• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 363
  • 91
  • 72
  • 48
  • 12
  • 8
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 745
  • 106
  • 95
  • 84
  • 77
  • 77
  • 74
  • 67
  • 65
  • 64
  • 63
  • 58
  • 58
  • 57
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Experimental Studies of Quantum Dynamics and Coherent Control in Homonuclear Alkali Diatomic Molecules

Zhang, Bo January 2002 (has links)
<p>The main theme covered in this thesis is experimentalstudies of quantum dynamics and coherent control in homonuclearalkali diatomic molecules by ultrafast laser spectroscopy iththe implementation of pump-probe techniques.</p><p>A series of experiments have been performed on the Rb2molecules in a molecular beam as well as in a thermal oven. Thereal-time molecular quantum dynamics of the predissociatingelectronically excited D(3)<sup>1</sup>Πu state of Rb<sub>2</sub>, which couples to/intersects several otherneighbouring states, is investigated using wavepackets. Thepredissociation of the D state, explored by this wavepacketmethod, arises from two independent states, the (4)<sup>3</sup>Σ<sub>u</sub><sup>+</sup>and (1)<sup>3</sup>∆<sub>u</sub>, for which the second corresponds to a much fasterdecay channel above a sharp energy threshold around 430 nm. Thelifetime of the D state above the energy threshold is obtained,τ ≈ 5 ps, by measuring the decay time of thewavepacket in a thermal oven. Further experimentalinvestigation performed in a molecular beam together withquantum calculations of wavepacket dynamics on the D state haveexplored new probe channels of wavepacket evolution: theD′(3)1Σu+ channel, which exhibits vibrational motionin a shelf state and the (4)<sup>3</sup>Σu+ channel, where direct build-up of thewavefunction is observed due to its spin-orbit oupling to the Dstate.</p><p>The real-time quantum dynamics of wavepackets confined totwo bound states, A<sup>1</sup>Σ<sub>u</sub><sup>+</sup>(0<sub>u</sub><sup>+</sup>) and b<sup>3</sup>Π<sub>u</sub>(0<sub>u</sub><sup>+</sup>), have been studied by experiment andcalculations. It is shown that these two states are fullycoupled by spin-orbit interaction, characterised by itsintermediate strength. The intermediate character of thedynamics is established by complicated wavepacket oscillationatterns and a value of 75 cm<sup>-1</sup>is estimated for the coupling strength at thestate crossing.</p><p>The experiments on the Li<sub>2</sub>molecule are performed by coherent control ofrovibrational molecular wavepackets. First, the Deutsch-Jozsaalgorithm is experimentally demonstrated for three-qubitfunctions using a pure coherent superposition of Li<sub>2</sub>rovibrational eigenstates. The function’scharacter, either constant or balanced, is evaluated by firstimprinting the function, using a phase-tailored femtosecond(fs) pulse, on a coherent superposition of the molecularstates, and then projecting the superposition onto an ionicfinal state using a second fs pulse at a specific delay time.Furthermore, an amplitude-tailored fs pulse is used to exciteselected rovibrational eigenstates and collision induceddephasing of the wavepacket signal, due to Li<sub>2</sub>-Ar collisions, is studied experimentally. Theintensities of quantum beats decaying with the delay time aremeasured under various pressures and the collisional crosssections are calculated for each well-defined rovibrationalquantum beat, which set the upper limitsfor ure dephasingcross sections.</p><p><b>Keywords:</b>Ultrafast laser spectroscopy, pump-probetechnique, predissociation, wavepacket, pin-orbit interaction,coherent control, (pure) dephasing</p>
182

Detection of magneto-activated water/oil interfaces containing nanoparticles

Ryoo, SeungYup 31 January 2012 (has links)
Accurate, non-invasive determination of multiphase fluids distribution in reservoir rock can greatly help the evaluation and monitoring of oil reservoirs. This laboratory thesis research, carried but utilizing the biomedical engineering concepts and measurement facilities, is an important step in developing a novel magnetic field-based oil detection method. When paramagnetic nanoparticles are either adsorbed oil/water interface or dispersed in a fluid phase in reservoir rock pores, and exposed to external magnetic field, the resultant particle movements displace the interface. Interfacial tension acts as a restoring force, leading to interfacial fluctuation and a pressure (sound) save. As the first step, the motion of the interface between a suspension of paramagnetic nanoparticles and a non-magnetized fluid (placed in a cylindrical dish) is measured by phase-sensitive optical coherence tomography (PS-OCT). Experiments were carried out with a range of iron-oxide nanoparticles that were synthesized and surface-coated by our Chemical Engineering collaborators. The numerical method was improved to be volume conserving, and extended to 3D, for more quantitative matching. The measurements of interfacial motion by PS-OCT confirm theoretical predictions of the frequency doubling and importance of material properties, such as the particle size, for the interface displacements. The relative densities of the fluid phase(air/aqueous and dodecane/aqueous) strongly affect the interfacial displacement. Next, the acoustic responses to the external magnetic oscillation, from the rock samples into which different aqueous dispersions of nanoparticles were injected, were measured in terms of the magnetic frequency, nanoparticle concentration, and other process parameters. Subsequently, the PS-OCT displacements in response to the external magnetic oscillation, from the rock samples into which different aqueous dispersions of nanoparticles were injected, were also measured in terms of the magnetic frequency, nanoparticle concentration, and other process parameters. Conclusions and the recommendations for further study are then given. / text
183

