• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 22
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Effect of Portland cement concrete characteristics and constituents on thermal expansion

Siddiqui, Md Sarwar 15 September 2015 (has links)
The coefficient of thermal expansion (CTE) is one of the major factors responsible for distresses in concrete pavements and structures. Continuously reinforced concrete pavements (CRCPs) in particular are highly susceptible to distresses caused by high CTE in concrete. CRCP is a popular choice across the U.S. and around the world for its long service life and minimal maintenance requirements. CRCP has been built in more than 35 states in the U.S., including Texas. In order to prevent CRCP distresses, the Texas Department of Transportation (TxDOT) has limited the CTE of CRCP concrete to a maximum of 5.5 x10-6 strain/oF (9.9 x10-6 strain/oC). Coarse aggregate sources that produce concrete with CTE higher than the allowable limit are no longer accepted in the TxDOT CRCP projects. Moreover, CTE is an important input in the Mechanistic-Empirical Pavement Design Guide (MEPDG). Small deviations in input CTE can affect the pavement thickness significantly in MEPDG designs. Therefore, accurate determination of concrete CTE is important, as it allows for enhanced concrete structure and pavement design as well as accurate screening of CRCP coarse aggregates. Moreover, optimizing the CTE of concrete according to a structure’s needs can reduce that structure’s cracking potential. This will result in significant savings in repair and rehabilitation costs and will improve the durability and longevity of concrete structures. This study found that the CTEs determined from saturated concrete samples were affected by the internal water pressure. As a result, the TxDOT method yielded higher values than did the American Association of State Highway and Transportation Officials (AASHTO) method. To further investigate the effect of internal water pressure, an analytical model was developed based on the poroelastic phenomenon of concrete. According to the model, porosity, permeability, and the rate of temperature change are the major factors that influence the internal water pressure development. Increasing the permeability of concrete can reduce the internal water pressure development and can thus improve the consistency of measured CTE values. Preconditioning concrete samples by subjecting them to several heating and cooling cycles prior to CTE testing and reducing the rate of temperature change improved the consistency of the CTE test results. Concrete CTE can be reduced by blending low-CTE aggregates with high-CTE aggregates and reducing the cement paste volume. Based on these findings, a concrete CTE optimization technique was developed that provides guidelines for the selection of concrete constituents to achieve target concrete CTE. A concrete proportioning technique was also developed to meet the need for CTE optimization. This concrete proportioning technique can use aggregate from any sources, irrespective of gradation, shape, and texture. The proposed technique has the potential to reduce the cement requirement without sacrificing performance and provides guidelines for multiple coarse and fine aggregate blends. / text
12

Matériaux composites Aluminium/Carbone : architecture spécifique et propriétés thermiques adaptatives / Development of bulk MMC materials with specific architectures and thermal properties

