• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • 2
  • 1
  • Tagged with
  • 18
  • 18
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Cobalt and cadmium chalcogenide nanomaterials from complexes based on thiourea, urea and their alkyl derivatives : synthesis and characterization

Morifi, E. L. January 2015 (has links)
M. Tech. (Department of Chemistry, Faculty of Applied and Computer Science), Vaal University of Technology / Cadmium and cobalt complexes of urea and thiourea were synthesized using ethanol as a solvent. All complexes were refluxed at 70 - 80 °C, left to cool at room temperature, washed with methanol and acetone to remove impurities and dried at an open environment. The characterization of complexes was done using FTIR spectroscopy, elemental analysis and TGA. The complexes were found to coordination with the ligands through sulphur and oxygen atoms to the metal, instead of nitrogen. These were as results of wavelength shifting from high to low frequency from spectra of the complexes as compare to their free ligands. These observations make these complexes good candidates for the possible use in synthesis of metal sulphides or oxides nanoparticles. Thermogravimetric analyses of all the complexes were conducted to check the stability of use as precursors for nanoparticles at low and high temperature. A number of thiourea and urea complexes with cadmium and cobalt have been prepared and used in the preparation of metal sulphides/oxides nanoparticles. Complexes start to decompose at low temperature about 100°C and the last decomposition step was at about 800-900°C, which is convenient to thermal decomposition of precursors in the high boiling solvents or capping agent to prepare surface capped metal sulphides/oxides nanoparticles. The complexes were easy to synthesize, low cost and stable in air and were obtained in reasonable yields. All the complexes reported in this study have been used as single source molecular precursor in the preparation of cadmium oxide, cadmium sulphide, cobalt oxide, cobalt sulphide nanoparticles (normal) and as mixture of any two complexes to form core-shells nanoparticles. Quality nanoparticles synthesis requires three components: precursors, organic surfactants and solvents. The synthesis of the nanoparticles can be thought of as a nucleation event, followed by a subsequent growth period. Both the nucleation and growth rates were found to be dependent upon factors such as temperature, growth time, and precursor concentration. For a continuous flow system the residence time (at nucleation and growth conditions) was also found to be important. In order to separate the nucleation and growth events, injection techniques were employed to achieve rapid nucleation of nanoparticles with final size dictated by the growth temperature and/or residence time through the growth zone of the reaction system. Good crystalline normal nanoparticles were obtained from thermolysis of the precursors in hexadecylamine (HDA) as the capping agent at fixed concentrations, temperature and time. All nanoparticles showed a blue-shift in band edges with good photoluminescence behaviour which is red-shifted from their respective band edges and XRD patterns, the crystal structure are in hexagonal phase. The particles showed rods, spheres and hexagonal shapes. Nucleation and growth mechanism brings new avenue in nanostructures called core-shells, which have been reported to have improved luminescence, quantum yields, decreased fluorescence lifetimes, and benefits related to the tailoring of the relative band-gap positions between the two materials. In this study cadmium and cobalt complexes of urea and thiourea were separately dispersed in TOP and injected separately (allowing nucleation/core to occur, followed by the shell) in hot HDA at 180ºC for 1hour to yield core-shell nanoparticles. Parameters, such as concentration, temperature and capping molecule as factor affecting nucleation and growth of the core-shells were monitored. The core-shell nanoparticles were characterized by UV/Vis spectroscopy, XRD and TEM. We observed spherical, tripod, bipods, hexagonal and irregular shaped nanoparticle as the concentration of the precursors was increasing, however we were able to form core-shells nanoparticles in one set of experiment 1:3 CdS-CdO, which are assumed to be a reverse type I coreshells nanoparticles. Exciton absorption peaks at higher energy than the fundamental absorption edge of bulk indicate quantum confinement effect in nanoparticles as a consequence of their small size. XRD patterns, crystals range from hexagonal, cubic and mixture of hexagonal and orthorhombic. A low temperature studies were also conducted a mixture of hexagonal and sphererical shapes with sheets like onion morphology were observed. / NRF HUB & SPOKES (VUT)
12

Studies on Photocytotoxic Iron(III) and Cobalt(III) Complexes Showing Structure-Activity Relationship

Saha, Sounik January 2010 (has links) (PDF)
Photodynamic therapy(PDT) has recently emerged as a promising new non-invasive treatment modality for a large number of neoplastic and non-neoplastic lesions. Photoexcitation of a photosensitizing drug in the tumor tissue causes generation of reactive oxygen species which results in cell death. The current porphyrinic photosensitizers suffer a wide range of drawbacks leading to the development of the chemistry of alternative photosensitizing agents in PDT. Among them, the 4d and 5d transition metal-based photosensitizers have been explored extensively with the exception of the 3d metal complexes. The objective of this thesis work is to design and synthesize photoactive iron(III) abd cobalt(III) complexes and evalutate their photonuclease and photocytotoxic potential. Bioessential 3d metal ions provide an excellent platform for metal-based PDT drug designing as because of its varied spectral, magnetic and redox properties, with its complexes possessing rich photochemical behavior in aqueous and non-aqueous media. We have synthesized binary iron(III) complexes as netropsin mimics using amino acid Schiff bases derived from salicylaldehyde/napthaldehyde and arginine/lysine. The complexes were found to be good AT selective DNA binders and exhibited significant DNA photocleavage activity. To enhance the photodynamic potential, we further synthesized iron(III) complexes of phenolate-based ligand and planar phenanthroline bases. The DNA photocleavage activity of these complexes and their photocytotoxic potential in cancer models were studied. ROS generated by these complexes were found to induce apoptotic cell death. Ternary cobalt(III) complexes were synthesized to study the effect of the central metal atom. The diamagnetic cobalt(III) complexes were structurally dissimilar to their iron(III) analogues. Although the Co(III)/Co(II) redox couple is chemically and photochemically accessible but the Co(III)-dppz complex, unlike its iron(III)-dppz analogue, exhibited selective damage to hTSHR expressing cells but not in HeLa cells. A structure-activity relationship study on iron(III) phenolates having modified dppz ligands was carried out and it was found that electron donating group on the phenazine unit and an increase of the aromatic surface area largely improved the PDT efficiency. Finally, SMVT targeted iron(III) complexes with biotin as targeting moiety were synthesized and the in vitro efficacy of the complexes was tested in HepG2 cells over-expressing SMVTs and compared to HeLa amd HEK293 cells. The complexes exhibited higher phytocytotoxicity in HepG2 than in HeLa and cells and HEK293 cells. An endocytotic mode of uptake took place in HepG2 cells whereas in HEK293 cells, uptake is purely by diffusion. This is expected to reduce the side-effects and have less effect on cells with relatively less SMVTs. In summary, the present research work opens up novel strategies for the design and development of primarily iron-based photosensitizers for their potential applications in PDT with various targeting moieties.
13

