• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 8
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 71
  • 71
  • 44
  • 22
  • 21
  • 17
  • 16
  • 13
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Exact BER Calculation of TCM-MAPSK using Pairwise Probability of Product Trellis Algorithm for DVB Applications

Iyamabo, Philip Ehizogie January 2016 (has links)
No description available.
52

Distance Distribution and Error Performance of Reduced Dimensional Circular Trellis Coded Modulation

Baldiwala, Aliasgar M. January 2003 (has links)
No description available.
53

Non-binary cyclic codes and its applications in decoding of high dimensional trellis-coded modulation

Zhou, Biyun January 2000 (has links)
No description available.
54

The performance analysis and decoding of high dimensional trellis-coded modulation for spread spectrum communications

Chen, Changlin January 1997 (has links)
No description available.
55

Symbol assignment and performance of simplex signaling in high dimensional trellis-coded modulation

Alder, Frank A. January 1998 (has links)
No description available.
56

Systematic design of high dimensional circular trellis-coded modulation in spread spectrum communications

Song, Xiangyu January 2001 (has links)
No description available.
57

ON SYMBOL TIMING RECOVERY IN ALL-DIGITAL RECEIVERS

Ghrayeb, Ali A. 10 1900 (has links)
International Telemetering Conference Proceedings / October 27-30, 1997 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Sandia National Laboratories (SNL) currently achieves a bandwidth efficiency (h ) of 0.5 to 1.0 bps/Hz by using traditional modulation schemes, such as, BPSK and QFSK. SNL has an interest in increasing the present bandwidth efficiency by a factor of 4 or higher with the same allocated bandwidth (about 10 MHz). Simulations have shown that 32- QAM trellis-coded modulation (TCM) gives a good bit error rate (BER) performance, and meets the requirements as far as the bandwidth efficiency is concerned. Critical to achieving this is that the receiver be able to achieve timing synchronization. This paper examines a particular timing recovery algorithm for all-digital receivers. Timing synchronization in a digital receiver can be achieved in different ways. One way of achieving this is by interpolating the original sampled sequence to produce another sampled sequence synchronized to the symbol rate or a multiple of the symbol rate. An adaptive sampling conversion algorithm which performs this function was developed by Floyd Gardner in 1993. In the present work, his algorithm was applied to two different modulation schemes, BPSK and 4-ary PAM. The two schemes were simulated in the presence of AWGN and ISI along with Gardner’s algorithm for timing recovery, and a fractionally spaced equalizer (T/2 FSE) for equalization. Simulations show that the algorithm gives good BER performance for BPSK in all the situations, and at different sampling frequencies, but unfortunately poor performance for the 4-ary PAM scheme. This indicates that Gardner’s algorithm for sampling conversion is not suitable for multi-level signaling schemes.
58

Nonbinary-LDPC-Coded Modulation Schemes for High-Speed Optical Communication Networks

Arabaci, Murat January 2010 (has links)
IEEE has recently finished its ratification of the IEEE Standard 802.3ba in June 2010 which set the target Ethernet speed as 100 Gbps. The studies on the future trends of the ever-increasing demands for higher speed optical fiber communications show that there is no sign of decline in the demand. Constantly increasing internet traffic and the bandwidth-hungry multimedia services like HDTV, YouTube, voice-over-IP, etc. can be shown as the main driving forces. Indeed, the discussions over the future upgrades on the Ethernet speeds have already been initiated. It is predicted that the next upgrade will enable 400 Gbps Ethernet and the one after will be toward enabling the astounding 1 Tbps Ethernet.Although such high and ultra high transmission speeds are unprecedented over any transmission medium, the bottlenecks for achieving them over the optical fiber remains to be fundamental. At such high operating symbol rates, the signal impairments due to inter- and intra-channel fiber nonlinearities and polarization mode dispersion get exacerbated to the levels that cripple the high-fidelity communication over optical fibers. Therefore, efforts should be exerted to provide solutions that not only answer the need for high-speed transmission but also maintain low operating symbol rates.In this dissertation, we contribute to these efforts by proposing nonbinary-LDPC-coded modulation (NB-LDPC-CM) schemes as enabling technologies that can meet both the aforementioned goals. We show that our proposed NB-LDPC-CM schemes can outperform their prior-art, binary counterparts called bit-interleaved coded modulation (BI-LDPC-CM) schemes while attaining the same aggregate bit rates at a lower complexity and latency. We provide comprehensive analysis on the computational complexity of both schemes to justify our claims with solid evidence. We also compare the performances of both schemes by using amplified spontaneous emission (ASE) noise dominated optical fiber transmission and short to medium haul optical fiber transmission scenarios. Both applications show outstanding performances of NB-LDPC-CM schemes over the prior-art BI-LDPC-CM schemes with increasing gaps in coding gain as the transmission speeds increase. Furthermore, we present how a rate-adaptive NB-LDPC-CM can be employed to fully utilize the resources of a long haul optical transport network throughout its service time.
59

