Spelling suggestions: "subject:"cohesive one codels"" "subject:"cohesive one 2models""
1 |
Rate and strain gradient effects on creep-fatigue crack growth in nickel-base superalloysJoshua Pribe (11192121) 27 July 2021 (has links)
<div>An important challenge in predicting fatigue and creep crack growth is describing crack growth rates under transient conditions. Transient conditions occur when similitude is violated at the crack tip due to the applied loads or material behavior. Crack growth models like the Paris law, valid for homogeneous materials under constant-amplitude cyclic loading or sustained loading, no longer apply. Transient crack growth rates are strongly influenced by changes in plastic deformation at the crack tip. Activation of time-dependent damage and viscoplastic deformation at high temperatures further complicates the problem.</div><div><br></div><div>This thesis advances knowledge and predictive capabilities for transient creep and fatigue crack growth in metals, with specific applications to two technologically-relevant nickel-base superalloys. Finite element computations of crack growth following overloads and in multilayered materials are conducted. Crack extension is an outcome of the boundary value problem through an irreversible cohesive zone model and its interaction with plasticity and viscoplasticity in the bulk material.</div><div><br></div><div>First, fatigue crack growth in rate-independent materials is analyzed. The plasticity formulation considers both plastic strain and gradients of plastic strain, which produce hardening beyond that predicted by classical plasticity models. The computations demonstrate that hardening due to plastic strain gradients plays a significant role in transient fatigue crack growth following overloads. Fatigue crack growth transients associated with material inhomogeneity are studied through the case of a crack growing toward interfaces between plastically dissimilar materials. Interactions between the interface strength and the yield strength mismatch are found to govern crack growth rates near the interface. Hardening due to plastic strain gradients is important for finding the critical conditions associated with crack bifurcation at an interface and penetration through an interlayer.</div><div><br></div><div>Subsequently, crack growth in rate-dependent materials is analyzed. For materials characterized by power-law viscoplasticity, fatigue crack growth rates following overloads are found to depend strongly on the material rate sensitivity. The computations predict a transition from acceleration- to retardation-dominated post-overload crack growth as the rate sensitivity decreases. The predicted post-overload crack growth rates show good agreement with high-temperature experimentally-measured trends for Alloy 617, a solid solution strengthened nickel-base superalloy proposed for use in next-generation nuclear power plants. The results demonstrate why Alloy 617 behaves in a relatively brittle manner following overloads despite being characterized as a creep-ductile material. Crack growth is also studied in materials where rate dependence is captured through time-dependent damage and dislocation storage and dynamic recovery processes. This approach is relevant for high-strength creep-brittle materials, in which the viscoplastic zone grows with the advancing crack. The computations predict crack growth retardation for several loading waveforms containing overloads. The amount of retardation depends strongly on the overload ratio and subsequent unloading ahead of the crack tip. The predicted post-overload crack extension shows good agreement with high-temperature experimentally-measured trends for Alloy 718, a precipitation-hardened nickel-base superalloy used in turbine engines and power generation applications. The results demonstrate why Alloy 718 behaves in a ductile manner following overloads, despite being characterized as a creep-brittle material.</div>
|
2 |
A Multiscale Method for Simulating Fracture in Polycrystalline MetalsSaether, Erik 25 June 2008 (has links)
The emerging field of nanomechanics is providing a new focus in the study of the mechanics of materials, particularly in simulating fundamental atomic mechanisms involved in the initiation and evolution of damage. Simulating fundamental material processes using first principles in physics strongly motivates the formulation of computational multiscale methods to link macroscopic failure to the underlying atomic processes from which all material behavior originates.