Nouveaux Complexes Oligomères Cycliques de Salens Chiraux pour la Catalyse Asymétrique / Novel Oligomeric Chiral Cyclic Salen Complexes for Asymmetric Catalysis

Dandachi, Hiba 15 December 2015 (has links)
Les ligands de type salen constituent la pierre angulaire des travaux décrits dans cette thèse. L’attention particulière portée aux complexes chiraux correspondants est due à leur utilisation comme catalyseurs énantiosélectives versatiles pour promouvoir une large gamme de réactions d’intérêt. Dans le contexte de la catalyse asymétrique hétérogène, nous nous focalisons plus particulièrement sur l’élaboration de catalyseurs polymères cycliques de salens chiraux, appelés complexes calixsalens. Ainsi, nous avons mis au point une voie d’accès directe aux calixsalens de cobalt (III) par polycondensation. Ces complexes testés en tant que catalyseurs dans le dédoublement cinétique dynamique hydrolytique de l’épibromohydrine peuvent être facilement récupérés par simple filtration du milieu réactionnel et réutilisés dans une nouvelle transformation. Ces ligands cycliques permettent donc la préparation de complexes homobimétalliques capables de réaliser une double activation efficace de l’époxyde et de l’eau, conduisant au produit ciblé avec des rendements et des sélectivités élevés.Nous avons également rapporté l’utilisation de ces mêmes calixsalens de cobalt (III) en présences des complexes analogues de manganèse (III) dans la réaction d’hydrolyse des époxydes méso. Ce système de catalyse hétérobimétallique s’est révélé encore plus sélectif que le système homobimétallique impliquant les catalyseurs de cobalt seuls.Suite à ces résultats, nous avons tenté de préparer des complexes de salens hétérobimétalliques, dans lesquels deux métaux différents sont présents sur le même macrocycle. Pour ce faire, nous avons choisi d’explorer la chimie click pour coupler des complexes salens porteurs de différents métaux, modifiés les uns par des fonctions alcynes, les autres par des groupements azotures. / This thesis work takes place in the broad context of salen chemistry. A special attention is given to corresponding chiral complexes used as versatile enantioselective catalysts for a wide range of reactions of interest. In the context of heterogeneous asymmetric catalysis, we focus specifically on the development of polymeric, cyclic, chiral salen catalysts, named calixsalen complexes. Thus, we have developed an easy access to calixsalen cobalt (III) complexes by a facile polycondensation route. These calixsalens were used as catalysts to promote the dynamic hydrolytic kinetic resolution of epibromohydrin. They are easily recovered from the reaction mixture by a simple filtration. These cyclic complexes allowed the formation of homobimetallic species responsible for an efficient dual activation of both the epoxide and water, delivering the targeted product in both high yield and selectivity.We have also reported the use of a combination of cobalt and manganese calixsalen complexes in the hydrolysis of meso epoxydes. This dual heterobimetallic system proved to be even more selective than the homobimetallic one, in which cobalt complexes were only engaged. Based on these results, we have attempted preparing heterobimetallic salen complexes, wherein two different metals should be closely associated into the same macrocycle. Towards this aim, we explored click chemistry to couple alkyne- and azide-functionalized monomeric salen complexes coordinated to two different metals.
14

Electronic relaxation in Co(II) single-ion magnets and spin-crossover systems

Kumarage, Nuwanthika Dilrukshi 04 April 2022 (has links)
No description available.
15

Syntheses and Structure Elucidations of Ternary Metal (Cu/Co)Complexes with Nucleic Acid Constituents

