• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 27
  • 8
  • 8
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 117
  • 117
  • 56
  • 43
  • 41
  • 36
  • 30
  • 29
  • 26
  • 23
  • 22
  • 22
  • 21
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Analysis of mechanical behaviour and damage of carbon fabric-reinforced composites in bending

Ullah, Himayat January 2013 (has links)
Carbon fabric-reinforced polymer (CFRP) composites are widely used in aerospace, automotive and construction structures thanks to their high specific strength and stiffness. They can also be used in various products in sports industry. Such products can be exposed to different in-service conditions such as large bending deformations caused by quasi-static and dynamic loading. Composite materials subjected to such bending loads can demonstrate various damage modes - matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution in composites affects both their in-service properties and performance that can deteriorate with time. Such damage modes need adequate means of analysis and investigation, the major approaches being experimental characterisation and numerical simulations. This work deals with a deformation behaviour and damage in carbon fabric-reinforced polymer (CFRP) laminates caused by quasi-static and dynamic bending. Experimental tests are carried out first to characterise the behaviour of a CFRP material under tension, in-plane shear and large-deflection bending in quasi-static conditions. The dynamic behaviour of these materials under large-deflection bending is characterised by Izod-type impact tests employing a pendulum-type impactor. A series of impact tests is performed on the material at various impact energy levels up to its fracture, to obtain a transient response of the woven CFRP laminate. Microstructural examination of damage is carried out by optical microscopy and X-ray micro computed tomography (Micro-CT). The damage analysis revealed that through thickness matrix cracking, inter-ply delaminations, intra-ply delamination such as tow debonding, and fabric fracture was the prominent damage modes. These mechanical tests and microstructural studies are accompanied by advanced numerical models developed in a commercial code Abaqus. Among those models are (i) 2D FE models to simulate experimentally observed inter-ply delamination, intra-ply fabric fracture and their subsequent interaction under quasi-static bending conditions and (ii) 3D FE models based on multi-body dynamics used to analyse interacting damage mechanisms in CFRP under large-deflection dynamic bending conditions. In these models, multiple layers of bilinear cohesive-zone elements are placed at the damage locations identified in the Micro CT study. Initiation and progression of inter-laminar delamination and intra-laminar ply fracture are studied by employing cohesive elements. Stress-based criteria are used for damage initiation while fracture-mechanics techniques are employed to capture its progression in composite laminates. The developed numerical models are capable to simulate the studied damage mechanisms as well as their subsequent interaction observed in the tests and microstructural damage analysis. In this study, a novel damage modelling technique based on the cohesive-zone method is proposed for analysis of interaction of various damage modes, which is more efficient than the continuum damage mechanics approach for coupling between failure modes. It was observed that the damage formation in the specimens was from the front to the back at the impact location in the large-deflection impact tests, unlike the back-to-front one in drop-weight tests. The obtained results of simulations showed a good agreement with experimental data, thus demonstrating that the proposed methodology can be used for simulations of discrete damage mechanisms and their interaction during the ultimate fracture of composites in bending. The main outcome of this thesis is a comprehensive experimental and numerical analysis of the deformation and fracture behaviours of CFRP composites under large-deflection bending caused by quasi-static and dynamic loadings. Recommendations on further research developments are also suggested.
42

Etude du cloquage de films minces élastoplastiques sur substrat rigide / Study of buckling and delamination of ductile thin films on rigid substrates