A combined concurrent and sequential multiscale methodology is developed to analyze fracture mechanisms across length scales. Unique characterizations of grain boundary fracture mechanisms in an aluminum material system are performed at the atomic level using molecular dynamics simulation and are mapped into cohesive zone models for continuum modeling within a finite element framework. Fracture along grain boundaries typically exhibit a dependence of crack tip processes (i.e. void nucleation in brittle cleavage or dislocation emission in ductile blunting) on the direction of propagation due to slip plane orientation in adjacent grains. A new method of concurrently coupling molecular dynamics and finite element analysis frameworks is formulated to minimize the overall computational requirements in simulating atomistically large material regions. A sequential multiscale approach is advanced to model microscale polycrystal domains in which atomistically-based cohesive zone parameters are incorporated into special directional decohesion finite elements that automatically apply appropriate ductile or brittle cohesive properties depending on the direction of crack propagation. The developed multiscale analysis methodology is illustrated through a parametric study of grain boundary fracture in three-dimensional aluminum microstructures. / Ph. D.
|
3 |
Modélisation micromécanique et identification inverse de l’endommagement par approches cohésives / Micromechanical modelling and inverse identification of damageBlal, Nawfal 12 September 2013 (has links)
Un modèle micromécanique est proposé pour une collection de zones cohésives insérées entre toutes les mailles d'une discrétisation de type éléments finis cohésifs-volumiques. Le principe de l'approche consiste à introduire un composite équivalent 'matrice-inclusions' comme une représentation de la discrétisation cohésive-volumique. Le modèle obtenu à l'aide de techniques d'homogénéisation (schéma de Hashin Shtrikman et approche de P. Ponte Castañeda) permet de décrire le comportement macroscopique élastique, fragile et ductile.Il est valable quel que soit le taux de triaxialité appliqué et la forme de la loi cohésive retenue, et permet de relier d'une façon explicite les propriétés macroscopiques du matériau aux différents paramètres cohésifs ainsi qu'à la densité de maillage.Un premier résultat est l'établissement d'un critère pratique permettant de définir les raideurs cohésives au regard de la souplesse additionnelle inhérente à l'utilisation des modèles de zones cohésives intrinsèques. L'extension du modèle au cas de la rupture fragile et ductile, permet d'obtenir d'autres critères pratiques pour calibrer les autres paramètres cohésifs (contrainte cohésive maximale, ouverture critique, énergie de fissuration, ...). L'utilisation couplée des critères obtenus permet une calibration inverse des paramètres de la loi cohésive en fonction des propriétés macroscopiques du matériau et de la taille de maillage. De fait il est possible de prédire un comportement homogène global indépendamment de la taille du maillage. / In this study a micromechanical model is proposed for a collection of cohesive zone models embedded between two each elements of a standard cohesive-volumetric finite element method. An equivalent 'matrix-inclusions' composite is proposed as a representation of the cohesive-volumetric discretization. The overall behaviour is obtained using homogenization approaches (Hashin Shtrikman scheme and the P. Ponte Castañeda approach). The derived model deals with elastic, brittle and ductile materials. It is available whatever the triaxiality loading rate and the shape of the cohesive law, and leads to direct relationships between the overall material properties and the local cohesive parameters and the mesh density.First, rigorous bounds on the normal and tangential cohesive stiffnesses are obtained leading to a suitable control of the inherent artificial elastic loss induced by intrinsic cohesive models. Second, theoretical criteria on damageable and ductile cohesive parameters are established (cohesive peak stress, critical separation, cohesive failure energy, ...). These criteria allow a practical calibration of the cohesive zone parameters as function of the overall material properties and the mesh length.The main interest of such calibration is its promising capacity to lead to a mesh-insensitive overall response in surface damage.