Prakash, Patil Yogesh January 2013 (has links) (PDF)
The thesis is divided into four chapters Chapter 1 provides a brief introduction to the metal-nucleic acid interactions, the role of synthetic models to understand them with both solution (potentiometric) and solid state (Crystallographic) studies. Further the work done in the area of nucleobase [purines and pyrimidines] metal complexes and nucleotide metal complexes are briefly reviewed. Chapter 2 contains an account of synthesis and characterizations of metal [Cu/Co] purine [adenine] complexes and is divided into two sections Viz., Section I and Section II. Section I Five crystals structures of copper adenine dimeric complexes are synthesized and characterized with 1, 10-phenanthroline as coligand. The first ternary [Cu2(phen)2(µ-ade)2Cl2].3H2O complex (2a) crystallizes in the orthorhombic space group Pna21. In the crystal structure of 2a it has been observed that the five and six membered rings of adenine are arranged in such a way that the five membered ring nitrogen atoms N9 and N9A are coordinated to Cu1 while the nitrogen atoms N3 and N3A are coordinated with Cu2 center. This is the first time such co-ordination is observed for the copper-adenine dimeric complexes, while the earlier report shows an alternate coordination. In the complex adenine-adenine dimer formation is observed, mediated via N-H···N hydrogen bond interactions which give rise to a corrugated sheet like pattern along the bc plane. The 1,10-phenanthroline rings and water molecules are packed in the grooves of these corrugated sheets via non covalent interactions. The second ternary [Cu2(phen)2 (µ-ade)(µ-Cl)Cl2].5H2O complex (2b) obtained under same reactant conditions, as 2a, by changing the ratio of the reactants, is the unique example of a dimeric copper complex with one adenine acting as a bridging ligand. The complex 2b crystallizes in the monoclinic centric space group P21/c. Interestingly, the crystal packing of complex 2b does not show any direct adenine-adenine hydrogen bond interactions as was seen for 2a, but adenine moieties of neighboring molecules interact indirectly, mediated via N-H···O and O-H···N hydrogen bonds through solvent water molecules forming a zig-zag pattern. It is interesting to note that two hydrogen bond networks are running across the body diagonal like “X” mediated by the nitrogen atoms of the adenine base and the chlorine atom, axially coordinated to copper centre. Similarly the water molecule O4 and N7 are involved in forming a four membered ring at the body center through the non covalent interactions. As seen for the complex 2a, complex 2b also depicts the presence of slipped π-π stacking intra and intermolecular interactions for the 1,10-phenanthroline rings. The third complex [Cu2(phen)2(µ-ade)2(H2O)2](ClO4)2 complex (2c), obtained by post synthetic modification of 2a, crystallizes in the monoclinic space group Cc. The adenine moieties forms a dimer mediated via N-H···N hydrogen bonds at the pseudo two fold and are connected to the neighboring dimers through the possible hydrogen bond between the nitrogen atom N1 and the axially coordinated oxygen atom O1 of the water molecule. The perchlorate anions are trapped in the pockets surrounded by the adenine and 1,10-phenanthroline moieties. The Nitrogen atom N6, N6A of the adenine bases forms hydrogen bond with N7, N7A of the five membered rings of adenine bases and the oxygen atom O4, O7 of both perchlorate ions, the other oxygen atoms O3, O5 from Cl1 and O8 of Cl2 are involved in C-H···O hydrogen bonds but the remaining oxygen atoms O6, O9 and O10 of the perchlorate ions are not involved in hydrogen bond network. Thus the dimerization involves axial oxygen atoms and the five and six membered nitrogen atoms N7 and N1. The 1,10-phenanthroline rings show both intra as well as intermolecular slipped π-π stacking interactions. The fourth complex [Cu2(phen)2(µ-ade)2(H2O)2](BF4)2 complex (2c), obtained by post synthetic modification of 2a, crystallizes in the monoclinic space group Cc. The adenine moiety forms intermolecular N-H···N hydrogen bonds with the neighboring adenine moieties at the pseudo two fold and is connected to the neighboring dimers through the N-H···O hydrogen bond via axial water molecule. The dimerization of the neighboring adenine moieties is favored through the hydrogen bond between the oxygen atom O2 of Cu2 and N1 of the six membered ring, in return the oxygen atom O1 of second molecule is hydrogen bonded to the nitrogen N7 of the five membered ring of the first molecule. Interestingly the three fluorine atoms F1, F2 and F3 are involved in hydrogen bond and in the second BF4 ion only two fluorine atoms F6 and F7 are involved where F1 and F6 acts as a bifurcated hydrogen bond acceptor while the remaining fluorine atoms are not taking part. Here too, as in the previous case of 2c 1,10-phenanthroline rings show both intra as well as intermolecular slipped π-π stacking interactions. The fifth complex [Cu2(phen)2(µ-ade)2(H2O)2](PF6)2 complex (2c), obtained by post synthetic modification of 2a, crystallizes in the monoclinic space group Cc. The adenine moiety forms intermolecular N-H···N hydrogen bonds with the neighboring adenine moieties at the pseudo two fold and is connected to the neighboring dimers through the N-H···O hydrogen bond via axial water molecule. As observed in the previous structure of 2c and 2d the dimerization of the neighboring molecule is favored through the hydrogen bond between the oxygen atom O2 of Cu2 and N1 of the six membered ring, in return the oxygen atom O1 of second molecule is hydrogen bonded to the nitrogen N7 of the five membered ring of the first molecule. Interestingly the nitrogen atom N6 of the six membered ring is involved in four hydrogen bonds, Where one H is hydrogen bonded to N1 of the neighboring base while the second hydrogen atom is being shared by three fluorine atoms belonging to the second PF6 ion and in turn all these three fluorine atoms acts as bifurcated acceptor of the hydrogen bond with the carbon atoms of 1,10-phenanthroline. It is noteworthy that the fluorine atoms F3, F4, F5 and F6 are involved in single hydrogen bonds with the 1,10-phenanthroline carbon atoms. At the same time the rest of the