Spelling suggestions: "subject:"cobordisme lagrangian"" "subject:"cobordisme lagrangienne""
1 |
Exact Lagrangian cobordism and pseudo-isotopySuárez López, Lara Simone 09 1900 (has links)
Dans cette thèse, on étudie les propriétés des sous-variétés lagrangiennes dans une variété symplectique en utilisant la relation de cobordisme lagrangien. Plus précisément, on s'intéresse à déterminer les conditions pour lesquelles les cobordismes lagrangiens élémentaires sont en fait triviaux.
En utilisant des techniques de l'homologie de Floer et le théorème du s-cobordisme on démontre que, sous certaines hypothèses topologiques, un cobordisme lagrangien exact est une pseudo-isotopie lagrangienne. Ce resultat est une forme faible d'une conjecture due à Biran et Cornea qui stipule qu'un cobordisme lagrangien exact est hamiltonien isotope à une suspension lagrangianenne. / In this thesis we study the properties of Lagrangian submanifolds of a symplectic manifold by using the relation of Lagrangian cobordism. More precisely, we are interested in determining when an elementary Lagrangian cobordism is trivial.
Using techniques coming from Floer homology and the s-cobordism theorem, we show that under some topological assumptions, an exact Lagrangian cobordism is a Lagrangian pseudo-isotopy. This is a weaker version of a conjecture proposed by Biran and Cornea, which states that any exact Lagrangian cobordism is Hamiltonian isotopic to a Lagrangian suspension.
|
2 |
Quelques propriétés des sous-variétés lagrangiennes monotones : Rayon de Gromov et morphisme de SeidelCharette, François 08 1900 (has links)
Cette thèse présente quelques propriétés des sous-variétés lagrangiennes monotones. On résoud d'abord une conjecture de Barraud et Cornea dans le cadre monotone en montrant que le rayon de Gromov relatif à deux lagrangiennes dans la même classe d'isotopie hamiltonienne donne une borne inférieure à la distance de Hofer entre ces deux mêmes lagrangiennes. Le cas non-monotone de cette conjecture reste ouvert encore. On définit toutes les structures nécessaires à l'énoncé et à la preuve de cette conjecture.
Deuxièmement, on définit une nouvelle version d'un morphisme de Seidel relatif à l'aide des cobordismes lagrangiens de Biran et Cornea. On montre que cette version est chaîne-homotope aux différentes autres versions apparaissant dans la littérature. Que toutes ces définitions sont équivalentes fait partie du folklore mais n'apparaît pas dans la littérature.
On conclut par une conjecture qui identifie un triangle exact obtenu par chirurgie lagrangienne et un autre dû à Seidel et faisant intervenir le twist de Dehn symplectique. / We present in this thesis a few properties of monotone Lagrangian submanifolds. We first solve a conjecture of Barraud and Cornea in the monotone setting by showing that the relative Gromov radius of two Hamiltonian-isotopic Lagrangians gives a lower bound on the Hofer distance between them. The general non-monotone case remains open to this day. We define all the structures relevant to state and prove the conjecture.
We then define a new version of a Lagrangian Seidel morphism through the recently introduced Lagrangian cobordisms of Biran and Cornea. We show that this new version is chain-homotopic to various other versions appearing in the litterature. That all these previous versions are the same is folklore but did not appear in the litterature.
We conclude with a conjecture claiming that an exact triangle obtained by Lagrangian surgery is isomorphic to an exact triangle of Seidel involving the symplectic Dehn twist.
|
3 |
Quelques propriétés des sous-variétés lagrangiennes monotones : Rayon de Gromov et morphisme de SeidelCharette, François 08 1900 (has links)
Cette thèse présente quelques propriétés des sous-variétés lagrangiennes monotones. On résoud d'abord une conjecture de Barraud et Cornea dans le cadre monotone en montrant que le rayon de Gromov relatif à deux lagrangiennes dans la même classe d'isotopie hamiltonienne donne une borne inférieure à la distance de Hofer entre ces deux mêmes lagrangiennes. Le cas non-monotone de cette conjecture reste ouvert encore. On définit toutes les structures nécessaires à l'énoncé et à la preuve de cette conjecture.
Deuxièmement, on définit une nouvelle version d'un morphisme de Seidel relatif à l'aide des cobordismes lagrangiens de Biran et Cornea. On montre que cette version est chaîne-homotope aux différentes autres versions apparaissant dans la littérature. Que toutes ces définitions sont équivalentes fait partie du folklore mais n'apparaît pas dans la littérature.
On conclut par une conjecture qui identifie un triangle exact obtenu par chirurgie lagrangienne et un autre dû à Seidel et faisant intervenir le twist de Dehn symplectique. / We present in this thesis a few properties of monotone Lagrangian submanifolds. We first solve a conjecture of Barraud and Cornea in the monotone setting by showing that the relative Gromov radius of two Hamiltonian-isotopic Lagrangians gives a lower bound on the Hofer distance between them. The general non-monotone case remains open to this day. We define all the structures relevant to state and prove the conjecture.
We then define a new version of a Lagrangian Seidel morphism through the recently introduced Lagrangian cobordisms of Biran and Cornea. We show that this new version is chain-homotopic to various other versions appearing in the litterature. That all these previous versions are the same is folklore but did not appear in the litterature.
We conclude with a conjecture claiming that an exact triangle obtained by Lagrangian surgery is isomorphic to an exact triangle of Seidel involving the symplectic Dehn twist.
|
Page generated in 0.0819 seconds