Ben Dahmane, Nadia 08 February 2018 (has links)
Les revêtements de couches minces soumis à de fortes contraintes de compression peuvent subir un phénomène de flambage et de délaminage simultané appelé « cloquage ». Le mécanisme de formation et de propagation des cloques en forme de rides droites et des cloques circulaires a largement été étudié dans la littérature en considérant un comportement élastique linéaire pour le film. Cependant, l’effet de la plasticité sur la propagation et l’équilibre de telles cloques, bien que constaté expérimentalement, n’avait pas encore été vraiment étudié à ce jour.Dans ce travail nous nous intéressons tout d’abord à l’observation et à la caractérisation des structures de flambement observées sur des film d’or déposés sur des substrats en silicium. Des effets de la plasticité sur la morphologie ou la charge critique de flambage des structures cloquées sont mis en évidence de manière quantitative grâce à des techniques d'observation morphologique comme l'AFM, ainsi que des tests mécaniques par nano-indentation et des mesures de contrainte.Un modèle mécanique est développé, permettant de modéliser le film comme une plaque non-linéaire géométrique au comportement élasto-plastique en contact unilatéral sur un support rigide représentant le substrat. De plus, un modèle de zone cohésive est introduit entre la plaque et le support de manière à prendre en compte le délaminage du film, avec un travail de séparation dépendant de la mixité modale du chargement.Ce modèle nous a permis de mettre en évidence l’effet de la plasticité sur les profils d’équilibres résultant du cloquage élasto-plastique, pour des morphologies de cloques en ride droite et de cloque circulaire. L'effet sur le décalage de la charge critique de flambage a également été étudié. Enfin, l'influence de la déformation plastique sur le mécanisme de propagation de la rupture interfacial lui même a été étudiée. En particulier, un effet de stabilisation de la forme de cloque circulaire, qui avait été observé expérimentalement dans diverses études, a pu être démontré par le calcul. / Thin film coatings submitted to high compressive stresses may experience a simultaneous buckling and delamination phenomenon called "blistering". The mechanism of formation and propagation of blisters in the form of straight wrinkles and circular blisters has been extensively studied in the literature considering a linear elastic behavior for the film. However, the effect of plasticity on the propagation and mechanical equilibrium of such blisters, although experimentally observed, had not been systematically studied to date.In this work, we are interested in the observation and characterization of buckling structures observed on gold films deposited on silicon substrates. The effects of plasticity on the morphology or critical buckling load of buckled structures are quantitatively demonstrated using small scale surface observation techniques such as AFM, as well as mechanical testing by nanoindentation tests and stress measurement methods.A mechanical model is developed in order to model the film as a geometric nonlinear plate with elastic-plastic behavior in unilateral contact with a rigid support representing the substrate. In addition, a cohesive zone model is introduced between the plate and the support in order to take into account the delamination of the film, with a separation work depending on the mode mix of the interface loading.This model allowed us to highlight the effect of plasticity on the equilibrium profiles resulting from elastic-plastic blistering, for both straight and circular blisters morphologies. The effect on the offset of the critical buckling load has also been studied. Finally, the influence of plastic deformation on the propagation mechanism of the interfacial fracture itself has been studied. In particular, a stabilizing effect of the circular blister form, which has been observed experimentally in various studies, has been demonstrated through calculation.
43

Mécanismes de transports dans la fissuration des matériaux hétérogènes : application à la durée de vie d’exploitation des centrales nucléaires / Taking into account the transport machanisms in the fracture of heterogeneous materials : application to the nuclear power plant aging

Bichet, Lionel 30 January 2017 (has links)
Les propriétés du béton constituant les enceintes de confinement des centrales électronucléaires évoluent sous les effets de mécanismes de vieillissement résultant notamment de transferts couplés de chaleur et de masse au sein du matériau. Ces phénomènes peuvent être modélisés par des équations de transports moyennées : lois de Fick pour le transport d’espèces en solution et lois de Fourier pour la description de la diffusion thermique. Dans cette étude, les développements concernent la diffusion de la thermique dans un milieu hétérogène fissuré représentant un matériau cimentaire dégradé chimiquement. Le problème thermo-mécanique est traité à l'aide d'une approche multi-corps reliés par des lois d’interactions enrichies (zones cohésives). La diffusion thermique est écrite dans le formalisme cohésif-volumique en prenant en compte le couplage entre un état d'endommagement local de la zone cohésive et une conductivité homogénéisée. Afin d'optimiser les coûts de calculs, une étude est menée sur la dimension d'un volume élémentaire représentatif (VER). Pour cela, la méthode d'eigenerosion est étendue à la fissuration de milieux hétérogènes puis appliquée aux milieux cimentaires. La propagation de fissures sous chargement thermique est ensuite analysée dans des VERs de béton dégradés représentatifs des enceintes de confinement des centrales nucléaires après plusieurs années. Le vieillissement est modélisé par un taux de pré-dégradation initial entre le mortier et les granulats. Le développement de multi-fissures est relié au taux de pré-dégradation et la formation "d'écrans" à la diffusion de la thermique est mise en avant. / During their confinement in a nuclear power plant, the mechanical properties of the constitutive materials of concrete change as a result of ageing. This is due to the transportation of chemical species at the microscopic level of the media. Firstly, this can be modelled with average equations. The Fick laws represent the evolution of chemical diffusion and the Fourier laws, the transportation of heat at a mesoscopic level. In this research, we will consider thermal evolution on a fractured media.This thermomechanical problem is solved with a staggered method. The mechanical contribution used an approach based on multi-bodies system linked with cohesive zone models. The thermal problem is based on the approximation of the heat transfer equation at the cohesive interface. This approach has been implemented and validated. The description of the heat trough the interface is composed with the definition of an homogenised conductivity and the local damage parameter. In order to optimize the computational cost with a good agreement of the crack propagation, a criterion is proposed for sizing a representative elementary volume (REV). The eigenerosion method is used, validated and extended to heterogeneous media. Two studies are carried out on the morphological properties on a cementious media. As a result of those studies, a minimal size for a REV is defined.Crack spread under thermal loads are investigated on a media representing the concrete of the containment of a nuclear power station. The ageing effect are taken into account as an initial damage between the mortar and the aggregates. These parameters are expressed in terms of rate of initial damage. A study is proposed for different values of this rate. As assumed, the development of multi-cracks is linked with the rate of initial damage and the creation of thermal border is proposed.
44