fluorine atoms are not involved in any non covalent interactions. Here too, as in the previous cases of 2c and 2d 1,10-phenanthroline rings show both intra as well as intermolecular slipped π-π stacking interactions. The complexes 2c, 2d and 2e are isostructural. All the three complexes crystallized in the noncentric space group Cc as the precursor complex 2a [Pna21] with the difference being the nature of the complex, 2a being neutral whereas 2c, 2d and 2e are complex salts. All the three complexes have similar bond lengths between the coordinating atoms and the central copper metal but they differ in the angles subtended by the ligands at the copper centres which are also reflected in the dihedral angle between the planes of the coordinating ligands. Though the molecular structure of the three complexes differs only in the nature of the counter ion, the crystal packing analysis reveals the finer differences. The interaction of adenine with neighboring adenine is same for the three complexes 2c, 2d and 2e but differs from the precursor complex 2a. Section II covers the synthesis and characterization of cobalt adenine binary and ternary complexes with 1,10-phenanthroline and 2,2’-bipyridyl as coligands for the ternary complexes. The first binary [Co2(µ-Hade)2(µ-H2O)2(H2O)4](NO3)4·2H2O complex (2f) crystallizes in the centric space group P21/c. Though there were four water molecules, coordinated to the metal Co centres, available for intra molecular hydrogen bond interactions with the base nitrogen atoms the orientation of the coordinated bases is not favorable to enable the C-H···O hydrogen bond formation, but intermolecular hydrogen bonds were observed. The structure is stabilized mainly through the O-H···O and N-H···O hydrogen bond interactions between the neighboring molecules via nitrate ions. Interestingly there is an absence of any direct adenine-adenine interactions. The terminally coordinated water molecule O2 forms hydrogen bond with nitrate anion on both sides, which in turn the nitrates hold the bases of two different molecules as the network is running -N6-O10-O9-O2-O5-N6-. Both the nitrate anion oxygen atoms are involved in hydrogen bond where all the oxygen atoms are bifurcated acceptor. The nitrate ions with nitrogen atoms N10 and N11 are making a nine and eight membered ring through hydrogen bond with adenine nitrogen atoms [N6 and N7] and coordinated water molecules [O2 and O3] respectively. The second binary [Co(Hade)2(H2O)4]SO4·5H2O complex (2g) crystallizes in the centric space group P21/n. Interestingly, only one adenine [N3A] is involved in forming the O-H···N intramolecular hydrogen bond with the water molecule while the adenine on other side is not in favorable orientation. All the water molecules coordinated to the metal center are involved in forming hydrogen bonds where O1, O2 and O4 form two hydrogen bonds while, O3 forms three hydrogen bonds. The water molecule and sulphate ions are trapped in between the adenine bases and forming an interesting network of hydrogen bond running in opposite directions. In general the sulphate and the water molecule are holding the symmetry related molecules connecting the nitrogen atoms N6 and N7 of the adenine. The crystal structure of 2g shows the presence of intermolecular π-π stacking interaction between the six membered rings of the neighboring adenine molecules along a axis. These stacked adenine moieties looks like a zig- zag pattern when viewed down a axis. Here too as in previous case of 2f there are no adenine-adenine interactions present. It is noteworthy that both of these complexes[differing only in the nature of salts i.e. CoNO3 and CoSO4] differ in the adenine coordination to the cobalt centre [N9 and N3 co-ordination in 2f; N9 coordination in 2g]. The third ternary [Co2(µ-ade)2(µ-OH)2(phen)2](NO3)2·6H2O complex (2h) was synthesized by a one pot reaction and crystallizes in the triclinic space group P-1. Though there are two hydroxyl ions coordinated to the metal centre there is no favorable intramolecular hydrogen bond formation. The adenine moieties of 2h interact with each other forming a dimer at the inversion centre, which looks like a zig -zag sheet pattern, via N-H···N hydrogen bond. In addition to this the hydroxyl O1 forms hydrogen bond with water oxygen and the oxygen atom of the disordered nitrate anion. These chains are further linked to neighboring chains by N-H···O hydrogen bond and a slipped π-π interaction between the 1,10-phenanthroline rings forming a sheet like pattern. The fourth ternary [Co2(µ-ade)2(µ-OH)2(phen)2](OTs)2·6H2O complex (2i) , was also synthesized by a one pot reaction and crystallizes in the triclinic space group P-1. Similar to previous case though there are two hydroxyl groups bridging the metal centres as dimers, no intramolecular hydrogen bonds were observed. The adenine moieties interact with each other forming a zig-zag pattern via N-H···N hydrogen bond like in the previous structure 2h. Interestingly, contrary to the previous case where two such zig- zag sheets interacted with each other through slipped π-π stacking between the 1,10-phenanthroline rings, no such interaction was found among the neighboring sheets. Instead, the 1,10-phenanthroline rings interact with tosylate counter ion through C-H···O hydrogen bonds. Down the c axis projection, at the inversion centre tosylate ion and the water molecules form an eight membered ring where the water oxygen O1W acts as a donor in the two hydrogen bonds and the oxygen atom O2 of the tosylate acts as bifurcated acceptor. On the other side, the tosylate oxygens form a twelve membered ring with the water oxygen atom O2W. Thus, eight membered and twelve membered rings are formed alternately and both are subtending an angle of 113°. It is noteworthy that the tosylate ion is parallel to the adenine base while perpendicular to the 1,10-phenanthroline rings favoring the π-π and C-H···π stacking interactions between the neighboring zig zag chains. The fifth ternary [Co2(µ-ade)2(µ-OH)2(bpy)2](NO3)2·6H2O complex (2j) synthesized via one pot reaction and crystallizes in the triclinic space group P21/n. Similar to previous two cases there are two hydroxyl groups bridging the metal centres as dimers, no intramolecular hydrogen