|
4 |
AnÃlise nÃo linear de compÃsitos laminados utilizando o mÃtodo dos elementos finitos / Nonlinear analysis of laminated composites using the finite element methodEdson Moreira Dantas JÃnior 29 August 2014 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Materiais compÃsitos vem sendo amplamente estudados devido aos seus inÃmeros benefÃcios em relaÃÃo aos materiais metÃlicos, principalmente a elevada razÃo resistÃncia/peso, bom iso-lamento tÃrmico e boa resistÃncia à fadiga. CompÃsitos laminados, foco do presente trabalho, sÃo produzidos pelo empilhamento de um conjunto delÃminas, cada uma composta de fibras unidirecionais ou bidirecionais imersas em uma matriz polimÃrica. As estruturas de materiais compÃsitos apresentam comportamento nÃo linear, tanto fÃsico quanto geomÃtrico. Devido à elevada resistÃncia, estruturas de material compÃsito tendem a ser bastante esbeltas, podendo apresentar grandes deslocamentos e problemas de estabilidade. Adicionalmente, a consideraÃÃo da nÃo linearidade fÃsica tambÃm à importante para a simulaÃÃo de falha de estruturas laminadas. Um dos modos de falha mais importantes destas estruturas à a delaminaÃÃo, que consiste no descolamento de duas lÃminas adjacentes. No projeto de estruturas laminadas, o MÃtodo dos Elementos Finitos à a ferramenta de anÃlise mais utilizada devido a sua robustez, precisÃo e relativa simplicidade. Afim de permitir a anÃlise nÃo linear de estruturas laminadas submetidas a grandes deslocamentos, foi desenvolvida neste trabalho uma formulaÃÃo de
elementos finitos sÃlidos laminados baseados na abordagem Lagrangiana Total. A simulaÃÃo do inÃcio e propagaÃÃo da delaminaÃÃo foi realizada neste trabalho utilizando Modelos de Zona Coesiva. Para este fim, foi desenvolvida uma formulaÃÃo de elementos isoparamÃtricos de interface com espessura nula e utilizados diferentes modelos constitutivos para representar a relaÃÃo entre as tensÃes e os deslocamentos relativos das faces da trinca coesiva, incluindo tanto o caso de modo I puro quanto de modo misto. As formulaÃÃes desenvolvidas neste trabalho foram implementadas no software de cÃdigo aberto FAST utilizando afilosofiade ProgramaÃÃo Orientada a Objetos. Estas implementaÃÃes sÃo apresentadas utilizando as convenÃÃes da UML. VÃrios exemplos foram utilizados para verificar e validar as implementaÃÃes realizadas. Excelentes resultados foram obtidos utilizando elementos sÃlidos laminados na anÃlise de estruturas de casca, mesmo empregando malhas com apenas um elemento sÃlido na espessura. No que diz respeito à delaminaÃÃo, verificou-se que o uso de Modelos de Zona Coesiva requer muito cuidado na escolha dos parÃmetros utilizados na anÃlise, principalmente no que diz respeito à relaÃÃo tensÃo-deslocamento relativo, tamanho dos elementos e mÃtodo de integraÃÃo numÃrica. Contudo, utilizando-se a integraÃÃo de Newton-Cotes e elementos de interface de tamanho adequado, obteve-se uma concordÃncia muito boa com resultados teÃricos e experimentais disponÃveis na literatura. De forma geral,verificou-se que o modelo coesivo exponencial apresenta maior robustez e eficiÃncia computacional que o modelo bilinear. / Composite materials has been widely studied thought the years because of it benefits compared
to metals (elevated resistance/weight ratio, good thermal isolation and good fatigue resistance).
Laminate composites are the focus of this work. Produced by stacked layers of fibers embed-
ded on polymeric matrices, structures of composite materials presents material and geometrical
non-linear behavior. Because of it elevated resistance, composite materials allow designers to
create very slender structures which might present large displacements and stability problems.
Additionally, considering material non-linearity is also important for collapse simulation of la-
minated structures. One of the most important failure modes on laminated structures is delami-
nation. Delamination is the detachment of adjacent layers. On laminated structures simulation,
the Finite Element Method is one of the most used analysis tool. It is a robust, precise and
relative simple operating tool. Intending analyzing non-linear behavior of laminated structures
subjected to large displacements, was developed on this work a laminated solid finite element
formulation based on Full Lagrangian formulation. Simulation of delamination beginning and
propagation was developed on this work using Cohesive Zone models. To achieve this goal, an
isoparametric formulation of interface finite elements without thickness and many constitutive
models to represent the relation tension
Ã
displacement jump (relative displacement between
crack faces) were developed. These models consider pure mode I and mixed mode. The formu-
lations developed on this work were implemented on the open source finite element code FAST
using Oriented Object Programing philosophy. These implementations are presented on UML
conventions. Many examples were tested for verifying and validating all the implementations.
