caryopsis (grass seed) for better germination and establishment rates. Such seeds are then referred to as “enhanced” or “coated” seed. The term “seed” will be used throughout the dissertation to describe the whole, intact caryopsis (e.g. Anthephora pubescens). The coatings normally refer to the physical enhancements of the seeds by the application of a water–soluble lime–based coating, which may contain nutrients, fungicides, pesticides and other polymers. This study focused on the evaluation of the germination– and establishment rates in four soil types (growth mediums), as well as the activity of three growth enzymes on coated seed of three grass species, namely Anthephora pubescens, Cynodon dactylon and Panicum maximum. Advanced Seed Company provided the seeds for the three selected grass species that were coated with their newly developed certified formulae. Experimental trails were carried out in the laboratory and greenhouses (controlled conditions) at the North West University and in the field (uncontrolled conditions) at the four locations representing the different soil types, namely the clayey and sandy soils at Taaibosbult near Potchefstroom and the platinum (alkaline growth medium) and gold mine tailings (acidic growth medium) near Rustenburg and Stilfontein respectively. Detailed soil analysis was carried out by certified soil laboratories in Potchefstroom and seed purity, viability and quality determined by the Plant Protection Institute in Pretoria. The results from the greenhouse and the field trials differed significantly for all seed types (coated and uncoated) of the three grass species in the four soil types. The germination and establishment rates in both the greenhouse (controlled conditions) and field (uncontrolled conditions) trials were overall very low. The latter can also be ascribed to the competition with other weed species that were present in the soil seed bank before re–seeding, as well as the predation by ants and guinea fowls in especially the field trials of the sandy and clayey soils. Due to the absence of competition in the field trials on the mine tailings, the germination and establishment rates were higher for most grass species. The quality of the seed batches as supplied by Advance Seed Company was not very good. Although the purity was high, many dead seeds were found, especially for Panicum maximum. The germination and establishment rates of Antephora pubescens of the uncoated seed was higher in the sandy, platinum and gold mine tailings soil types in both the uncontrolled field and controlled greenhouse trials and low for both seed types (coated and uncoated) in the clayey soils. Cynodon dactylon had higher germination and establishment rates for especially the gold mine tailings soil in the field trials for both seed types, as well as the sandy soils under controlled conditions in the greenhouse. Both rates were lower in the sand– and clayey soils field trials. The germination rates for Panicum maximum for both seed types were similar for the clay and sandy soil types, but very low in the soils from the mine tailings, especially under controlled conditions in the greenhouse trials. The germination and establishment rates for both seed types of this species were however much higher in the field trials at both the gold and platinum mine tailings, mainly due to the absence of competition. No results for Panicum maximum were obtained from the field trials on the clay soils due to management and maintenance problems. The peroxidise enzyme activity was higher in the coated seed of Antephora pubescens, but lower in both seed types of Cynodon dactylon and Panicum maximum. The alpha amylase enzyme activity was high in the coated seed of Antephora pubescens and both seed types of Panicum maximum, but low in both seed types of Cynodon dactylon. The activity of the lipoxygenase enzyme was higher in all the coated seed of all three grass species that were used in this study. It also appears as if the storage period played a significant role in the germination of the species, especially after and during the seed coating process, as it had a negative effect on the physiology of the seed. In all species, a higher rate of gaseous exchange was observed in the uncoated seed types. However, the water content of the seed types differed between the seed types. Depending on the size and the genetic characteristics of the species, the longevity of the enzyme proteins differed. This is especially observed in the enzyme activity of three enzymes tested, i.e. lipoxygenase, peroxidase and alpha–amylase. The germination rate only improved shortly after being coated and then declined steadily. The germination capacity therefore depends on the length of the storage period. The genetic adaptation of the different species coincided with the four soil types. It is therefore recommended that only species that are adapted to a certain soil type is used in rehabilitation and if the seed is coated, it should be sown shortly after the coating process and not be stored for long periods. It is also recommended to first treat the area with herbicide before any re–seeding takes place, especially if low concentrations of seeds are used. / Thesis (M.Sc. (Environmental Sciences))--North-West University, Potchefstroom Campus, 2012.
676

Synthesis and Characterization of Multifunctional Carbide- and Boride-based Thin Films