bonds were observed in the present case. The adenine moieties interact with each other forming a zig-zag pattern via N-H···N hydrogen bond as observed in the previous two structures 2h and 2i. The adenine also interacts with nitrate ion through N-H···O hydrogen bond. The nitrate groups are oriented parallel to the adenine base. The adenine base nitrogen atom N6 is involved in holding the neighboring adenine nitrogen atom N7 in addition to the nitrate oxygen atoms O3 and from the same nitrate the other oxygen atoms O4 is involved in hydrogen bond with the carbon atom C8 thus forming a nine membered ring. These chains interact with the parallel chains by slipped π-π stacking interaction similar to that observed in complex 2h. Chapter 3 describes the syntheses and characterizations of copper pyrimidine [uracil, cytosine and thymine] ternary complexes with 1,10-phenanthroline as coligand. The first polymeric [Cu(phen)(µ-ura)(H2O)]n·H2O complex (3a) crystallizes in the monoclinic space group P21/c. The protons of the water oxygen O1W is oriented towards the uracil rings enabling O-H···O intramolecular hydrogen bonds with O2 as a bifurcated bond acceptor of the uracil on either sides and the chain extends to infinity along the c axis. The structure is stabilized by slipped π-π stacking interactions between the 1,10-phenanthroline rings of neighboring polymeric chains. Each polymeric chain also interacts through C-H···O hydrogen bond between the neighboring chains. The second polymeric [Cu(phen)(µ-ura)(H2O)]n·MeOH complex (3b) is isostructural to (3a) and crystallizes in the monoclinic space group P21/c. Similar to 3a the coordinated water oxygen O1w is oriented towards the uracil rings enabling O-H···O intramolecular hydrogen bonds with O2, as a bifurcated hydrogen bond acceptor, of the uracil on either sides and the chain extends to infinity along the c axis. The structure is stabilized by slipped π-π stacking interactions between the 1,10-phenanthroline rings of neighboring polymeric chains. Each polymeric chain also interacts through C-H···O hydrogen bond between the neighboring chains. Both these complexes differ only in the lattice solvent molecule i.e. water for 3a and methanol for 3b. These complexes are the first example of direct uracil to metal coordination structurally characterized. Also, both the ring nitrogen atoms N1 and N3 are involved in coordination to the metal. The third polymeric [Cu4(cytosine)3Cl3(OH)2]n·14H2O complex 3c is the first polymeric complex known with cytosine and 1,10-phenanthroline as coligands. It crystallizes in the orthorhombic centric space group Pbca. Out of the four, three copper centres adopts square pyramidal [4+1] geometry {τ = 0.17 [Cu1], 0.028 [Cu3] and 0.053 [Cu4]}, whereas the fourth copper centre exhibits distorted trigonal bypyramidal [3+2] geometry. {[τ = 0.66 [Cu2]}. Two copper centres Cu1 and Cu3 have same co-ordination environment viz., the basal plane of the square pyramid is formed by cytosine [N1and N1A], 1,10-phenanthroline [N7, N8 and N11, N12] and chlorine ligands [Cl1, Cl3] while the axial site is occupied by other chlorine atom [Cl2] which act as a bridge between Cu1 and Cu3 in the polymeric chain. The cytosine ring attached to Cu1 and Cu3 act as tridentate ligand co-ordinating to two other copper centres [Cu2, Cu4] via O2, O2A and N3, N3A respectively. Thus remaining three sites of Cu2 are occupied by 1,10-phenanthroline [N9, N10] and a bridged hydroxyl [O1D] moiety. The hydroxyl moiety [O1D] acts as a bridging ligand between Cu2 and Cu4. Thus the basal plane of the trigonal bipyramid for Cu2 is formed by N9, O2 and O2A while axial sites are occupied by N10 and O1D. The basal plane for Cu4 is formed by N3, N3A, O1D and N3C [from third cytosine ligand] while the axial site is occupied by a hydroxyl ion [O1]. The structure is stabilized by slipped π-π intra molecular stacking interactions between the 1,10-phenanthroline rings. The cytosine moieties interact with each other through bifurcated N-H···O hydrogen bond where the proton of N6c is involved with O2 and O2A of the other two cytosine moieties coordinated to the same copper centre. The neighboring chains of the polymer are linked by inter molecular slipped π-π stacking interactions between the cytosine ring attached to Cu4 and the 1,10-phenanthroline rings. The chains are also connected through C-H···Cl hydrogen bonds where the chlorine atom Cl4 is involved in the bifurcated hydrogen bond one as intramolecular and the second as intermolecular. Both the Nitrogen atoms [N6, N6A] of different cytosine are involved in the noncovalent interactions, with the water [O41, O10W] as intermolecular hydrogen bond as well as intramolecular hydrogen bond with chlorine atoms [Cl4, Cl4* (* symmetry generated)] respectively. The water molecules pack between the polymeric chains via noncovalent interactions. Thus this complex is the first example of its kind where all the possible binding modes of cytosine are utilized. The fourth [Cu2(Phen)2(thy) (µ-OH)2(H2O)].HCO3·4.5H2O complex (3d) obtained as the minor product along with 3e crystallizes in the triclinic space group P1 with two molecules in the asymmetric unit. The structure displays the presence of a pseudo centre of inversion between the two molecules. But careful analysis of the structure reveals that the two different tautomeric forms of thymine are coordinated to the two copper centres in each molecule, thus making it a cocrystal. The molecule shows the presence of O-H···O intramolecular hydrogen bond between the thymine oxygen and the bridged hydroxyl ion. The structure is stabilized by slipped π-π stacking and C-H···π interactions between the 1,10-phenanthroline rings of neighboring molecules. The molecules also interact with solvent molecules and counter ions through non covalent C-H···O interactions. The fifth [Cu2(Phen)2(thy)(µ-OH)2(H2O)]Cl·3H2O complex (3e) which was the major product along with 3d also crystallizes in the triclinic space group P1 with two molecules in the asymmetric unit. The difference between 3d and 3e is the change in the nature of counter ion i.e. HCO3- for 3d and Cl- for 3e. Similar to 3d the two different tautomeric forms of thymine are coordinated to the two copper centres in each molecule, thus