• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optical coherence tomography: applications and developments for imaging in vivo biological tissue

Dinsdale, Graham January 2011 (has links)
In this thesis the design and build of a high-speed, video-rate optical coherence tomography (OCT) imaging system is described. The system was designed for the purpose of imaging human skin in vivo, particularly that of patients suffering from conditions such as systemic sclerosis. Component selection and design decisions are discussed in the context of the intended final application. Initial test images from the system are presented. In the context of building an OCT system, a supercontinuum light source was characterised and tested for its suitability for use in the OCT environment. Parameters such as coherence length were measured using simple interferometry techniques, while practical considerations such as portability and ease of system integration were also considered.Several applications of OCT imaging techniques were also investigated, using two commercially-available OCT systems from Thorlabs, Inc. A liquid-based skin and blood flow model was constructed using narrow glass capillary tubes, pumped through with scattering solutions of Intralipid or suspensions of polystyrene microspheres. The concentration of the solutions was tuned by dilution in order to best model the scattering parameters of blood. The model also used similar liquid solutions to model static tissue surrounding the blood vessels. Doppler OCT images of the model under various conditions were recorded, and velocity profiles of the flowing liquids were extracted.Using the same commercial OCT systems, imaging over two separate wavelength regions was also performed on the skin of several different species of neo-tropical tree frog, some of which have interesting reflective properties due to the presence of a pigment called pterorhodin. Cross-sectional OCT images of the skin are presented, and averaged depth profiles extracted from them. This is the first time that OCT imaging has been applied to this problem.A clinical study of skin thickening and microvascular function in patients with systemic sclerosis compared to healthy controls was also carried out, again involving a Thorlabs, Inc. commercial OCT system. This study was carried out at Salford Royal Hospital under the supervision of the rheumatology research group. Skin thickness was assessed using OCT and high-frequency ultrasound imaging. Microvascular function was measured using nailfold cappilaroscopy and laser Doppler imaging. Images from the study are presented here.
2

Spectral domain interferometry: A high-sensitivity, high-speed approach to quantitative phase imaging

Shang, Ruibo 01 July 2015 (has links)
Many biological specimens are transparent and in weak intensity contrast, making it invisible using conventional bright field microscopes. Therefore, the phase-based optical microscopy techniques play important roles in the development of the modern biomedical science. Furthermore, the ability to achieve quantitative phase measurement of the tiny structures of biomedical specimens is of great importance for many biomedical applications. Thus, quantitative phase imaging becomes an important technique to measure the phase variations due to the difference of refractive index and geometric thickness of various structures and materials within the biomedical specimens. In this thesis, a spectral modulation interferometry (SMI) is developed to achieve quantitative phase imaging. In SMI, the phase and amplitude information will simultaneously be modulated onto the interference spectrum of the broadband light. Full-field phase images can be obtained by scanning along the orthogonal direction only. SMI incorporates the advantages of low coherence from broadband light source, high sensitivity from spectral domain interferometry and the high speed from the spectral modulation technique to achieve quantitative phase measurement with free of speckle, high temporal sensitivity (~0.1nm) and fast imaging rate. The principles of SMI system and programming as well as some important image processing methods will be discussed in detail. Besides, the quantitative phase measurement of the reflective object (USAF resolution target) and the transmitted biological objects (Peranema, human cheek cells) will be shown. / Master of Science
3

Compressive Spectral and Coherence Imaging

Wagadarikar, Ashwin Ashok January 2010 (has links)
<p>This dissertation describes two computational sensors that were used to demonstrate applications of generalized sampling of the optical field. The first sensor was an incoherent imaging system designed for compressive measurement of the power spectral density in the scene (spectral imaging). The other sensor was an interferometer used to compressively measure the mutual intensity of the optical field (coherence imaging) for imaging through turbulence. Each sensor made anisomorphic measurements of the optical signal of interest and digital post-processing of these measurements was required to recover the signal. The optical hardware and post-processing software were co-designed to permit acquisition of the signal of interest with sub-Nyquist rate sampling, given the prior information that the signal is sparse or compressible in some basis.</p> <p>Compressive spectral imaging was achieved by a coded aperture snapshot spectral imager (CASSI), which used a coded aperture and a dispersive element to modulate the optical field and capture a 2D projection of the 3D spectral image of the scene in a snapshot. Prior information of the scene, such as piecewise smoothness of objects in the scene, could be enforced by numerical estimation algorithms to recover an estimate of the spectral image from the snapshot measurement.</p> <p>Hypothesizing that turbulence between the scene and CASSI would introduce spectral diversity of the point spread function, CASSI's snapshot spectral imaging capability could be used to image objects in the scene through the turbulence. However, no turbulence-induced spectral diversity of the point spread function was observed experimentally. Thus, coherence functions, which are multi-dimensional functions that completely determine optical fields observed by intensity detectors, were considered. These functions have previously been used to image through turbulence after extensive and time-consuming sampling of such functions. Thus, compressive coherence imaging was attempted as an alternative means of imaging through turbulence.</p> <p>Compressive coherence imaging was demonstrated by using a rotational shear interferometer to measure just a 2D subset of the 4D mutual intensity, a coherence function that captures the optical field correlation between all the pairs of points in the aperture. By imposing a sparsity constraint on the possible distribution of objects in the scene, both the object distribution and the isoplanatic phase distortion induced by the turbulence could be estimated with the small number of measurements made by the interferometer.</p> / Dissertation
4

Investigation of Laser Speckle Contrast Imaging's Sensitivity to Flow

Young, Anthony M. 30 July 2018 (has links)
No description available.
5

Design of Instrumentation &amp; Control and Optical Table Instruments for the Divertor Flow Monitor Diagnostic at ITER

Hermansson, Niklas January 2022 (has links)
This master's thesis describes the process of the design and instrument selection for a future optical table, part of a plasma flow monitor diagnostic system at the international thermonuclear experimental reactor, ITER. The diagnostic system is designed to detect the presence of edge localized mode, low to high confinement mode transition of plasma, and plasma flow velocity in the divertor region of the reactor. It accomplishes this by performing spectroscopic measurements of visible light radiating from specific elements inside the reactor. The selection of these elements are based on previous experiments performed at the joint european torus (JET). The light is transported via a system of lenses and mirrors to the optical table where it is directed through a series of optical instruments. Finally, the light is subsequently captured by cameras who live stream the images via the internal network to a control center. To aid the development of the schematic and instrument selection, optical design simulations of the light transmission path were performed to ensure that the design could provide sufficient level of light itensity to the cameras at a defined trajectory. The selection of instruments, light transmission results, computer aided design- and simulation models of the optical table are presented in this report. While the selected components satisfied most criteria specified by its predefined system requirements, the project also serves as a foundation for future improvements of the optical table, including changes to any of the instruments, schematics, and optical design simulations.
6

Carrier Dynamics and Application of the Phase Coherent Photorefractive Effect in ZnSe Quantum Wells

Dongol, Amit 23 October 2014 (has links)
No description available.

Page generated in 0.1752 seconds