• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 819
  • 301
  • 164
  • 115
  • 62
  • 42
  • 32
  • 26
  • 17
  • 16
  • 14
  • 8
  • 7
  • 6
  • 5
  • Tagged with
  • 1899
  • 244
  • 222
  • 214
  • 173
  • 152
  • 151
  • 135
  • 132
  • 118
  • 115
  • 105
  • 104
  • 101
  • 101
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
681

Enhancement of biocompatibility of 316LVM stainless steel by electrochemical cyclic potentiodynamic passivation

Shahryari, Arash. January 2008 (has links)
Note: / as hip and knee prosthesis, orthopaedic fixations and coronary stents. The definition of a material's biocompatibility necessitates meeting a number of criteria, including high corrosion resistance and desirable interactions of the material's surface with biological species, such as cells, platelets, and serum proteins. SSs offer acceptable resistance to uniform (general) corrosion when used as materials of construction in sorne industrial applications, which is due to the formation of a thin passive oxide film on their surface. [...] / Les aciers inoxydables (AI) 316-L sont fréquemment utilisés dans le domaine biomédical. Par exemple, nous les retrouvons dans les prothèses de hanche et de genou, dans les fixatures orthopédiques et dans les prothèse vasculaires. Pour qu'un matériel soit biocompatible, il doit avoir une résistence élevée à la corrosion. De plus, la surface du matériel doit avoir des intéractions favorables avec les différentes espèces biologiques c'est-à-dire les cellules.[...]
682

Improved Desiccant Coatings for Heat and Water Vapour Transfer on the Matrix Surfaces of Air-To-Air Regenerative Wheels

2012 July 1900 (has links)
Air-to-air energy recovery wheels are now widely used in industry and buildings; however, the effectiveness of water vapor exchange in these regenerative wheels appears to be much lower than may be economically feasible. The purpose of this research is to investigate the feasibility of using agglomerated desiccant particle coatings to improve the performance of regenerative wheels used in HVAC air-to-air heat and moisture exchange and energy recovery applications. Desiccant particles coated on wheels lose most of their water vapor sorption capacity due to the method of coating. Desiccant agglomerates can be made by mixing starch, fine silica gel particulate, and water within an agglomerating device. The desiccant particle agglomerating process improves the desiccant mass transfer properties by increasing the overall surface area of desiccant particles; and also by creating a much rougher surface that can increase the likelihood of turbulent flow, and therefore, increasing the overall mass transfer rates. The industrial desiccant coating process involves submerging the desiccant into a coating agent and then applying this mix to the substrate or the matrix of the energy wheel. This process was improved in this research by ensuring the particles are applied after the coating agent is applied to ensure that the agglomerates or desiccant particles are not submerged by the coating material. Because testing energy wheels under steady state operating conditions has proved to be difficult, time consuming and costly in the past, a small parallel flow test cell is used to measure the transient response of coated substrate aluminum sheets after a step change in the inlet air humidity or temperature. Using a previously developed theoretical model, the time constants for these inlet step change responses are then used to predict the sensible and latent effectiveness of a regenerative energy wheel coated with the same agglomerated particles, which is rotated at a known operating speed and wheel face velocity. When the new desiccant coatings are used, it is shown that the latent heat effectiveness for a typical wheel could be up to 85%. It is found that the steady state air flow pressure drop readings for the test cell shows that agglomerated particles coated on the surfaces within the test cell implies some transitional turbulent flow behavior compared to similar substrate surfaces coated in a conventional manner with desiccant particles (e.g. up to 60% higher pressure drop at a channel Reynolds number of 300) in the same test cell. This implied enhanced turbulence flow friction factor in the test cell suggests a somewhat similar enhancement for increased mass and heat transfer coefficients for the test cell or coated wheel matrices. The transient results for humidity step changes for air flow through the test cell reveals that the adsorption and desorption response time constants are much larger for the agglomerated coated substrate surfaces than the conventional industrial coated surfaces. These data imply much higher moisture or latent heat effectiveness values for wheels coated with agglomerated particles. When the new desiccant coatings are used, it is shown that the latent heat effectiveness for a typical wheel could be better than 80% or 20% higher than currently available typical energy wheels. With improvements to the desiccant particle agglomerating process, desiccant coating process and particle coating and testing methods, this thesis shows that significant improvements may be practical for the design, testing and operation of regenerative heat and moisture exchange wheels.
683