making it a cocrystal. The molecule shows the presence of O-H···O intramolecular hydrogen bond between the thymine oxygen and bridged hydroxyl ion. The structure is stabilized by slipped π-π stacking and C-H···π interactions between the 1,10-phenanthroline rings of neighboring molecules. The molecules also interact with solvent molecules and counter ions through non covalent C-H···O and C-H···Cl interactions. The sixth Cu(phen)(thy)2 complex (3e) was obtained just by changing the pH in the reaction condition for 3d and 3e and crystallizes in the monoclinic centric space group C2/c. Here a different tautomer of thymine other than that observed for 3d and 3e was coordinated to the central copper metal. The structure is mainly stabilized by slipped π-π stacking between the 1,10-phenanthroline rings of neighboring molecules as well as between the thymine rings. The thymine molecules also interact with neighboring thymine molecules through non covalent N-H···O interactions. These thymine thymine interactions were absent in 3d and 3e. Chapter 4 presents the synthesis and characterization of ternary copper 5’-Adenosine monophosphoric acid (5’-AMP)/ 5’-cytidine monophosphoric acid (5’-CMP) complexes with 2,2’-bipyridine/1,10-1,10-phenanthroline as coligands. The first Cu(bpy)(5’-AMP)2·2H2O complex (4a), obtained at pH = 3.0, crystallizes in the triclinic space group P1 with two molecules in the asymmetric unit Viz., complex A and Complex B. The phosphate group of 5’-AMP which has two protons in the uncoordinated state gets monodeprotonated at one hydroxyl group during the complex formation and is co-ordinated to the copper centre. Thus in each complex the charge on the central copper atom is balanced by 5’-AMP monodeprotonated ligand. The environment around both copper centres is same, Cu1 and Cu2 exhibits square planar geometry. The least square plane analysis reveals that the ribose sugar moieties adopt envelope conformation. The ΦCN angle, which is the torsion angle of the base with respect to sugar, are 84(2)°, 41(2) ° for complex A and - 43(2)°, 47(2) ° for complex B suggesting a anti conformation about the glycosyl bond for all the four 5’-AMP ligands. All the four ribose ring are puckered with one carbon atom of the ring,[C4’ and C3’A for complex A, C4’B and C3’C for complex B], displaced from the best four atom plane of furanose ring on the same side as C5’. [C4’ = -0.539(2) Å, C3’A = - 0.539(2) Å for complex A; C4’B = 0.509(17) Å, C3’C = 0.535(20) Å for complex B], suggesting in each complex, the confirmation of the ribose sugar of two 5’-AMP ligands are different. [C4’ endo and C3’A endo for complex A; C4’B endo and C3’C endo for complex B] Both the complexes A and B are stabilized by C-H···O intramolecular interaction between the adenine base and the phosphate oxygen atom. The structure is stabilized through a complicated network of C-H···O and N-H···O hydrogen bond interactions between the neighboring molecules where the oxygen atoms of the water molecules are involved in forming the network of bifurcated hydrogen bond. The adenine rings interact with each other through the N-H···N hydrogen bonds forming a dimer between the N6-N7 and N7-N6 similar to the base pairing observed in the DNA molecule, in addition to this the atom N6 is involved in forming a bifurcated hydrogen bond with the O7 atom of the phosphate group. Additionally, there is a presence of slipped π···π stacking interaction, between the bipyridine rings and adenine rings in a -B-A:A-B- fashion [B= 2,2’-bipyridine and A:A= adenine adenine adduct]. The second {Cu2(bpy)2(µ-5’-AMP)2(H2O)2·2[Cu(bpy)(5’-AMP)(H2O)2]·10H2O} complex (4b) is a cocrystal obtained at pH = 6.0, crystallizes in the monoclinic space group C2. The crystal structure of 4b can be described as a cocrystal made up of one dimeric [complex D] and two monomeric [complex M] copper (II) complexes. Both the complexes are ternary with 5‘-AMP and 2,2’- bipyridine as co ligands. These complexes are neutral in nature with the charge on the copper centres balanced by the 5’-AMP ligands. The asymmetric unit consists of half of this two component cocrystal system. The basal plane for the monomeric complex M is formed by two nitrogen atoms [N10A, N11A] from the 2, 2’-bipyridine , one water molecule [O1A] and a phosphate oxygen atom [O9A] from one of the 5’-AMP ligand, while the axial site is occupied by the other water molecule, O1W. The basal plane for the dimeric complex D is formed by two nitrogen atoms [N10, N11] from the 2, 2’- bipyridine , and two phosphate oxygen atom [O9 andO7] from two bridging 5’-AMP ligand, while the axial site is occupied by the other water molecule O2A. The 5’-AMP ligand bridges the two copper centres to form the dimeric complex. It is noteworthy that both the axial water molecules of complex D are on the same side. The least square plane reveals that the ribose sugar moieties adopt envelope conformation. The ΦCN angle, which is the torsion angle of the base with respect to sugar, 72(1)° for complex D and 77(1)° for complex M, suggest an anti conformation for both the complexes about the glycosyl bonds. The ribose rings are puckered in both complex D and M, with C3’ and C3’A displaced from the best four atom plane of furanose ring. C3’ deviates from the sugar plane by 0.604(13) Å which is opposite to C5’, imply C3’ exo conformation for the ribose ring. While for the ribose moiety in complex M, C3’A deviates from the sugar plane by 0.585(11)Å which is on the same side of C5’, confirm C3’A endo conformation for the ribose ring. The conformation around the C4’-C5’ bond described by the angles ΦOO [O1’-C4’-C5’-O5’= -60(1)°] and ΦOC [C3’-C4’-C5’-O5’= -179.8(9)°] is gauche trans, a rare conformation, for the complex D while around the C4’A-C5’A bond the angles ΦOO [O1’A- C4’A-C5’A-O5’A= -59(1)°] and ΦOC [C3’A-C4’A-C5’A-O5’A = 57(1)°] suggest the commonly observed gauche gauche conformation. The structure is stabilized through the extensive network of C-H···O and N-H···O hydrogen bond interactions between the neighboring molecules. The adenine rings interact with each other through the N-H···N hydrogen bonds forming a dimer between N6-N7 and N7- N6, mimicking the base pair observed in the DNA molecule, in addition to this N6 is