Chamroune, Nabil 26 September 2018 (has links)
Les matériaux composites à matrice métallique (CMM) sont actuellement étudiés pour être utilisés dans de nombreux domaines d’application. L’une des applications potentielles concerne leur utilisation en tant que drain thermique pour les modules de puissance. Pour cette application, deux conditions sont requises : une conductivité thermique (CT) élevée pour évacuer la chaleur générée par la puce électronique et un coefficient d’expansion thermique (CTE) proche du substrat céramique (2-8×10-6 /K) utilisé dans le module de puissance.Ainsi des matériaux composites à matrice aluminium (Al : CT de 217 W/m.K et CTE de 24×10-6 /K) et à renfort plaquette de graphite (GF : CT de 1000 W/m.K et CTE de -1×10-6 /K dans le plan de la plaquette) ont été élaborés. Ces matériaux composites ont été fabriqués par Métallurgie des Poudres (MP) conventionnelle mais aussi par un procédé original nommé Flake Powder Metallurgy (FPM). Ce procédé, qui consiste à utiliser une poudre métallique à morphologie plaquette, a permis d’optimiser l’orientation des renforts plaquette dans un plan perpendiculaire à la direction de densification sous l’action d’une pression uniaxiale. De plus, ce procédé a permis d’obtenir une meilleure adhésion entre la matrice et le renfort comparé aux matériaux composites élaborés par MP conventionnelle. Cela a abouti à une amélioration de la CT qui est passée de 400 W/m.K à 450 W/m.K pour un taux de renfort de 50%vol. Néanmoins, concernant la dilatation thermique, des CTE de 21,8×10-6 /K et 21,7×10-6 /K ont été obtenus par MP et FPM respectivement, ce qui est incompatible avec l’application visée.Pour surmonter cette problématique, des matériaux composites à renfort multiple ont été élaborés par frittage en phase liquide. Ainsi des fibres de carbone (FC) ont été rajoutées à l’aluminium et aux plaquettes de graphite. L’ajout de ce second renfort au graphite a permis de diminuer de manière importante le CTE des composites Al/(GF+FC) avec une faible proportion en FC tout en maintenant une haute CT. De plus les matériaux composites Al/(GF+FC) présentent des CTE nettement inférieurs aux composites Al/FC avec un %vol. de FC équivalent. Ainsi des matériaux composites Al/(GF+FC) ont été élaborés par frittage en phase liquide permettant d’obtenir une CT de 400 W/m.K (comparable à la CT du cuivre) et un CTE de 8×10-6 /K (comparable au CTE de l’alumine). De plus la légèreté de l’aluminium confère aux matériaux composites Al/C une faible densité (d=2,4). Par conséquent, les matériaux développés dans cette étude sont prometteur en tant que drain thermique léger, notamment dans le domaine de l’électronique embarquée. / Many carbon/metal composites are currently used in several applications. One of them concerns their use as heat sinks in microelectronics. Concerning this application, two conditions are required: a high thermal conductivity (TC) in order to evacuate the heat generated by the electronic chip and a coefficient of thermal expansion (CTE) similar to the used material type of the electronic device (2-8×10-6 /K).Therefore, graphite flakes (GF; TC: 1000 W/m.K and CTE: -1×10-6 /K in the graphite plane) reinforced aluminum matrix (Al; TC: 217 W/m.K and CTE: 25×10-6 /K) composites were fabricated. These composite materials were fabricated by Powder Metallurgy (PM) and Flake Powder Metallurgy (FPM). This process, which consist to use a flattened metallic powder, helped to improve the in-plane orientation (perpendicular to the pressure direction) of GF under uniaxial pressure. Moreover, this process provided a better Al-C interface thanks to a planar contact between the matrix and the reinforcements. This resulted in an improvement of the CT from 400 W/m.K to 450 W/m.K for a reinforcement content of 50 vol.%. Nevertheless, regarding thermal dilation, CTEs of 21.8×10-6 /K and 21.7×10-6 /K were obtained by MP and FPM respectively, which is incompatible with the intended application.To overcome this problem, composite materials with multiple reinforcement were developed by solid-liquid phase sintering. Then, carbon fibers (CF) have been added to aluminum and graphite flakes. The addition of CF to GF reinforcement reduced significantly the CTE of the Al/(GF+CF) composites with a small proportion of CF, while preserving a high TC. In addition, the Al/(GF+FC) composite materials have significantly lower CTEs than the Al/CF composites with a equivalent vol.% of CF. Therefore, Al/(GF+CF) composite materials were developed by solid-liquid phase sintering to obtain a TC of 400 W/m.K (comparable to the TC of copper) and a CTE of 8×10-6 /K (comparable to the CTE of alumina). In addition, the lightweight of aluminum gives composite materials Al/C a low density (d = 2.4 g/cm3). Therefore, the composite materials developed in this study are promising as a lightweight heat sink in microelectronic industries.
13

Design, Fabrication, and Analysis of a Multi-Layer, Low-Density, Thermally-Invariant Smart Composite via Ultrasonic Additive Manufacturing

Pritchard, Joshua D. 04 November 2014 (has links)
No description available.
14

Microstructure-based solid oxide fuel cell seal design using statistical mechanics