Coherence and decoherence processes of a harmonic oscillator coupled with finite temperature field: exact eigenbasis solution of Kossakowski-Linblad's equation

Tay, Buang Ann 28 August 2008 (has links)
Not available / text
184

A new class of coherent states and its properties

Mohamed, Abdlgader January 2011 (has links)
The study of coherent states (CS) for a quantum mechanical system has received a lot of attention. The definition, applications, generalizations of such states have been the subject of work by researchers. A common starting point of all these approaches is the observation of properties of the original CS for the harmonic oscillator. It is well-known that they are described equivalently as (a) eigenstates of the usual annihilation operator, (b) from a displacement operator acting on a fundamental state and (c) as minimum uncertainty states. What we observe in the different generalizations proposed is that the preceding definitions are no longer equivalent and only some of the properties of the harmonic oscillator CS are preserved. In this thesis we propose to study a new class of coherent states and its properties. We note that in one example our CS coincide with the ones proposed by Glauber where a set of three requirements for such states has been imposed. The set of our generalized coherent states remains invariant under the corresponding time evolution and this property is called temporal stability. Secondly, there is no state which is orthogonal to all coherent states (the coherent states form a total set). The third property is that we get all coherent states by acting on one of these states ['fiducial vector'] with operators. They are highly non-classical states, in the sense that in general, their Bargmann functions have zeros which are related to negative regions of their Wigner functions. Examples of these coherent states with Bargmann function that involve the Gamma and also the Riemann ⲝ functions are represented. The zeros of these Bargmann functions and the paths of the zeros during time evolution are also studied.
185

Experimental investigation of coherent structures generated by active and passive separation control in turbulent backward-facing step flow

Ma, Xingyu 21 July 2015 (has links)
No description available.
186

Coherent control of diamond defects for quantum information science and quantum sensing

Maurer, Peter 06 June 2014 (has links)
Quantum mechanics, arguably one of the greatest achievements of modern physics, has not only fundamentally changed our understanding of nature but is also taking an ever increasing role in engineering. Today, the control of quantum systems has already had a far-reaching impact on time and frequency metrology. By gaining further control over a large variety of different quantum systems, many potential applications are emerging. Those applications range from the development of quantum sensors and new quantum metrological approaches to the realization of quantum information processors and quantum networks. Unfortunately most quantum systems are very fragile objects that require tremendous experimental effort to avoid dephasing. Being able to control the interaction between a quantum system with its local environment embodies therefore an important aspect for application and hence is at the focus of this thesis. / Physics
187

City Information Model - CIM : Benefits with an integrated city information model in the area of technical aspects

Salminen, Anna, Hägglöf, Daniel January 2015 (has links)
An important part for projects, organizations etc. is to have a good system of how to manage information so that it´s constantly updated, accurate and available for all affected operators. Current degree project is performed on behalf of the IT-company Eurostep AB who has developed a software named Share-A-space for information management and they are now interested to see if there are any demands for Share-A-space in the field of urban development. During the degree project, a model was built using Share-A-space and the model is called CIM (City Information Model). The objective with the degree project was to investigate how information is managed today at the Administration of Urban Development, Stadsbyggnadsförvaltningen, at Eskilstuna municipality and if CIM would facilitate their work. A deeper investigation was made to locate where processes can be more efficient and how functions that CIM contains would be helpful. The degree project contains a literature study, a case study and a result where the literature study contains an environment monitoring, today’s visions of a future coherent digital work approach within municipalities and procedures for urban development. The case study contains information how Eskilstuna municipality is managing information, it also contains a description of how the model was built. The result contain information of how the model operates and the responds from interviews performed after a presentation of the model at the municipality. This degree project concludes that CIM in some ways definitely could be a valid alternative in the municipal work. The municipality didn’t see any benefits by having access to all technical information regarding all specific objects in the city. Processes would on the other hand, become more efficient and CIM would be a helpful tool in planning processes and contribute to make the municipal work more transparent. There were functions in CIM, especially the function to “travel in time”, that was considered extra useful for the employees at the municipality when planning the city but also for private residence to receive a greater understanding of future plans. To implement CIM would, on the other hand, be a resource demanding process which the municipality can´t perform at the moment without receiving financial support.
188