EFFECT OF INTERFACE CHEMICAL COMPOSITION ON THE HIGH STRAIN RATE DEPENDENT MECHANICAL BEHAVIOR OF AN ENERGETIC MATERIAL

Chandra Prakash (5930159) 04 January 2019 (has links)
<div>A combined experimental and computational study has been performed in order to understand the effect of interface chemical composition on the shock induced mechanical behavior of an energetic material (EM) system consisting of Hydroxyl-Terminated Polybutadiene (HTPB) binder and an oxidizer, Ammonium Perchlorate (AP), particle embedded in the binder. The current study focuses on the effect of interface chemical composition between the HTPB binder material and the AP particles on the high strain rate mechanical behavior. The HTPB-AP interface chemical composition was changed by adding cyanoethylated polyamine (HX-878 or Tepanol) as a binding agent. A power law viscoplastic constitutive model was fitted to nanoscale impact based experimental stress-strain-strain rate data in order to obtain the constitutive behavior of the HTPBAP interfaces, AP particle, and HTPB binder matrix. An in-situ mechanical Raman spectroscopy framework was used to analyze the effect of binding agent on cohesive separation properties of the HTPB-AP interfaces, AP particle, and HTPB binder matrix. In addition, a combined mechanical Raman spectroscopy and laser impact set up was used to study the effect of strain rate, as well as the interface chemical composition on the interface shock viscosity. Finally, high velocity strain rate impact simulations were performed using an explicit cohesive finite element method framework to predict the effect of strain rate, interface strength, interface friction, and interface shock viscosity on possible strain rate dependent temperature rises at high strain rates approaching shock velocities. </div><div><br></div><div>A modified stress equation was used in the cohesive finite element framework in order to include the effect of shock viscosity on the shock wave rise time and shock pressure during impact loading with strain rates corresponding to shock impact velocities. It is shown that increasing the interface shock viscosity, which can be altered by changing the interface chemical composition, increases the shock wave rise time at the analyzed interfaces. It is shown that the interface shock viscosity also plays an important role in determining the temperature increase within the microstructure. Interface shock viscosity leads to a decrease in the overall density of the possible hot-spots which is caused by the increase in dissipation at the shock front. This increase in shock dissipation is accompanied by a decrease in the both the maximum temperature, as well as the plastic dissipation energy, within the microstructure during shock loading.</div>
45

Rate-dependent cohesive-zone models for fracture and fatigue

Salih, Sarmed January 2018 (has links)
Despite the phenomena of fracture and fatigue having been the focus of academic research for more than 150 years, it remains in effect an empirical science lacking a complete and comprehensive set of predictive solutions. In this regard, the focus of the research in this thesis is on the development of new cohesive-zone models for fracture and fatigue that are afforded an ability to capture strain-rate effects. For the case of monotonic fracture in ductile material, different combinations of material response are examined with rate effects appearing either in the bulk material or localised to the cohesive-zone or in both. The development of a new rate-dependent CZM required first an analysis of two existing methods for incorporating rate dependency, i.e.either via a temporal critical stress or a temporal critical separation. The analysis revealed unrealistic crack behaviour at high loading rates. The new rate-dependent cohesive model introduced in the thesis couples the temporal responses of critical stress and critical separation and is shown to provide a stable and realistic solution to dynamic fracture. For the case of fatigue, a new frequency-dependent cohesive-zone model (FDCZM) has been developed for the simulation of both high and low-cycle fatigue-crack growth in elasto-plastic material. The developed model provides an alternative approach that delivers the accuracy of the loading-unloading hysteresis damage model along with the computational efficiency of the equally well-established envelope load-damage model by incorporating a fast-track feature. With the fast-track procedure, a particular damage state for one loading cycle is 'frozen in' over a predefined number of cycles. Stress and strain states are subsequently updated followed by an update on the damage state in the representative loading cycle which again is 'frozen in' and applied over the same number of cycles. The process is repeated up to failure. The technique is shown to be highly efficient in terms of time and cost and is particularly effective when a large number of frozen cycles can be applied without significant loss of accuracy. To demonstrate the practical worth of the approach, the effect that the frequency has on fatigue crack growth in austenitic stainless-steel 304 is analysed. It is found that the crack growth rate (da/dN) decreases with increasing frequency up to a frequency of 5 Hz after which it levels off. The behaviour, which can be linked to martensitic phase transformation, is shown to be accurately captured by the new FDCZM.
46