Milhans, Jacqueline Linda 15 November 2010 (has links)
Solid oxide fuel cells (SOFC) in a flat-plate configuration require a hermetic seal between the fuel and air sides of the electrodes, and this seal must withstand a variety of thermally-induced stresses over the lifetime of the cell. In this study, quantitative microstructure-property relationships are developed to predict optimum seal structures for mechanical properties and thermal expansion coefficient criteria. These relationships are used to create an inverse approach to characterizing the processing method from the desired microstructure. The main focus of the work concentrates on providing tools to enable macroscopic property predictions from the constituent properties using homogenization techniques based on the individual phase properties and microstructure morphology. The microstructure is represented by two-point correlation functions. Statistical continuum mechanics models were then employed and developed to predict the mechanical and thermal properties of the material. The models enable the prediction of elastic modulus and coefficient of thermal expansion of the multi-phase material. The inelastic mechanical behavior was also studied, indicating microstructure dependence. These models will aid in predicting the a proper seal microstructure (with desired elastic stiffness, coefficient of thermal expansion, and viscoelastic behaviors) based on a desired level of crystallization glass-ceramic materials.
15

Size Dependence of Static and Dynamic Properties of Nanobars and Nanotubes

Pathak, Sandeep 10 1900 (has links) (PDF)
This thesis aims at investigating size dependence of properties of nanostructures from the point of view of a general scaling theory that smoothly connects properties of the bulk to that of nanostructures. Two different examples of a ``static'' and a ``dynamic'' property are considered in this study. The first example studied is of size dependence of coefficient of thermal expansion (CTE) which a static property of nanostructures. The CTE of nanobars and nanoslabs is studied using equilibrium molecular dynamics and dynamical matrix formulation in an electrically insulating medium. It is found that the fractional change in CTE from the bulk value scales inversely with the size of the nanostructures, thus, showing a simple description in terms of a scaling theory. In the second part, electron transport in carbon nanotube field effect transistors (CNTFETs) is studied using Landauer formalism. A CNTFET involves transport through a 1-d ballistic carbon nanotube channel with Schottky barriers (SB) at contacts which determines the transport characteristics. The CNT is modeled as a 1-d semiconductor having only two bands separated by an energy gap which depends inversely on tube diameter. After the contact is made, a self-consistent potential appears due to charge transfer between CNT and metal, which is calculated by solving Poisson equation. The electron transmission across the barriers is calculated using WKB approximation. Current and conductance are calculated using Landauer-Buttiker formula. Diameter dependence of properties like, conductance, threshold voltage, VON, etc. is calculated. It is found that there is no simple scaling for a property for small values of diameter. The scaling form is, however, found to be valid for larger diameters. Also, other calculated device characteristics are in close agreement with experiments. The model presented in this thesis is the first detailed study illustrating the applicability of the scaling approach to the properties of nanostructures. The static properties show scaling behavior, while ``dynamic'' properties derived from electronic response do not.
16

Studie srovnání vlastností pouzder QFN a BGA / Study of BGA and QFN package properties

Skácel, Josef January 2015 (has links)
This work deals with the issue of packaging and heat transfer. Especially this work focused on QFN and BGA packages. Nowadays most sophisticated conventional solution. First part deals with analysis of the current status of packages. Next part is analyze the issue of heat transfer in electronic systems. The following section is an experimental dealing with simulation in ANSYS Workbench and validation of these simulations by designed test structures. At the end is evaluated properties and behavior of these packages.
17

[en] ADDITION OF DIVALENT CATIONS (ZN(2+), NI(2+)) TO ZRMGMO(3)O(12) AND THEIR EFFECTS ON PHYSICAL PROPERTIES / [pt] ADIÇÃO DE CÁTIONS DIVALENTES (ZN(2+), NI(2+)) À ZRMGMO(3)O(12) E SEUS EFEITOS SOBRE PROPRIEDADES FÍSICAS