Excellent results were obtained using laminated solid elements on the analysis of a shell struc-
ture, even using meshes with only one element though thickness. On the delamination analysis,
was verified that Cohesive Zone Models are very sensible related to the parameters used on the
analysis, mainly tension
Ã
displacement jump model, size of elements and numerical integra-
tion. Spite of it, using Newton-Cotes integration and interface elements of appropriate size,
good agreements were obtained compared with theoretical results obtained on literature. In
general, was observed that cohesive exponential model presents greater robustness and compu-
tational efficiency than bilinear model.
|
5 |
Failure Prediction for Composite Materials with Generalized Standard ModelsZhenyuan Gao (7481801) 17 October 2019 (has links)
<div>Despite the advances of analytical and numerical methods for composite materials, it is still challenging to predict the onset and evolution of their different failure mechanisms. Because most failure mechanisms are irreversible processes in thermodynamics, it is beneficial to model them within a unified thermodynamic framework. Noting the advantages of so-called generalized standard models (GSMs) in this regard, the objective of this work is to formulate constitutive models for several main failure mechanisms: brittle fracture, interlaminar delamination, and fatigue behavior for both continuum damage and delamination, in a generalized standard manner.</div><div><br></div><div>For brittle fracture, the numerical difficulties caused by damage and strain localization in traditional finite element analysis will be addressed and overcome. A nonlocal damage model utilizing an integral-type regularization technique will be derived based on a recently developed ``local'' continuum damage model. The objective is to make this model not only rigorously handle brittle fracture, but also incorporate common damage behavior such as damage anisotropy, distinct tensile and compressive damage behavior, and damage deactivation. A fully explicit integration scheme for the present model will be developed and implemented.</div><div><br></div><div>For fatigue continuum damage, a viscodamage model, which can handle frequently observed brittle damage phenomena, is developed to produce stress-dependent fatigue damage evolution. The governing equation for damage evolution is derived using an incremental method. A class of closed-form incremental constitutive relations is derived. </div><div><br></div><div>For interlaminar delamination, a cohesive zone model (CZM) will be proposed. Focus is placed on making the associated cohesive elements capable of displaying experimental critical energy release rate--mode mixture ratio relationships. To achieve this goal, each cohesive element is idealized as a deformable string exhibiting path dependent damage behavior. A damage model having a path dependence function will be developed, which will be constructed such that each cohesive element can exhibit designated, possibly sophisticated mixed-mode behavior. The rate form of the cohesive law will be subsequently derived.</div><div><br></div><div>Finally, a CZM for interlaminar fatigue, capable of handling brittle damage behavior, is developed to produce realistic interlaminar crack propagation under high-cycle fatigue. An implicit integration scheme, which can handle complex separation paths and mixed-mode delamination, is developed. Many numerical examples will be utilized to clearly demonstrate the capabilities of the proposed nonlocal damage model, continuum fatigue damage model, and CZMs for quasi-static and fatigue delamination.</div>
|
6 |
Modélisation du comportement mécanique des composites a matrice céramique : développement du réseau de fissures / Damage model for the mechanical behaviour of ceramic matrix composite materials : crack networks developmentCoradi, Audrey 18 November 2014 (has links)
Les matériaux composites à matrice céramique (CMC) sont élaborés à partir de constituants fragiles. Le comportement mécanique et le développement de la fissuration dépendent des propriétés des constituants élémentaires des CMC. La connaissance de l’influence de ces propriétés sur l’évolution de la fissuration et du comportement mécanique fournit une aide au concepteur de matériaux composites.L’objectif de ce travail est de modéliser l’évolution du réseau de fissures au sein du CMC sollicité en traction, à l’échelle du fil et à l’échelle du composite tissé. L’approche proposée est une alternative aux principaux modèles de comportement des CMC.A l’échelle du fil, l’endommagement intervient d’abord sous forme de fissures matricielles accompagnées de décohésions à l’interface fibre/matrice. Les analyses de ces deux mécanismes ont permis d’exprimer leur évolution au sein du fil en traction. Le comportement en traction résultant de