Coded Modulation for High Speed Optical Transport Networks

Batshon, Hussam George January 2010 (has links)
At a time where almost 1.75 billion people around the world use the Internet on a regular basis, optical communication over optical fibers that is used in long distance and high demand applications has to be capable of providing higher communication speed and re-liability. In recent years, strong demand is driving the dense wavelength division multip-lexing network upgrade from 10 Gb/s per channel to more spectrally-efficient 40 Gb/s or 100 Gb/s per wavelength channel, and beyond. The 100 Gb/s Ethernet is currently under standardization, and in a couple of years 1 Tb/s Ethernet is going to be standardized as well for different applications, such as the local area networks (LANs) and the wide area networks (WANs). The major concern about such high data rates is the degradation in the signal quality due to linear and non-linear impairments, in particular polarization mode dispersion (PMD) and intrachannel nonlinearities. Moreover, the higher speed transceivers are expensive, so the alternative approaches of achieving the required rates is preferably done using commercially available components operating at lower speeds.In this dissertation, different LDPC-coded modulation techniques are presented to offer a higher spectral efficiency and/or power efficiency, in addition to offering aggregate rates that can go up to 1Tb/s per wavelength. These modulation formats are based on the bit-interleaved coded modulation (BICM) and include: (i) three-dimensional LDPC-coded modulation using hybrid direct and coherent detection, (ii) multidimensional LDPC-coded modulation, (iii) subcarrier-multiplexed four-dimensional LDPC-coded modulation, (iv) hybrid subcarrier/amplitude/phase/polarization LDPC-coded modulation, and (v) iterative polar quantization based LDPC-coded modulation.
60

Advanced Coded Modulation for High Speed Optical Transmission

Liu, Tao January 2016 (has links)
In the recent years, the exponential Internet traffic growth projections place enormous transmission rate demand on the underlying information infrastructure at every level, from the long haul submarine transmission to optical metro networks. In recent years, optical transmission at 100 Gb/s Ethernet date rate has been standardized by ITU-T and IEEE forums and 400Gb/s and 1Tb/s rates per DWDM channel systems has been under intensive investigation which are expected to be standardized within next couple of years.To facilitate the implementation of 400GbE and 1TbE technologies, the new advanced modulation scheme combined with advanced forward error correction code should be proposed. Instead of using traditional QAM, we prefer to use some other modulation techniques, which are more suitable for current coherent optical transmission systems and can also deal with the channel impairments. In this dissertation, we target at improving the channel capacity by designing the new modulation formats. For the first part of the dissertation, we first describe the optimal signal constellation design algorithm (OSCD), which is designed by placing constellation points onto a two dimensional space. Then, we expand the OSCD onto multidimensional space and design its corresponding mapping rule. At last, we also develop the OSCD algorithm for different channel scenario in order to make the constellation more tolerant to different channel impairments. We propose the LLR-OSCD for linear phase noise dominated channel and NL-OSCD for nonlinear phase noise dominated channel including both self-phase modulation (SPM) and cross-phase modulation (XPM) cases. For the second part of the dissertation, we target at probability shaping of the constellation sets (non-uniform signaling). In the conventional data transmission schemes, the probability of each point in a given constellation is transmitted equally likely and the number of constellation sets is set to 2!. If the points with low energy are transmitted with larger probability then the others with large energy, the non- uniform scheme can achieve higher energy efficiency. Meanwhile, this scheme may be more suitable for optical communication because the transmitted points with large probabilities, which have small energy, suffer less nonlinearity. Both the Monte Carlo simulations and experiment demonstration of both OSCD and non-uniform signaling schemes indicate that our proposed signal constellation significantly outperforms QAM, IPQ, and sphere-packing based signal constellations.

Page generated in 0.1133 seconds