ALISON TATIANA MADRID SANI 13 April 2020 (has links)
[pt] Embora a grande maioria dos materiais dilate quando aquecida e contraia quando resfriada, existe uma classe de materiais que se contrai, ou não muda de dimensões, ao aquecida, apresentando um coeficiente de expansão térmico negativo (ETN) ou próximo à zero (ETZ), respectivamente. A possibilidade de reduzir significativamente o coeficiente de expansão térmica, e ao mesmo tempo, incrementar suas propriedades físicas tem sido a principal força motriz na busca por fases cristalinas dentro da família A(2)M(3)O(12) e suas subfamílias. Tendo isso em vista, a proposta deste estudo foi sintetizar dois sistemas novos, ZrMg(1- x)Zn(x)Mo(3)O(12) (x=0,1; 0,3; 0,35; 0,4) e ZrMg(1-x)Ni(x)Mo(3)O(12) (x=0,05; 0,1; 0,15; 0,2), para tentar reduzir o coeficiente de expansão térmica da fase mãe, a ZrMgMo(3)O(12). O limite de solubilidade de Zn(2+) e Ni(2+) no sistema ZrMgMo(3)O(12) se encontra no intervalo de 0,35 menor ou igual à x menor ou igual à 0,4 e 0,1 menor ou igual à x menor ou igual à 0,2, respectivamente. O menor coeficiente de expansão térmica (alfa l =2,82x10(-7)K (-1)) foi obtido para a composição x=0,1 no sistema ZrMg(1-x)Zn(x)Mo(3)O(12) na faixa de temperatura de 213 K a 298 K. Neste sistema, a transição de fase de monoclínica para ortorrômbica foi observada, ocorrendo abaixo da temperatura ambiente para todas as composições de x=0,1 a x=0,4. Esta temperatura de transição aumenta conforme aumenta a composição de Zn(2+). As análises de termogravimetria indicaram que as fases dos dois sistemas não são higroscópicas. Aplicando a equação de Kubelka-Munk, e considerando uma transição indireta para o ZrMg(1-x)ZnxMo3O12, concluiu-se que não existem diferenças significativas na energia de banda proibida das fases analisadas. No entanto, para uma transição indireta para o ZrMg(1-x)Ni(x)Mo(3)O(12) existe um decréscimo da energia da banda de energia, conforme o conteúdo de Ni(2+) aumenta na composição, além do surgimento da absorção no espectro visível devido à transição d-d. Por fim, os resultados deste estudo mostraram que é possível obter um material cerâmico, dentro dos sistemas estudados, que apresente um comportamento de expansão térmica próxima à zero. / [en] Although the vast majority of materials dilates when heated and contract when cooled, there is a class of materials that contracts or does not change their dimensions when heated, presenting a negative thermal expansion coefficient (NTE) or close to zero (ZTE), respectively. The possibility of reducing the coefficient of thermal expansion while increasing its physical properties has been the main driving force in the search for crystalline phases within the A(2)M(3)O(12) family and its subfamilies. In the present study, we propose to synthesize two new systems, ZrMg(1-x)Zn(x)Mo(3)O(12) (x = 0.1, 0.3, 0.35, 0.4) and ZrMg(1-x)Ni(x)Mo(3)O(12) (x = 0.05; 0.1, 0.15, 0.2), to try to reduce the coefficient of thermal expansion of the ZrMgMo(3)O(12) phase. The solubility limit of Zn(2+) and Ni(2+) in the ZrMgMo(3)O(12) system is in the range of 0.35 less than or equal to x less than or equal to 0.4 and 0.1 less than or equal to x less than or equal to 0.2, respectively. The lowest coefficient of thermal expansion (alfa l=2.82x10(-7)K (-1)) was obtained for the composition x = 0.1 in the ZrMg(1-x)Zn(x)Mo(3)O(12)system in the temperature range of 213 K to 298 K. In this system, the phase transition from monoclinic to orthorhombic was observed, occurring below the room temperature for all compositions from x = 0.1 to x = 0.4. This transition temperature increases as the Zn(2+) composition increases. Analyzes of thermogravimetry indicated that the phases of the two systems are not hygroscopic. Applying the Kubelka-Munk equation, and considering an indirect transition to ZrMg(1-x)Zn(x)Mo(3)O(12), it was concluded that there are no significant differences in the band gap energy of the analyzed phases. However, for an indirect transition to ZrMg1-xNixMo3O12 there is a decrease in energy of the band energy, as Ni2+ content increases in composition, in addition to the appearance of absorption in the visible spectrum due to d-d transition. Finally, the results of this study showed that it is possible to obtain a ceramic material, within the systems studied, that presents a thermal expansion behavior close to zero.
18