Bildung und Stabilität von anodischen Deckschichten auf Eisen-Silizium-Legierungen

Wolff, Ulrike 26 September 2011 (has links) (PDF)
In den letzten Jahren wurde umfangreich über Wirkprinzipien berichtet, die zur Verbesserung der Passivschichtstabilität von Fe-Basislegierungen durch Legierungsbestandteile, wie Cr [1-3] und Al [4-6] beitragen. Die Zahl der Arbeiten zu Untersuchungen mit dem Legierungsbestandteil Si sind dagegen gering und lassen noch keine endgültige Schlußfolgerung zu. Insbesondere sind verschiedene Wirkmechanismen bei unterschiedlichen ph-Werten zu erwarten.
684

インプラントモデル材へのバイオセラミックスの傾斜機能溶射

森, 敏彦, MORI, Toshihiko, 広田, 健治, HIROTA, Kenji, 小林, 鑑明, KOBAYASHI, Kanmei, 助田, 直史, SUKEDA, Naofumi 08 1900 (has links)
No description available.
685

高エネルギー反射光によるEB-PVD遮熱コーティングの残留応力分布の解析

鈴木, 賢治, SUZUKI, Kenji, 松本, 一秀, MATSUMOTO, Kazuhide, 久保, 貴博, KUBO, Takahiro, 町屋, 修太郎, MACHIYA, Shutaro, 田中, 啓介, TANAKA, Keisuke, 秋庭, 義明, AKINIWA, Yoshiaki 11 1900 (has links)
No description available.
686

Estimation of Spalling Stress in Thermal Barrier Coatings Using Hard Synchrotron X-Rays

SUZUKI, Kenji, TANAKA, Keisuke, AKINIWA, Yoshiaki 07 1900 (has links)
No description available.
687

Transport-Controlling Nanoscale Multilayers for Biomedical Devices

Park, Jae Bum 2012 August 1900 (has links)
Recent advances in multilayer self-assembly have enabled the precise construction of nanocomposite ultrathin films on a variety of substrates, from large-area planar surfaces to nanoparticles. As a result, a wide range of physico-chemical properties may be represented by selecting from an array of surface preparations, molecules, assembly conditions, and post-assembly treatments. Such multilayer nanofilm assemblies are particularly attractive for use as specialized membranes for selective transport, which have many applications for separations, sensors, and drug delivery systems. In this work, nanocomposite ultrathin films built with layer-by-layer (LbL) self-assembly methods have been applied to surface modification to control interfacial behavior, including diffusion, anti-fouling, and biomimetic membranes. Transport and interfacial properties of nanocomposite membranes constructed using LbL self-assembly with synthetic and/or bio-polymers were characterized, and permeability values of clinically relevant small molecules through the nanofilms were determined. Correlations between permeability and film properties were also examined. Nanofilm coatings around 100nm thickness decreased diffusion coefficients of glucose up to five orders of magnitude, and were found to greatly affect enzymatic glucose sensor responses. Surface modification on top of the nanofilms with poly(ethylene glycol) provided anti-fouling effects. However, weak-weak polyelectrolyte multilayers (PEMs) should not be used to control transport due to their susceptibility under normal physiological conditions. Natural/biological polymers also provided multilayer film structures at the specific conditions, but their transport-limiting properties were not significant compared to synthetic PEMs. Even when covalently crosslinked, biological PEMs did not reduce the permeability of a small molecule. Finally, the predicting model of projecting analyte permeation through multi-phase nanocomposite films comprised with known diffusion coefficients was theoretically and experimentally evaluated. The modeling was matched reasonably well to experimental data. The outcomes will be the key knowledge or engineering principles to support future efforts in research and development. It is anticipated that the system developed for determining transport properties will provide a general platform for assessing new candidate materials. The theory developed will be useful in estimating transport properties of novel nanocomposite materials that may be interesting in a broad array of chemical and biological systems, from analytical separations to implantable biomedical applications, and will provide useful design rules for materials and fabrication process selection.
688