Nedfors, Nils January 2014 (has links)
This thesis present research on synthesis, microstructure, and properties of carbide- and boride- based thin films. The films have been synthesized by dc magnetron sputtering, and their microstructures have been characterized mainly by X-ray photoelectron spectroscopy (XPS), X-ray diffraction, and transmission electron microscopy.  One of the main objectives with this research has been to evaluate the thin films potential as materials for sliding electrical contact applications and this have influenced, which properties that have been evaluated. Co-sputtered Nb-C films have a microstructure comprising of nanocrystalline NbCx  (nc-NbCx) grains embedded in a matrix of amorphous C (a-C). A thinner a-C matrix form in the Nb-C films compared to the well-studied Ti-C system. As a consequence, the Nb-C films have a higher hardness and conductivity than previously studied Ti-C sputtered under similar conditions. The promising electrical contact properties are attained for reactively sputtered Nb-C films under industrial conditions, at deposition rates two orders of magnitude higher. A reduction in crystallinity is seen when Si is added to the Nb-C films and amorphous films forms at Si content &gt; 25 at.%. The alloying of Si was however not beneficial for the electrical contact properties. Substoichiometric CrB2-x (B/Cr = 1.5) and NbB2-x (B/Nb = 1.8) films are achieved when deposited from MeB2 targets. Boron segregates to grain boundaries forming a B-rich tissue phase. This result in superhardness for the NbB2-x films (42 ± 4 GPa) as well as a low friction attributed to the formation of a boric acid film. Carbon forms a solid solution in the MeB2 grains as well as segregating to grain boundaries forming an amorphous BCx (a-BCx) phase when alloyed to CrB2-x and NbB2-x films. The formation of the a-BCx phase drastically improves the electrical contact resistance of the NbB2-x films. However, the mechanical properties are degraded, which result in a high friction and wear rate. It was in TEM studies of the metastable amorphous structures for the Nb-Si-C films found that the electron beam induces crystallization. Hence, great care is required when studying these types of metastable structures.
677

Ab Initio Modeling of Thermal Barrier Coatings: Effects of Dopants and Impurities on Interface Adhesion, Diffusion and Grain Boundary Strength

Ozfidan, Asli Isil 09 May 2011 (has links)
The aim of this thesis is to investigate the effects of additives, reactive elements and impurities, on the lifetime of thermal barrier coatings. The thesis consists of a number of studies on interface adhesion, impurity diffusion, grain boundary sliding and cleavage processes and their impact on the mechanical behaviour of grain boundaries. The effects of additives and impurity on interface adhesion were elaborated by using total energy calculations, electron localization and density of states, and by looking into the atomic separations. The results of these calculations allow the assessment of atomic level contributions to changes in the adhesive trend. Formation of new bonds across the interface is determined to improve the adhesion in reactive element(RE)-doped structures. Breaking of the cross interface bonds and sulfur(S)-oxygen(O) repulsion is found responsible for the decreased adhesion after S segregation. Interstitial and vacancy mediated S diffusion and the effects of Hf and Pt on the diffusion rate of S in bulk NiAl are studied. Hf is shown to reduce the diffusion rate, and the preferred diffusion mechanism of S and the influence of Pt are revealed to be temperature dependent. Finally, the effects of reactive elements on alumina grain boundary strength are studied. Reactive elements are shown to improve both the sliding and cleavage resistance, and the analysis of atomic separations suggest an increased ductility after the addition of quadrivalent Hf and Zr to the alumina grain boundaries.
678

An evaluation of the germination and establishment of three selected coated grass species in different soil types for rehabilitation / Marguerite Westcott