[pt] AVALIAÇÃO DO POTENCIAL DO SISTEMA AL2-XGAXW3O12 PARA RESISTÊNCIA AO CHOQUE TÉRMICO / [en] POTENTIAL OF THE AL2-XGAXW3O12 SYSTEM FOR THERMAL SHOCK RESISTANCE

ISABELLA LOUREIRO MULLER COSTA 09 June 2020 (has links)
[pt] O principal objetivo deste trabalho foi estudar o sistema Al2-xGaxW3O12 (x = 0,2; 0,4; 0,5; 0,6; 0,7; 0,8; 1; 2) visando compreender os efeitos da substituição parcial de Al3+ (r = 0,67 Angstrom) por Ga3+ (r = 0,76 Angstrom) em relação ao coeficiente de expansão térmica da fase Al2W3O12. Foi determinado que o limite de solubilidade de Ga3+ no sistema é x = 0,5, as composições x maior ou igual 0,6 evidenciaram, por difração de raios-X (DRX), a presença de WO3 como fase secundária. Os difratogramas das composições 0,2 menor ou igual x menor ou igual 0,5, a temperatura ambiente, apresentaram exclusivamente linhas características do sistema monoclínico (P21/a). A transição para a fase ortorrômbica (Pbcn), foi evidenciada por DRX in situ e dilatometria e ocorre abaixo de 100 C em todos os casos. A temperatura de transição de fase, determinada por dilatometria, aumentou conforme foi aumentada a incorporação de Ga3+ na estrutura cristalina. A análise termogravimétrica das composições monofásicas revelou que essas fases não são higroscópicas. Embora Al1,5Ga0,5W3O12, seja a composição monofásica com maior teor de Ga, a fase Al1.6Ga0.4W3O12 foi a que apresentou o menor coeficiente de expansão térmica linear, alfa L= 1.14 K -1, uma redução de 25 por cento quando comparado ao coeficiente linear de expansão da fase Al2W3O12. O refinamento pelo método de Rietveld do padrão de difração de raios-X obtido a 100 C da Al1.6Ga0.4W3O12 ortorrômbica, confirmou que o Ga3+ substituiu o Al3+ na proporção descrita pela fórmula química nominal e evidenciou que as distorções poliédricas, Al(Ga)O6 e WO4, foram maiores do que as observadas em fases desta família. A espectroscopia de Raman corroborou as análises de DRX quanto ao limite de solubilidade, porém, evidenciando que quantidades mínimas, indetectáveis por DRX, de Al2O3 e WO3 podem estar presentes nas composições x menor ou igual 0,5, quando a síntese é realizada pelo método de reação no estado sólido. Os gráficos de Kubelka-Munk do sistema Al2- xGaxW3O12 indicaram que a substituição parcial de parcial de Ga3+ por Al3+ aumenta o intervalo de banda em x menor ou igual 0,4, no entanto, foi observada uma saliência de absorção dentro da região do visível presente em todas as amostras, interpretada como uma conseqüência da presença de WO3 monoclínica, observada na espectroscopia Raman. A síntese da fase Ga2W3O12, não foi bem sucedida, embora a entalpia de formação deste composto, calculada por meio da equação generalizada de Kapustinskii e pelo ciclo de Born-Haber, seja fortemente exotérmica, ΔHF= −10149,15 Kj. mol -1. / [en] The aim of this work was to study the Al2-xGaxW3O12 system (x = 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 2) in order to investigate the relationship between the partial replacement of Al3+ (r = 67 Angstrom) by Ga3+ (r = 0.76 Angstrom) and the coefficient of thermal expansion on the Al2W3O12 phase. It was determined as limit of solubility of Ga3+ in Al2-xGaxW3O12 the sample 𝑥 = 0.5, once it was identified in the diffraction patter WO3 as a secondary phase in 𝑥 bigger or equal 0.6. Unlike Al2W3O12 which is orthorhombic (Pbcn) at room temperature, the phases 0.2 less or equal 𝑥 less or equal 0.5 in the Al2- xGaxW3O12 appeared, at room temperature, in the monoclinic system (P21/a). The transition to orthorhombic phase (Pbcn), determined by XRPD in situ and dilatometry, was observed below 100 C for all compositions. The phase transition temperature increases as the Ga3+ content was increased in the crystalline structure. The thermogravimetric analysis of the monophasic samples showed that they were not hygroscopic. Although the monophasic composition with the highest Ga3+ content was Al1.5Ga0.5W3O12, the phase Al1.6Ga0.4W3O12 presented the lowest linear coefficient of thermal expansion, alpha l = 1.14 K -1, a reduction of 25 percent comparing with the linear coefficient of thermal expansion of the phase Al2W3O12. The Rietveld fit to the orthorhombic Pbcn space group, of the Al1.6Ga0.4W3O12 diffraction pattern taken at 100 C, confirms that Ga3+ was replaced by Al3+ in the same proportion described in the nominal chemical formula, and showed that its polyhedral distortion , Al(Ga)O6 and WO4, is in a higher amount than generally noticed for other phases in this crystal family. The Raman spectroscopy corroborated the analyzes regarding the solubility limit, although it showed that the compositions 𝑥 less or equal 0,5 could have a minimum quantities, undetectable by XRPD, of Al2O3 and WO3, when synthesized by the solid state reaction method. Kubelka-Munk graphics of Al2-xGaxW3O12 suggest that the partial replacement of Al3+ by Ga3+ increases the band gap in x less or equal 0,4, however, the absorption of Al2-xGaxW3O12 in the visible region increase, this behavior is apparently caused by the presence of WO3, as deduced by Raman spectroscopy. Attempts to synthesize Ga2W3O12 was not successful, although the enthalpy of formation of this compound, calculated by Generalized Kapustinskii equation and the Born-Haber cycle, presented a high exothermic value, ΔHF = −10149,15 Kj. mol -1.
19