involved in the formation of a bifurcated hydrogen bond with the O8 atom of the phosphate group. Additionally, there is a presence of slipped π···π stacking interaction, between the bipyridine rings and adenine rings in a -B-B-A:A-B-B- fashion [B= bipyridine and A:A= adenine adenine adduct]. The third [Cu2(bpy)2(µ-5’-AMP)2]·14H2O complex 4c crystallizes in the triclinic space group P1 with one molecule in the asymmetric unit. The complex is neutral in nature with the charge on the copper centres being balanced by the 5’-AMP ligands. It is noteworthy that both the axial water molecules of complex are on the opposite side to each other which is in contradiction to the orientation of the water molecule in dimeric complex D of the molecule 4b. The least square plane analysis of the ribose sugar moiety reveals that the sugar moiety adopts envelope conformation. The ΦCN angle, which is the torsion angle of the base with respect to sugar, is 2(4)° for one 5’-AMP ligand and 69(4)° for other 5’-AMP ligand, suggesting an anti conformation for both the complexes about the glycosyl bonds. The ribose rings are puckered in both the ligands, with C3’ and C2’A displaced from the best four atom plane of furanose ring. C3’ deviates from the sugar plane by -0.624(3)Å which is on the same side of C5’, reveals C3’ endo conformation for the ribose ring. While for the other ribose moiety, C2’A deviates from the sugar plane by 0.509(3)Å which is on the same side of C5’, confirms C2’A endo conformation for the ribose ring. The conformation around the C4’-C5’ bond described by the angles ΦOO [O1’-C4’-C5’-O5’= - 76(3)°] and ΦOC [C3’-C4’-C5’-O5’= 41(3)°] is gauche gauche for one of the 5’-AMP ligand. Also around the C4’A-C5’A bond the torsion angles ΦOO [O1’A-C4’A-C5’A-O5’A= -59(2)°] and ΦOC [C3’A-C4’A-C5’A-O5’A = 59(3)°] suggest the commonly observed gauche gauche conformation for the other 5’-AMP ligand. The complex is stabilized by C-H···O and N-H···O intramolecular interactions between the adenine base and the phosphate oxygen atom. The phosphate oxygen atoms O8 and O8A become bifurcated by hydrogen bonding to O1W and O4W. In turn by symmetry relation it forms a sheet like structure extending to infinity. The adenine also interacts with the bipyridine ring with slipped π···π stacking interaction. The structure is stabilized by extensive net work of C-H···O and N-H···O hydrogen bond interactions between the neighboring molecules. The adenine rings interact with each other through the N-H···N hydrogen bonds forming a dimer between N6-N7 and N7- N6, mimicking the base pair observed in the DNA molecules, in addition to this N6 is involved in the formation of a hydrogen bond with the O8 atom of the phosphate group. Very interestingly, the axially coordinated water molecules O1A, O2A along with the phosphate oxygen atoms O8, O8A and water molecules O1W, O4W form a six membered ring in the chair conformation of a cyclohexane ring through hydrogen bonds mediated by the water molecules. Additionally, there is a presence of slipped π···π stacking interaction, between the bipyridine rings and adenine rings in a –B-B-A:A-B-B- fashion [B= bipyridine and A:A= adenine adenine adduct]. This is similar to previous two structures. All the three structures show the presence of different coordinating nature of phosphate groups obtained just by varying the pH conditions. The presence of cocrystal suggests that more than one type of coordination can exists at the same time. The fourth [Cu2(bpy)2(µ-5'CMP)(µ3-5'CMP)(Cl)]n·3H2O polymeric complex (4d) crystallizes in the Orthorhombic space group P212121. The polymer can be described as follows. There are two 5’-CMP ligand in the asymmetric unit viz., I and II. I acts as bidentate bridging ligand co-ordinating through base [N3] and phosphate oxygen [O9] to Cu1 and Cu2 respectively. II acts as a tridentate ligand co-ordinating to Cu1 through phosphate oxygen [O7A] while to Cu2 through the base [N3A] and phosphate oxygen [O9A]. Thus ligand I connects Cu1 and Cu2 forming a chain along the a axis while this chain is extended in b axis direction via ligand II. The least square plane analysis of the ribose sugar moiety reveals that both sugar moieties adopt envelope conformation. The ΦCN angle, which is the torsion angle of the base with respect to sugar, are 40.0(8)° [for ligand I] and 19.2(8)° [For ligand II] suggesting an anti conformation for both sugar moieties about the glycosyl bond. Both the ribose ring adopt a puckered confirmation with C2’ and C3’A displaced from the best four atom plane of furanose ring by 0.511(7) Å and 0.461(7) Å for ligand I and II respectively. Both the atoms C2’ and C3’A are on the same side as C5’, hence the conformation is C2’ endo [for ligand I] and C3’A endo [for ligand II] respectively. The conformation around the C4’-C5’ bond described by the angles ΦOO [O1’-C4’-C5’-O5’= -86.0(6)°{for I} and O1’A-C4’A-C5’A-O5’A= -72.8(2)°{for II}] and ΦOC [C3’-C4’-C5’-O5’= 33.9(8)°{for I} and C3’A-C4’A-C5’A-O5’A = 45.6(6)°{for II}] is gauche gauche for both the ribose rings in the polymeric complex. The polymeric strand is stabilized by N-H···O intramolecular interaction between the cytosine base and the phosphate oxygen atom. The cytosine base also interacts with the axial Chlorine atom to form N-H···Cl hydrogen bond. The structure is stabilized through the extensive network of N-H···O, C-H···O and O-H···O hydrogen bond interactions between the water molecules and polymerizing, making the sheets to run in third direction. The chlorine atom Cl1 at the same time along with the water molecule O1W and O8W of the phosphate group forms an envelope shape five membered ring [Cl1-O2W-O8-O1W-O3W-Cl1] via hydrogen bond. Thus the water molecules, the phosphate oxygen atoms, the chlorine atoms and the nitrogen atoms of the base make the network of hydrogen bonds in three dimension. In the three dimensional network the copper atoms, the base and the sugar with the phosphate are running anti parallel direction pushing the bipyridyl ring on the outer side, thus remaining as the back bone of the sheet. Additionally, there is a presence of slipped π···π stacking interaction, both intra and inter strand, between the 2, 2’-bipyridine rings. Thus the bipyridine rings, stacked
16