Westcott, Marguerite January 2011 (has links)
The primary impacts of mining on the environment include the deterioration of soil properties and the loss of vegetation cover and density, often leading to increased erosion. In order to encumber further degeneration of such ecosystems and all subsequent other negative environmental impacts, active rehabilitation practices are often implemented. Active rehabilitation involves the introduction of species by different re–seeding (re–vegetation) methodologies. A higher vegetation cover and density is needed to increase soil quality, combat erosion and contribute to species richness, diversity and ground cover. Several Acts regarding environmental legislation and the conservation of the natural resource in South Africa are used to ensure that sustainable development, rehabilitation and effective environmental management of disturbed areas are enforced. Legislation therefore provides a measure to prevent pollution and ecological degradation, promotes conservation, secure ecologically sustainable development and the use of natural resources, while promoting justifiable economic and social development. Legislation also enforces and regulates the remediation of disturbed ecosystems, such as the rehabilitation of mine tailing areas. Some of this legislation mentioned above is described in the thesis. Species selected for the compilation of seed mixtures for re–seeding and re–vegetation purposes should comply with the standards determined by the regional biodiversity framework where the disturbed area is situated. Only seed of species with non–invasive potential, that are adapted to the specific environmental conditions and have specific genetic traits, should be included in the seed mixture for rehabilitation. Since seed from local ecotype species are often not available, seed companies use seed from especially grass species that might be adapted to the environmental conditions and type of disturbance or degradation to help remediate the poor soil conditions and improve the vegetation cover. The problem is that if the morphological and physiological aspects of the seed type have not been researched properly, it may lead to poor germination and establishment results when used for the rehabilitation of certain degraded and disturbed areas, such as rangelands or mine tailings. Advance Seed Company tries to enhance seed by adding a coating around the caryopsis (grass seed) for better germination and establishment rates. Such seeds are then referred to as “enhanced” or “coated” seed. The term “seed” will be used throughout the dissertation to describe the whole, intact caryopsis (e.g. Anthephora pubescens). The coatings normally refer to the physical enhancements of the seeds by the application of a water–soluble lime–based coating, which may contain nutrients, fungicides, pesticides and other polymers. This study focused on the evaluation of the germination– and establishment rates in four soil types (growth mediums), as well as the activity of three growth enzymes on coated seed of three grass species, namely Anthephora pubescens, Cynodon dactylon and Panicum maximum. Advanced Seed Company provided the seeds for the three selected grass species that were coated with their newly developed certified formulae. Experimental trails were carried out in the laboratory and greenhouses (controlled conditions) at the North West University and in the field (uncontrolled conditions) at the four locations representing the different soil types, namely the clayey and sandy soils at Taaibosbult near Potchefstroom and the platinum (alkaline growth medium) and gold mine tailings (acidic growth medium) near Rustenburg and Stilfontein respectively. Detailed soil analysis was carried out by certified soil laboratories in Potchefstroom and seed purity, viability and quality determined by the Plant Protection Institute in Pretoria. The results from the greenhouse and the field trials differed significantly for all seed types (coated and uncoated) of the three grass species in the four soil types. The germination and establishment rates in both the greenhouse (controlled conditions) and field (uncontrolled conditions) trials were overall very low. The latter can also be ascribed to the competition with other weed species that were present in the soil seed bank before re–seeding, as well as the predation by ants and guinea fowls in especially the field trials of the sandy and clayey soils. Due to the absence of competition in the field trials on the mine tailings, the germination and establishment rates were higher for most grass species. The quality of the seed batches as supplied by Advance Seed Company was not very good. Although the purity was high, many dead seeds were found, especially for Panicum maximum. The germination and establishment rates of Antephora pubescens of the uncoated seed was higher in the sandy, platinum and gold mine tailings soil types in both the uncontrolled field and controlled greenhouse trials and low for both seed types (coated and uncoated) in the clayey soils. Cynodon dactylon had higher germination and establishment rates for especially the gold mine tailings soil in the field trials for both seed types, as well as the sandy soils under controlled conditions in the greenhouse. Both rates were lower in the sand– and clayey soils field trials. The germination rates for Panicum maximum for both seed types were similar for the clay and sandy soil types, but very low in the soils from the mine tailings, especially under controlled conditions in the greenhouse trials. The germination and establishment rates for both seed types of this species were however much higher in the field trials at both the gold and platinum mine tailings, mainly due to the absence of competition. No results for Panicum maximum were obtained from the field trials on the clay soils due to management and maintenance problems. The peroxidise enzyme activity was higher in the coated seed of Antephora pubescens, but lower in both seed types of Cynodon dactylon and Panicum maximum. The alpha amylase enzyme activity was high in the coated seed of Antephora pubescens and both seed types of Panicum maximum, but low in both seed types of Cynodon dactylon. The activity of the lipoxygenase enzyme was higher in all the coated seed of all three grass species that were used in this study. It also appears as if the storage period played a significant role in the germination of the species, especially after and during the seed coating process, as it had a negative effect on the physiology of the seed. In all species, a higher rate of gaseous exchange was observed in the uncoated seed types. However, the water content of the seed types differed between the seed types. Depending on the size and the genetic characteristics of the species, the longevity of the enzyme proteins differed. This is especially observed in the enzyme activity of three enzymes tested, i.e. lipoxygenase, peroxidase and alpha–amylase. The germination rate only improved shortly after being coated and then declined steadily. The germination capacity therefore depends on the length of the storage period. The genetic adaptation of the different species coincided with the four soil types. It is therefore recommended that only species that are adapted to a certain soil type is used in rehabilitation and if the seed is coated, it should be sown shortly after the coating process and not be stored for long periods. It is also recommended to first treat the area with herbicide before any re–seeding takes place, especially if low concentrations of seeds are used. / Thesis (M.Sc. (Environmental Sciences))--North-West University, Potchefstroom Campus, 2012.
679