l’endommagement et l’ouverture de la fissure matricielle sont aussi exprimés semi-analytiquement.Les comparaisons avec un modèle numérique de zones cohésives et avec les essais expérimentaux montrent une bonne corrélation des résultats.Enfin ces expressions à l’échelle du fil sont utilisées pour modéliser l’endommagement du fil longitudinal au sein du composite tissé en traction. De plus, un outil numérique est développé pour modéliser la fissuration matricielle inter-fil dans le composite tissé. / Ceramic matrix composite materials (CMC) are elaborated from fragile constituents. Their mechanical behaviour and crack growing depend on the properties of the CMC elementary constituent. Knowing the influence of these properties on crack development and mechanical behaviour provides support to the composite material designer.This work aims at modelling the crack networks development within the CMC under axial tension, at the yarn scale as well as at the woven composite scale. The proposed approach is an alternative to the main CMC behaviour models.At the yarn scale, matrix cracking with interfacial debonding between fiber and matrix first happen. Both mechanisms are analysed and their development are expressed. The mechanical behaviour resulting from damage and the crack opening displacement are also described using semi-analytical equations. Comparisons with numerical cohesive zone model and also with experimental testing shows good correlation between results.These semi-analytical expressions are then used for modelling damage within each yarns at the woven composite scale. In addition, a numerical tool is developed for matrix cracking and interfacial debonding between yarns of the woven composite.
|
7 |
Numerical methods for dynamic contact and fracture problemsDoyen, David 02 December 2010 (has links) (PDF)
The present work deals with the numerical solution of dynamic contact and fracture problems. The contact problem is a Signorini problem with or without Coulomb friction. The fracture problem uses a cohesive zone model with a prescribed crack path. These problems are characterized by a non-regular boundary condition and can be formulated with evolutionary variational inequations or differential inclusions. For the numerical solution, we combine, as usual in solid dynamics, a finite element discretization in space and time-integration schemes. For the contact problem, we begin by comparing the main methods proposed in the literature. We then focus on the so-called modified mass method recently introduced by H. Khenous, P. Laborde et Y. Renard, for which we propose a semi-explicit variant. In addition, we prove a convergence result of the space semi-discrete solutions to a continuous solution in the frictionless viscoelastic case. We also analyze the space semi-discrete and fully discrete problems in the friction Coulomb case. For the dynamic fracture problem, using a fully explicit scheme is impossible or not robust enough. Therefore, we propose time-integration schemes where the boundary condition is treated in an implicit way. Finally, we present and analyze augmented Lagrangian methods for static fracture problems
|
8 |
Numerical methods for dynamic contact and fracture problems / Méthodes numériques pour des problèmes dynamiques de contact et de fissurationDoyen, David 02 December 2010 (has links)
On s'intéresse à la résolution numérique de problèmes de contact et de fissuration en dynamique. Le problème de contact envisagé est le problème de Signorini avec ou sans frottement de Coulomb. Quant au problème de fissuration, il s'agit d'un modèle de zone cohésive avec trajet de fissuration pré-défini. Ces problèmes se caractérisent par la présence d'une condition aux limites non-régulière et se formulent comme des inéquations variationnelles d'évolution ou des inclusions différentielles. Pour les résoudre numériquement, nous combinons, comme il est courant en dynamique des solides, une discrétisation en espace par éléments finis et des schémas d'intégration en temps (de types différences finies). Pour le problème de contact, nous commençons par comparer les principales méthodes proposées dans la littérature. Nous étudions ensuite plus particulièrement la méthode dite de masse modifiée récemment introduite par H. Khenous, P. Laborde et Y. Renard. Nous en proposons une variante semi-explicite. Par ailleurs, nous prouvons un résultat de convergence des solutions semi-discrètes en espace vers une solution continue dans le cas d'un problème de Signorini sans frottement et d'un matériau viscoélastique. Nous analysons également les methodes semi-discrètes en espace et totalement discrètes dans le cas d'un problème de Signorini avec frottement de Coulomb. Pour le problème de fissuration dynamique, la non-régularité de la condition aux limites rend impossible ou peu robuste l'utilisation de schémas totalement explicites. Nous proposons