Synthèse et caractérisation de complexes métalliques de ruthénium, fer et cobalt à base des ligands terpyridine et bipyridine pour l'obtention de cristaux liquides

Ménard-Tremblay, Pierre January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
17

Synthèse et caractérisation de complexes métalliques de ruthénium, fer et cobalt à base des ligands terpyridine et bipyridine pour l'obtention de cristaux liquides

Ménard-Tremblay, Pierre January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
18

Production et stockage d'énergie : de la DSSC au photo-accumulateur / Energy production and storage : from DSSC to a photo-accumulator

Cisneros, Robin 25 September 2015 (has links)
L’objectif de ce travail a été de mettre en place un système original capable de produire et stocker l’énergie à partir de la lumière dans un dispositif unique. Pour ce faire, nous avons choisi d’adapter l’électrode photo-sensible d’une DSSC sur un système d’accumulateur électrochimique. La première partie de ce travail a été de mettre en place la technique de spectroscopie EIS-λ, basée sur la spectroscopie d’impédance électrochimique couplée à un balayage en longueur d’onde de la lumière incidente. L’objectif de cette mesure est d’identifier et de quantifier les différents mécanismes de transfert électroniques, photo-dépendant ou non, ayant lieu à la surface de l’électrode photo-sensible, ainsi que les processus de désactivation des états excités des sensibilisateurs. Nous nous sommes ensuite penchés sur la recherche des conditions optimales d’utilisation de deux coadsorbants — l’acide bismethoxyphenyl phosphinique ou BMPP et l’acide chenodesoxycholique ou CDCA — avec le sensibilisateur de référence N719. Nous avons également quantifié leurs activités shield et anti-π-stacking grâce à la technique EIS-λ. Nous avons ainsi réalisé une DSSC présentant un rendement de photo-conversion de 8,3% en utilisant le co-adsorbant BMPP dans un ratio [co-ads]/[S] = 1, contre 7,2% dans les conditions de référence — avec le coadsorbant CDCA utilisé dans un ratio [co-ads]/[S] = 10. Par la suite, nous avons imaginé et synthétisé trois complexes de ruthénium hydrophiles originaux dont nous avons testé le pouvoir de photo-conversion dans des DSSC à électrolyte 100% aqueux, en présence des co-adsorbants sélectionnés. Ces systèmes ont permis de dépasser le pouvoir de photo-conversion du sensibilisateur N719, dans l’eau, avec un rendement maximal obtenu de 1,31%. Enfin, nous avons sélectionné la meilleure combinaison sensibilisateur / co-adsorbant afin de réaliser une électrode photo-sensible que nous avons implémentée dans un système original d’accumulateur électrochimique à base d’électrolytes aqueux. Le système ainsi mis en place constitue aujourd’hui le premier dispositif fonctionnel d’accumulateur 100% aqueux photo-rechargeable à partir d’une électrode mésoporeuse photo-sensibilisée / The aim of this work was to imagine and to develop a new system able to produce and store energy from sunlight in a single device. For this purpose, the photo-sensitive electrode of a DSSC has been adapted to an electrochemical accumulator. The first part of this work was to develop a new spectroscopic technique, called EIS-λ and based on electrochemical impedance spectroscopy combined to incident light wavelength sweep. This technique has proved its capacity to identify and quantify the different mechanisms of electron transfer over the surface of the semiconducting material and their dependency to incident wavelength, together with the various deactivation processes of the excited state of the sensitizer. Then, we investigated the best conditions to use two different co-adsorbents — namely bis-methoxyphenylphosphinic acid, or BMPP, and chenodesoxycholic acid, or CDCA — with the reference sensitizer N719. The shield and anti-π-stacking activities of the two coadsorbents has been characterized using EIS-λ technique. DSSC with a photo-conversion yield of 8,3% has been prepared in the lab using BMPP in a ratio [co-ads]/[S] = 1 while reference conditions – namely with CDCA in a ratio [co-ads]/[S] = 10 — only gave 7,2%. Besides, we have designed and synthesized three original hydrophilic ruthenium complexes, then tested their photo-conversion properties in DSSC with 100% aqueous electrolytes. Such systems, with the selected co-adsorbents, allowed 1,31% photo-conversion yield to be obtained, which is two times larger than the efficiency exhibited by N719 in the same electrolyte conditions. Finally the best combination sensitizer / co-adsorbent has been selected to achieve a photo-sensitive electrode which has been implemented in an original electrochemical accumulator with aqueous electrolytes. This system represents the first functional device of a 100% aqueous accumulator, which is photo-reloadable with a photosensitized mesoporous electrode

Page generated in 0.0405 seconds