Formation and Function of Low-Friction Tribofilms

Skiöld Nyberg, Harald January 2014 (has links)
The use of low-friction coatings on machine elements is steadily increasing, and they are expected to play an important role in the reduction of fuel consumption of future motorized vehicles. Many low-friction coatings function by transformation of the outermost coating layer into tribofilms, which then cover the coating surface and its counter surface. It is within these tribofilms that sliding takes place, and their properties largely determine the performance. The role of the coating is then not to provide low friction, but to supply support and constituents for the tribofilm. In this thesis, the formation of such tribofilms has been studied for a number of different low-friction coatings. The sensitivity of the tribofilm formation towards changes in the tribological system, such as increased surface roughness, varied surrounding atmosphere and reduced availability of the tribofilm constituents has been given special attention. For TaC/aC coatings, the formation of a functioning tribofilm was found to be a multi-step process, where wear fragments are formed, agglomerated, compacted and eventually stabilized into a dense film of fine grains. This formation is delayed by a moderate roughening of the coated surface. Coatings based on tungsten disulphide (WS2) are often able to provide exceptionally low friction, but their use is restricted by their poor mechanical properties and sensitivity to humidity. Large improvements in the mechanical properties can be achieved by addition of for example carbon, but the achievable hardness is still limited. When titanium was added to W-S-C coatings, a carbidic hard phase was formed, causing drastically increased hardness, with retained low friction. Titanium oxides in the tribofilms however caused the friction to be high initially and unstable in the long term. In a study of W-S-N coatings, the effects of humidity and oxygen were studied separately, and it was found that the detrimental role of oxygen is larger than often assumed. Low friction tribofilms may form by rearrangement of coating material, but also by tribochemical reactions between constituents of the coating and its counter surface. This was observed for Ti-C-S coatings, which formed WS2 tribofilms when sliding against tungsten counter surfaces, leading to dramatic friction reductions.
680

Plasma spray deposition of polymer coatings

Bao, Yuqing January 1995 (has links)
This work investigates the feasibility of the use of plasma spray deposition as a method of producing high performance polymer coatings. The work concentrates on the understanding of the processing of the plasma spraying of polymers, the behaviour of polymeric materials during deposition, and the study of process-structure-properties relationships. Processing modelling for the three stages of the evolution of a polymer deposit (droplet-splat-coating) has been carried out using heat transfer theory. A theoretical model is proposed which consists of three parts: the first part predicts the temperature profile of in-flight particles within plasma jet, the second part predicts the cooling of isolated splats impacting on a substrate and the third part, the heat transfer through the coating thickness. The heat transfer analysis predicts that the development of large temperature gradients within the particle is a general characteristics of polymers during plasma spraying. This causes difficulties for polymer particles to be effectively molten within the plasma jet without decomposition. The theoretical calculations have predicted the effect of processing parameters on the temperature, the degree of melting and decomposition of in-flight polymer particles. With the aid of the model, the conditions for the preparation of high integrity thermoplastic deposits have been established by the control of the plasma arc power, plasma spraying distance, feedstock powder injection, torch traverse speed and feedstock particle size. The optimal deposition conditions are designed to produce effective particle melting in the plasma, extensive flow on impact, and minimal thermal degradation. The experimental work on optimizing processing parameters has confirmed the theoretical predictions. Examination of polymer coating structures reveals that the major defects are unmelted particles, cracks and pores. Five major categories of pores have been classified. It also revealed a significant loss in crystallinity and the presence of a minor metastable phase in the plasma deposited polyamide coatings due to rapid solidification. The study has indicated that the molecular weight of a polymer plays an important role on the splat flow and coating structure. Under non-optimal deposition condition, substantial thermal degradation occurred for which a chain scission mechanism is proposed for plasma deposited polyamide coatings. There are difficulties in achieving cross-linking during plasma spray deposition of thermosets. The theoretical calculations predict that adequate cross-linking is unlikely in a coating deposited under normal conditions, but preheating the substrate to above the cross-linking temperature improves the degree of cross-linking of the coatings substantially. In addition, the coating thickness has a major effect on the degree of cross-linking of thermosets. The calculations also predict that lowering the thermal conductivity by applying a thermal barrier undercoat and using a faster curing agent to reduce time required for the cross-linking reaction can improve the degree of cross-linking of thermoset deposits. The experimental results for the degree of cross-linking and wear resistance confirmed these predictions.

Page generated in 0.131 seconds