donc des schémas où cette condition aux limites est traitée de façon implicite. Enfin, nous présentons et analysons des méthodes de lagrangien augmenté pour la résolution numérique du problème de fissuration en statique / The present work deals with the numerical solution of dynamic contact and fracture problems. The contact problem is a Signorini problem with or without Coulomb friction. The fracture problem uses a cohesive zone model with a prescribed crack path. These problems are characterized by a non-regular boundary condition and can be formulated with evolutionary variational inequations or differential inclusions. For the numerical solution, we combine, as usual in solid dynamics, a finite element discretization in space and time-integration schemes. For the contact problem, we begin by comparing the main methods proposed in the literature. We then focus on the so-called modified mass method recently introduced by H. Khenous, P. Laborde et Y. Renard, for which we propose a semi-explicit variant. In addition, we prove a convergence result of the space semi-discrete solutions to a continuous solution in the frictionless viscoelastic case. We also analyze the space semi-discrete and fully discrete problems in the friction Coulomb case. For the dynamic fracture problem, using a fully explicit scheme is impossible or not robust enough. Therefore, we propose time-integration schemes where the boundary condition is treated in an implicit way. Finally, we present and analyze augmented Lagrangian methods for static fracture problems
|
9 |
Identification expérimentale de comportements élastoplastiques de matériaux hétérogènes pour des sollicitations complexes / Experimental identification of elastoplastic behavior of heterogeneous materials under complex loadingsMadani, Tarik 17 December 2015 (has links)
Le présent travail de thèse fait suite à une première étude où une stratégie d’identification des paramètres et formes des lois de zones cohésives a été élaborée pour des matériaux homogènes. L’extension au cas de matériaux présentant des hétérogénéités nécessite d’accéder localement aux champs de contraintes.Ainsi, l’objectif principal de cette étude est de mettre au point une méthode de caractérisation locale des propriétés mécaniques et des contraintes. Cette méthode est basée sur l’erreur en relation de comportement combinée à l’exploitation de la richesse des mesures de champs cinématiques planes et plus particulièrement des champs de déformations, obtenus par dérivation numérique des champs de déplacements. Cette mesure cinématique est réalisée par une technique de corrélation d’images numériques enrichie.La méthode d’identification est basée sur la minimisation itérative d’une norme énergétique faisant intervenir le tenseur élastoplastique sécant. Différentes simulations numériques ont illustré la capacité de la procédure à identifier localement des champs de propriétés hétérogènes et sa robustesse et sa stabilité vis-à-vis du bruit de mesure, du choix du jeu de paramètres d’initialisation de l’algorithme et de la finesse du maillage.Pour finir, des essais plans avec différentes géométries d’éprouvettes ont été effectués et un essai a été mis au point pour obtenir de manière maîtrisée un état initial très hétérogène. Les résultats d’identification élastoplastique multilinéaire ont montré la capacité de la méthode à identifier les lois de comportements locales sur ce matériau hétérogène. / The present work follows a first approach where a strategy for identifying the shape and the parameters of cohesive-zone laws has been developed for homogeneous materials. The extension of this method to heterogeneous material requires the knowledge of the local stress state.The study aims at developing a local characterization method for mechanical properties and stresses. This method is based on the constitutive equation gap principles and relies on the knowledge of mechanical kinematic fields and particularly of the strain fields. These fields are obtained by the numerical differentiation of displacement fields measured by digital image correlation.This identification method is based on the iterative minimization of an energy norm involving the secant elastoplastic tensor. Various numerical simulations were used to illustrate the performance of the procedure for locally identifying heterogeneous property fields, and to characterize its robustness and its stability with respect to noise to the values of the algorithm initialization parameter and to the mesh refinement.Finally, various experimental tests with different specimen geometries were performed and a test has been developed to obtain a controlled heterogeneous initial state. The multilinear elastoplastic identification results showed the ability of the method to identify the local behavior properties on heterogeneous materials.
|
Page generated in 0.0742 seconds