Anisotropic Ray Trace

Lam, Wai Sze Tiffany January 2015 (has links)
Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3×3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for anisotropic ray tracing. This P matrix has the following characteristics: (1) Multiple P matrices are calculated to describe the polarization of the multiple eigenmodes at an anisotropic intercept. (2) Each P matrix maps the orthogonal incident basis vectors (Ê_m, Ê_n, Ŝ) before the optical interface into three orthogonal exiting vectors (a_m Ê'_m, a_n Ê'_n, Ŝ') after the interface, where a_m and a_n are the complex amplitude coefficients induced at the intercept. The ray tracing algorithms described in this dissertation handle three types of uncoated anisotropic interfaces isotropic/anisotropic, anisotropic/isotropic and anisotropic/anisotropic interfaces. (3) The cumulative P matrix associated with multiple surface interactions is calculated by multiplying individual P matrices in the order along the ray path. Many optical components utilize anisotropic materials to induce desired retardance. This important mechanism is modeled as the optical phase associated with propagation. (4) The optical path length OPL of an eigenpolarization along an anisotropic ray path is incorporated into the calculation of each P matrix. Chapter 4 presents the data reduction of the P matrix of a crystal waveplate. The diattenuation is embedded in the singular values of P. The retardance is divided into two parts: (A) The physical retardance induced by OPLs and surface interactions, and (B) the geometrical transformation induced by geometry of a ray path, which is calculated by the geometrical transform Q matrix. The Q matrix of an anisotropic intercept is derived from the generalization of s- and p-bases at the anisotropic intercept; the p basis is not confined to the plane of incidence due to the anisotropic refraction or reflection. Chapter 5 shows how the multiple P matrices associated with the eigenmodes resulting from propagation through multiple anisotropic surfaces can be combined into one P matrix when the multiple modes interfere in their overlapping regions. The resultant P matrix contains diattenuation induced at each surface interaction as well as the retardance due to ray propagation and total internal reflections. The polarization aberrations of crystal waveplates and crystal polarizers are studied in Chapter 6 and Chapter 7. A wavefront simulated by a grid of rays is traced through the anisotropic system and the resultant grid of rays is analyzed. The analysis is complicated by the ray doubling effects and the partially overlapping eigen-wavefronts propagating in various directions. The wavefront and polarization aberrations of each eigenmode can be evaluated from the electric field distributions. The overall polarization at the plane of interest or the image quality at the image plane are affected by each of these eigen-wavefronts. Isotropic materials become anisotropic due to stress, strain, or applied electric or magnetic fields. In Chapter 8, the P matrix for anisotropic materials is extended to ray tracing in stress birefringent materials which are treated as spatially varying anisotropic materials. Such simulations can predict the spatial retardance variation throughout the stressed optical component and its effects on the point spread function and modulation transfer function for different incident polarizations. The anisotropic extension of the P matrix also applies to other anisotropic optical components, such as anisotropic diffractive optical elements and anisotropic thin films. It systematically keeps track of polarization transformation in 3D global Cartesian coordinates of a ray propagating through series of anisotropic and isotropic optical components with arbitrary orientations. The polarization ray tracing calculus with this generalized P matrix provides a powerful tool for optical ray trace and allows comprehensive analysis of complex optical system.
189

Radiometric Calibration of a Hybrid RCWT Imaging Model

Pratap Kadam, Poonam January 2014 (has links)
The applications of low-light imaging are widespread in areas such as biomedical imaging, remote sensing, ratiometric imaging, lithography, etc. The goal of this work is to develop a radiometrically scaled hybrid RCWT calculator to count the photons detected for such applications. The rigorous computation of different imaging models are discussed. An approach to calibrate the radiometry of the hybrid RCWT model for partially coherent illumination is presented. The diffraction from the object is evaluated rigorously using the hybrid RCWT model. A test bench is set up to validate the radiometrically scaled simulations. In all the cases considered, simulation and experiment agree within a 40% difference.
190

Ultrathin Single and Multi-Channel Fiberscopes for Biomedical Imaging

Kano, Angelique Lynn January 2009 (has links)
Ultrathin fiberscopes typically have an imaging channel and an illumination channeland are available in diameters ranging from 0.5 mm to 2.5 mm. The minimum diam-eter can be reduced by combining the illumination and imaging paths into a singlefiberoptic channel. Constructing a single channel fiberscope requires a technique ofilluminating the tissue, while minimizing the Fresnel reflections and scatter withinthe common illumination and detection channel.A single channel fiberscope should image diffusely reflected light from tissue illu-minated with light filtered for the visible wavelength range (450 - 650 nm). Simplycombining the illumination and collection paths via a beamsplitter results in a lowobject to background signal ratio. The low contrast image is due to a low collectionefficiency of light from the ob ject as well as a high background signal from the Fresnelreflection at the proximal surface of the fiber bundle, where the illumination enters thefiber bundle. The focus of the dissertation is the investigation of methods to reducethe background signal from the proximal surface of the fiber bundle. Three systemswere tested. The first system uses a coherent fiber bundle with an AR-coating on theproximal face. The second system incorporates crossed polarizers into the light path.In addition, a technique was developed, whereby a portion of the image numericalaperture is devoted to illumination and a portion to image signal detection. Thistechnique is called numerical aperture sharing (NA sharing).This dissertation presents the design, construction, testing, and comparison ofthe three single channel fiberscopes. In addition, preliminary results of a study aimedat the usefulness of broadband diffuse reflectance imaging for the identification andtracking of disease progression in mouse esophagus are presented.

Page generated in 0.0397 seconds