Failure Analysis of Brazed Joints Using the CZM Approach

Karimi Ghovanlou, Morvarid 14 September 2011 (has links)
Brazing, as a type of joining process, is widely used in manufacturing industries to join individual components of a structure. Structural reliability of a brazed assembly is strongly dependent on the joint mechanical properties. In the present work, mechanical reliability of low carbon steel brazed joints with copper filler metal is investigated and a methodology for failure analysis of brazed joints using the cohesive zone model (CZM) is presented. Mechanical reliability of the brazed joints is characterized by strength and toughness. Uniaxial and biaxial strengths of the joints are evaluated experimentally and estimated by finite element method using the ABAQUS software. Microstructural analysis of the joint fracture surfaces reveals different failure mechanisms of dimple rupture and dendritic failure. Resistance of the brazed joints against crack propagation, evaluated by the single-parameter fracture toughness criterion, shows dependency on the specimen geometry and loading configuration. Fracture of the brazed joints and the subsequent ductile tearing process are investigated using a two-parameter CZM. The characterizing model parameters of the cohesive strength and cohesive energy are identified by a four-point bend fracture test accompanied with corresponding FE simulation. Using the characterized CZM, the joint fracture behavior under tensile loading is well estimated. Predictability of the developed cohesive zone FE model for fracture analysis of brazed joints independent of geometry and loading configuration is validated. The developed cohesive zone FE model is extended to fatigue crack growth analysis in brazed joints. A cyclic damage evolution law is implemented into the cohesive zone constitutive model to irreversibly account for the joint stiffness degradation over the number of cycles. Fatigue failure behavior of the brazed joints is characterized by performing fully reversed strain controlled cyclic tests. The damage law parameters are calibrated based on the analytical solutions and the experimental fatigue crack growth data. The characterized irreversible CZM shows applicability to fatigue crack growth life prediction of brazed joints.
47

Delamination Analysis By Using Cohesive Interface Elements In Laminated Composites

Gozluklu, Burak 01 August 2009 (has links) (PDF)
Finite element analysis using Cohesive Zone Method (CZM) is a commonly used method to investigate delamination in laminated composites. In this study, two plane strain, zero-thickness six-node quadratic (6-NQ) and four-node linear (4-NL) interface elements are developed to implement CZM. Two main approaches for CZM formulation are categorized as Unified Mode Approach (UMA) and Separated Mode Approach (SMA), and implemented into 6-NQ interface elements to model a double cantilever beam (DCB) test of a unidirectional laminated composite. The results of the approaches are nearly identical. However, it is theoretically shown that SMA spawns non-symmetric tangent stiffness matrices, which may lower convergence and/or overall performance, for mixed-mode loading cases. Next, a UMA constitutive relationship is rederived. The artificial modifications for improving convergence rates such as lowering penalty stiffness, weakening interfacial strength and using 6-NQ instead of 4-NL interface elements are investigated by using the derived UMA and the DCB test model. The modifications in interfacial strength and penalty stiffness indicate that the convergence may be improved by lowering either parameter. However, over-softening is found to occur if lowering is performed excessively. The morphological differences between the meshes of the models using 6-NQ and 4-NL interface elements are shown. As a consequence, it is highlighted that the impact to convergence performance and overall performance might be in opposite. Additionally, benefits of selecting CZM over other methods are discussed, in particular by theoretical comparisons with the popular Virtual Crack Closure Technique. Finally, the numerical solution scheme and the Arc-Length Method are discussed.
48