Composites aluminium/fibres de carbone pour l’électronique de puissance / Aluminium/carbon fibres composites for power electronic

Lalet, Grégory 24 September 2010 (has links)
L’étude a pour objectif l’amélioration de la fiabilité des assemblages électroniques à travers la mise en œuvre de drains composites aluminium/fibres de carbone. Le travail a consisté à 1) modéliser, par la méthode des éléments finis, l’influence des propriétés thermiques et mécaniques du matériau de semelle sur l’assemblage életronique ; 2) élaborer (par frittage sous charge uniaxiale, frittage flash et extrusion à chaud) des matériaux composites aluminium/fibres de carbone ; et 3) lier les microstructures observées aux paramètres des procédés d’élaboration ainsi qu’aux propriétés thermiques et mécaniques mesurées. / This study has been done in order to improve power electronic devices reliability using aluminium/carbon fibres composites. This work has consisted in 1) determining, using finite elements method, the thermal and mechanical influence of the electronic base plate material; 2) elaborating (using hot pressing, spark plasma sintering and hot extrusion) aluminium/carbon fibres composites; and 3) linking the microstructures observed to the elaboration parameters and to the thermomechanical properties measured.
20

[pt] COMPÓSITOS DE MATRIZ METÁLICA À BASE DA ALUMIX-231 COM ADIÇÃO DE SÍLICA FUNDIDA / [en] METAL MATRIX COMPOSITES BASED ON ALUMIX-231 WITH THE ADDITION OF FUSED SILICA