Reactive Sputter Deposition of Functional Thin Films

Liljeholm, Lina January 2012 (has links)
Thin film technology is of great significance for a variety of products, such as electronics, anti-reflective or hard coatings, sensors, solar cells, etc. This thesis concerns the synthesis of thin functional films, reactive magnetron sputter deposition process as such and the physical and functional characterization of the thin films synthesized. Characteristic for reactive sputtering processes is the hysteresis due to the target poisoning. One particular finding in this work is the elimination of the hysteresis by means of a mixed nitrogen/oxygen processing environment for dual sputtering of Alumina-Zirconia thin films. For a constant moderate flow of nitrogen, the hysteresis could be eliminated without significant incorporation of nitrogen in the films. It is concluded that optimum processing conditions for films of a desired composition can readily be estimated by modeling. The work on reactively sputtered SiO2–TiO2 thin films provides guidelines as to the choice of process parameters in view of the application in mind, by demonstrating that it is possible to tune the refractive index by using single composite Six/TiO2 targets with the right composition and operating in a suitable oxygen flow range. The influence of the target composition on the sputter yield is studied for reactively sputtered titanium oxide films. It is shown that by using sub-stoichiometric targets with the right composition and operating in the proper oxygen flow range, it is possible to increase the sputter rate and still obtain stoichiometric coatings. Wurtzite aluminum nitride (w-AlN) thin films are of great interest for electro-acoustic applications and their properties have in recent years been extensively studied. One way to tailor material properties is to vary the composition by adding other elements. Within this thesis (Al,B)N films of the wurtzite structure and a strong c-axis texture have been grown by reactive sputter deposition. Nanoindentation experiments show that the films have nanoindentation hardness in excess of 30 GPa, which is as hard as commercially available hard coatings such as TiN. Electrical properties of w-(Al,B)N thin films were investigated. W-(Al,B)N thin films are found to have a dielectric strength of ~3×106 V/cm, a relatively high k-value around 12 and conduction mechanisms similar to those of AlN. These results serve as basis for further research and applications of w-(Al,B)N thin films. An AlN thin film bulk acoustic resonator (FBAR) and a solidly mounted resonator (SMR) together with a microfluidic transport system have been fabricated. The fabrication process is IC compatible and uses reactive sputtering to deposit piezoelectric AlN thin films with a non-zero mean inclination of the c-axis, which allows in-liquid operation through the excitation of the shear mode. The results on IC-compatibility, Q-values, operation frequency and resolution illustrate the potential of this technology for highly sensitive low-cost micro-biosensor systems for applications in, e.g. point-of-care testing.
689

Tribology at the Cutting Edge : A Study of Material Transfer and Damage Mechanisms in Metal Cutting

Gerth, Julia Lundberg January 2012 (has links)
The vision of this thesis is to improve the metal cutting process, with emphasis on the cutting tool, to enable stable and economical industrial production while using expensive tools such as hobs. The aim is to increase the tribological understanding of the mechanisms operating at a cutting edge and of how these can be controlled using different tool parameters. Such understanding will facilitate the development and implementation of future, tribologically designed, cutting tools. Common wear and failure mechanisms in gear hobbing have been identified and focused studies of the material transferred to the tool, in both metal cutting operations and in simplified tribological tests, have been conducted. Interactions between residual stresses in the tool coating and the shape of the cutting edge have also been studied. It was concluded that tool failure is often initiated via small defects in the coated tool system, and it is necessary to eliminate, or minimize, these defects in order to manufacture more reliable and efficient gear cutting tools. Furthermore, the geometry of a cutting edge should be optimized with the residual stress state in the coating, in mind. The interaction between a compressive stress and the geometry of the cutting edge will affect the stress state at the cutting edge and thus affect the practical toughness and the wear resistance of the coating in that area. An intermittent sliding contact test is presented and shown to be of high relevance for studying the interaction between the tool rake face and the chip in milling. It was also demonstrated that material transfer, that can have large effects on the cutting performance, commences already after very short contact times. The nature of the transfer may differ in different areas on the tool. It may include glassy layers, with accumulations of specific elements from the workpiece, and transfer of steel in more or less oxidized form. Both tool coating material, its surface roughness, and the relative speed between the tool surface and the chip, may influence the extent to which the different transfer will occur.
690

Contact deformation of carbon coatings: mechanisms and coating design.