Effect of Phase Transformation on the Fracture Behavior of Shape Memory Alloys

Parrinello, Antonino 16 December 2013 (has links)
Over the last few decades, Shape Memory Alloys (SMAs) have been increasingly explored in order to take advantage of their unique properties (i.e., pseudoelasticity and shape memory effect), in various actuation, sensing and absorption applications. In order to achieve an effective design of SMA-based devices a thorough investigation of their behavior in the presence of cracks is needed. In particular, it is important to understand the effect of phase transformation on their fracture response. The aim of the present work is to study the effect of stress-induced as well as thermo-mechanically-induced phase transformation on several characteristics of the fracture response of SMAs. The SMA thermomechanical response is modeled through an existing constitutive phenomenological model, developed within the framework of continuum thermodynamics, which has been implemented in a finite element frame-work. The effect of stress-induced phase transformation on the mechanical fields in the vicinity of a stationary crack and on the toughness enhancement associated with crack advance in an SMA subjected to in-plane mode I loading conditions is examined. The small scale transformation assumption is employed in the analysis according to which the size of the region occupied by the transformed material forming close to the crack tip is small compared to any characteristic length of the problem (i.e. the size of the transformation zone is thirty times smaller than the size of the cracked ligament). Given this assumption, displacement boundary conditions, corresponding to the Irwin’s solution for linear elastic fracture mechanics, are applied on a circular region in the austenitic phase that encloses the stress-induced phase transformation zone. The quasi-static stable crack growth is studied by assuming that the crackpropagates at a certain critical level of the crack-tip energy release rate. The Virtual Crack Closure Technique (VCCT) is employed to calculate the energy release rate. Fracture toughness enhancement associated with transformation dissipation is observed and its sensitivity on the variation of key characteristic non-dimensional parameters related to the constitutive response is investigated. Moreover, the effect of the dissipation due plastic deformation on the fracture resistance is analyzed by using a Cohesive Zone Model (CZM). The effect of thermo-mechanically-induced transformation on the driving force for crack growth is analyzed in an infinite center-cracked SMA plate subjected to thermal actuation under isobaric mode I loading. The crack-tip energy release rate is identified as the driving force for crack growth and is measured over the entire thermal cycle by means of the VCCT. A substantial increase of the crack-tip energy release rate – an order of magnitude for some material systems – is observed during actuation as a result of phase transformation, i.e., martensitic transformation occurring during actuation causes anti-shielding that might cause the energy release rate to reach the critical value for crack growth. A strong dependence of the crack-tip energy release rate on the variation of the thermomechanical parameters characterizing the material response is examined. Therefore, it is implied that the actual shape of the strain- temperature curve is important for the quantitative determination of the change of the crack-tip energy release rate during actuation.
49

The Essential Work of Fracture Method Applied to Mode II Interlaminar Fracture in Fiber Reinforced Polymers

McKinney, Scott D Unknown Date
No description available.
50

Failure Analysis of Brazed Joints Using the CZM Approach

Karimi Ghovanlou, Morvarid 14 September 2011 (has links)
Brazing, as a type of joining process, is widely used in manufacturing industries to join individual components of a structure. Structural reliability of a brazed assembly is strongly dependent on the joint mechanical properties. In the present work, mechanical reliability of low carbon steel brazed joints with copper filler metal is investigated and a methodology for failure analysis of brazed joints using the cohesive zone model (CZM) is presented. Mechanical reliability of the brazed joints is characterized by strength and toughness. Uniaxial and biaxial strengths of the joints are evaluated experimentally and estimated by finite element method using the ABAQUS software. Microstructural analysis of the joint fracture surfaces reveals different failure mechanisms of dimple rupture and dendritic failure. Resistance of the brazed joints against crack propagation, evaluated by the single-parameter fracture toughness criterion, shows dependency on the specimen geometry and loading configuration. Fracture of the brazed joints and the subsequent ductile tearing process are investigated using a two-parameter CZM. The characterizing model parameters of the cohesive strength and cohesive energy are identified by a four-point bend fracture test accompanied with corresponding FE simulation. Using the characterized CZM, the joint fracture behavior under tensile loading is well estimated. Predictability of the developed cohesive zone FE model for fracture analysis of brazed joints independent of geometry and loading configuration is validated. The developed cohesive zone FE model is extended to fatigue crack growth analysis in brazed joints. A cyclic damage evolution law is implemented into the cohesive zone constitutive model to irreversibly account for the joint stiffness degradation over the number of cycles. Fatigue failure behavior of the brazed joints is characterized by performing fully reversed strain controlled cyclic tests. The damage law parameters are calibrated based on the analytical solutions and the experimental fatigue crack growth data. The characterized irreversible CZM shows applicability to fatigue crack growth life prediction of brazed joints.

Page generated in 0.0479 seconds