LUCIANO MONTEIRO RODRIGUES 20 June 2022 (has links)
[pt] O objetivo deste estudo foi desenvolver compósitos à base de uma liga de AlSi (Alumix-231) com adição de 5 a 20 vol. por cento de sílica fundida, no intuito de reduzir o coeficiente de expansão térmica (CET), com relação ao da matriz, e manter as propriedades físicas do compósito, tais como densidade e dureza, ao menos no nível da matriz. Os compósitos foram desenvolvidos pela metalurgia do pó, primeiramente, prensados a 700 MPa e depois sinterizados em temperaturas entre 565 e 575 graus C por 90 min (condição T1). Os melhores resultados, em termos de redução da expansão térmica, foram alcançados após a sinterização a 565 graus C. Os compósitos com adição de 15 e 20 vol.por cento de sílica fundida exibiram coeficientes de expansão térmica tão baixos quanto 13,70 e 12,73 x 10(-6) graus C(-1) (entre 25 e 400 graus C), uma redução de 29,9 por cento e 34,8 por cento, respectivamente, em comparação com Alumix231 pura. Além disso, a densidade e a dureza desses compósitos não foram muito afetadas negativamente, pois sofreram apenas uma pequena diminuição, não superior a 6 por cento e 5 por cento, respectivamente. Em seguida, amostras sinterizadas a 565 graus C foram envelhecidas artificialmente a 160 graus C por 8 h (condição T6) e os Compósitos de Matriz Metálica (CMMs) com 15 e 20 vol. por cento de sílica fundida exibiram um aumento da dureza, cerca de 94,12 por cento e 64,71 por cento, respectivamente, em relação às amostras análogas na condição T1. Com relação à expansão térmica, houve redução dos CETs, em comparação com a liga pura envelhecida, de 27 por cento e de 32 por cento, respectivamente. Alumix-231 é uma nova e promissora liga e a sílica fundida, que nunca foi usada antes com o objetivo de reduzir sua expansão térmica, demonstrou ser uma cerâmica com aplicações promissoras como carga em compósitos de matrizes à base de Alumix-231 devido à sua expansão térmica próxima de zero e à sua baixa densidade. Como tal, os resultados obtidos mostraram que os compósitos de Alumix-231/sílica fundida são materiais potencialmente promissores para aplicações automotivas, candidatos a substituírem o ferro fundido (alta densidade, de 7,3 a 7,9 g cm(-3) , e CET de 13 x 10(-6) graus C(-1)). / [en] The goal of this study was to develop composites based on an Al-Si alloy (Alumix-231) with the addition of 5 to 20 vol. percent of fused silica, to reduce the coefficient of thermal expansion (CTE) in comparison to that of the matrix (Alumix-231), keeping the composite light and without impairing its physical properties, such as density and hardness. The composites were developed by powder metallurgy, first pressed at 700 MPa, and then sintered at temperatures between 565 and 575 degrees C for 90 min (T1 condition). The best results, in terms of reduced thermal expansion, were achieved after liquiq-phase sintering at 565 degrees C. Composites with the addition of 15 and 20 vol. percent of fused silica exhibited CTEs, as low as, 13.70 and 12.73 x 10(-6) degrees C(-1) (between 25 and 400 degrees C), a reduction of 29.9 percent and 34.8 percent, respectively, compared to neat Alumix-231. Furthermore, the density and hardness of these composites were not negatively affected, as these properties presented only a small decrease, not exceeding 6 percent and 5 percent, respectively. Then, samples sintered at 565 degrees C were artificially aged at 160 degrees C for 8 h (T6 condition), and MMCs-15 and 20 vol. percent exhibited an increase in hardness of about 94,12, percent and 64,71 percent, compared to T1 samples. Regarding thermal expansion, there was a reduction of CTEs, compared to the aged neat alloy, of 27 percent and 32 percent, respectively. Alumix-231 is a promising new alloy and fused silica, which has never been used before to reduce its thermal expansion, has shown to be a ceramic with promising applications as a filler in Alumix-231-based matrix composites, due to its thermal expansion close to zero. As such, the results obtained showed that Alumix231/fused silica composites are promising materials for automotive applications and new candidates to replace heavy cast iron components.

Page generated in 0.1091 seconds