Singh, Rajnish Kumar, Materials Science & Engineering, Faculty of Science, UNSW January 2008 (has links)
This thesis presents the results of a study focussed on the elucidation of the mechanisms responsible for determining the structural integrity of carbon coatings on ductile substrates. Through elucidation of these mechanisms, two different coating systems are designed; a multilayered coating and a functionally graded coating. While concentrating upon carbon coatings, the findings of this study are applicable to a broad range of hard coatings on ductile substrates. The thesis concludes with a chapter outlining a brief study of the effects of gold coatings on silicon under contact load at moderate temperatures to complement the major part of the thesis. Carbon coatings with differing mechanical properties were deposited using plasma enhanced chemical vapour deposition (PECVD), filtered assisted deposition (FAD) and magnetron sputtering deposition methods. Combinations of these techniques plus variation of deposition parameters enabled composite multilayered and functionally-graded coatings to also be deposited. Substrates were ductile metals; stainless steel and aluminium. Characterisation of the coating mechanical properties was undertaken using nanoindentation and nano-scratch tests. The same techniques were used to induce fracture within the coatings to allow subsequent analysis of the fracture mechanism. These were ascertained with the assistance of cross-sectional imaging of indents prepared using a focussed ion beam (FIB) mill and transmission electron microscopy (TEM) using specimen preparation techniques also utilising the focussed ion beam mill. A two dimensional axisymmetric finite element model (FEM) was built of the coating systems using the commercial software package, ANSYS. Substrate elastic-plastic properties were ascertained by calibrating load-displacement curves on substrate materials with the finite element model results. Utilising the simulation of spherical indentation, the distribution of stresses and the locations for fracture initiation were ascertained using finite element models. This enabled determination of the influence such factors as substrate mechanical properties, residual stresses in the coatings and importantly the variation of elastic properties of the different coating materials. Based upon the studies of monolithic coatings, simulations were undertaken on multilayer and functionally-graded coatings to optimise design of these coating types. Based on the results of the modelling, multilayered and functionally graded coatings were then deposited and mechanical testing undertaken to confirm the models. Three major crack types were observed to occur as the result of the spherical nanoindentation on the coatings; ring, radial and lateral cracks. Ring cracks were found to initiate from the top surface of the film, usually at some distance from the edge of the spherical contact. Radial cracks usually initiated from the interface between the coating and the substrate directly under the symmetry axis of indentation and propagated outwards in a non symmetrical star-like fashion. Lateral cracks formed either between layers in the multilayer coatings or at the interface with substrate. Ring and radial cracks were found to form upon loading whereas lateral cracks formed upon both loading and unloading depending upon the crack driving mechanism. Pop-in events in the load displacement indentation curve were found to be indicative of the formation of ring cracks, while the formation of the other types of cracks was not signified by pop-ins but rather by variations in the slope of the curve. The substrate yield strength was found to influence the initiation of all crack systems while compressive stresses in the coating were seen to only influence the formation of ring and radial cracks. However, it was also noted that the initiation of one form of crack tended to then hinder the subsequent formation of others. In multilayer coatings, the lateral cracks were suppressed, as opposed to the monolayer coating system, but a ring crack was observed. This drawback in the multilayer system was successfully addressed by the design of a graded coating having the highest Young??s modulus at the middle of the film thickness. In this coating, due to the graded nature of the elastic modulus, the stresses at the deleterious locations (top surface and interface) were guided toward the middle of coating and hence increased the load bearing capabilities. The effect of substrate roughness upon the subsequent surface roughness of the coating and also upon the fracture process of the coating during indentation was also investigated. For the coatings deposited on rough substrates, the radial cracks were observed to form initially and this eventfully delayed the initiation of ring cracks. Also the number of radial cracks observed at the interface was found to be proportional to the distribution of the interfacial asperities. In summary, the study elucidated the fracture mechanisms of monolayer, multilayer and graded carbon coatings on ductile substrates under uniaxial and sliding contact loading. The effects of the yield strength, surface roughness of the substrate, along with the residual stress and elastic modulus of the coatings on the fracture of coatings were investigated. The study utilised finite element modelling to explain the experiments observations and to design coating systems.

Page generated in 0.0718 seconds