• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • Tagged with
  • 9
  • 9
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Strain rate effects on structure-property relationship in the rabbit patellar tendon

Davis, Deborah D 13 December 2008 (has links)
This study quantified mechanical and structural responses to loading conditions at subtendon hierarchical levels. Tensile tests were performed at three strain rates on three groups of rabbit patellar tendon specimens. For each rate, tangent modulus (E) was computed from the stress-strain curves and the following structural responses were evaluated: (i) Area percent of collagen fibrils (FAR) and (ii) Skewness angle formed between proteoglycans and collagen fibrils. For 0.1%/s, 10%/s, and 70%/s, E was 48.8±20.3MPa, 64.7±29.3MPa, and 78.6±31.7MPa, respectively. For control, 0.1%/s, 10%/s, and 70%/s, the mean FAR was 0.7552±0.1476, 0.6628±0.1190, 0.6335±0.1013, and 0.6047±0.0384, respectively; and proteoglycan skewness angles were 14.70º±11.01º, 12.76º±10.13º, 15.08.0º±11.66º, and 16.68º±12.07º, respectively. For increased E, interfibrillar components had less time for effective fluid flow, energy dissipation, and structural rearrangement. The inverse relationship of FAR to strain rate may be due to broken fibrils and the Poisson effect. Proteoglycan skewness angle increase is likely due to stretched fibrils.
2

Dynamic mechanical analysis of collagen fibrils at the nanoscale.

Grant, Colin A., Phillips, M.A., Thompson, N.H. 09 May 2011 (has links)
no / Low frequency (0.1¿2 Hz) dynamic mechanical analysis on individual type I collagen fibrils has been carried out using atomic force microscopy (AFM). Both the elastic (static) and viscous (dynamic) responses are correlated to the characteristic axial banding, gap and overlap regions. The elastic modulus (¿5 GPa) on the overlap region, where the density of tropocollagen is highest, is 160% that of the gap region. The amount of dissipation on each region is frequency dependent, with the gap region dissipating most energy at the lowest frequencies (0.1 Hz) and crossing over with the overlap region at ¿0.75 Hz. This may reflect an ability of collagen fibrils to absorb energy over a range of frequencies using more than one mechanism, which is suggested as an evolutionary driver for the mechanical role of type I collagen in connective tissues and organs. / BBSRC
3

Sorting the butchered from the boiled

Koon, Hannah E.C., O'Connor, T.P., Collins, M.J. January 2010 (has links)
No / Is it possible to identify cooked, rather than burnt, bone? Mild heating (≤100 °C,1 h) – typical of cooking – does not lead to detectable changes in any biochemical parameter of bone yet measured. If it is only possible to detect charred bone, how is it possible to detect cooking in the archaeological record? In a previous paper (Koon et al., 2003, J. Arch. Sci.), we used a Transmission Electron Microscopy (TEM) based approach to investigate changes in the organization of the bone protein, collagen, as it is heated, using bone from heating experiments and short term burials. The work revealed that mineralized collagen, despite requiring aggressive treatment to gelatinise the protein (e.g. 90 °C, 240+ h), readily accumulates minor damage. We believe that the presence of mineral matrix stabilises the collagen enabling the damage to accumulate, but preventing it from causing immediate gelatinisation. Once the mineral is removed, the damage can be observed using appropriate visualization methods. In this paper the visualization technique was tested in a blind study of bovine bone from the Anglo-Scandinavian site of Coppergate, York. The purpose of the study was to determine if the method could discriminate between bones thought likely, on the basis of zoo-archaeological and spatial evidence, to have been cooked (high meat yield bones from a domestic context) and those which were butchered but unlikely to have been cooked (low yield bones from a butchery site). The results of the TEM analysis identified two clear groups of bones, one set more damaged than the other. This finding was consistent with archaeozoological interpretation, with the exception of one bone from the domestic context, which was not identified as having been cooked.
4

Theory of Image Formation in Non-linear Optical Microscopy

van der Kolk, Jarno Nicolaas January 2017 (has links)
Nonlinear optical microscopy is a collection of very powerful imaging techniques. Linear optical microscopes probe the refractive index and absorption, which both stem from the first-order linear electric susceptibility. Especially in biological tissue, the variation in the refractive index is often small and the tissue is, in many cases, transparant. Nonlinear optical microscopes on the other hand probe the nonlinear higher-order susceptibilities, which can be chemically sensitive, leading to the capability to achieve label-free imaging. Nonlinear optical microscopes have been in development for more than thirty years and they are based on numerous nonlinear optical processes. The ones I will concentrate on in this thesis are second harmonic generation (SHG), coherent anti-Stokes Raman scattering (CARS), and stimulated Raman Scattering (SRS). The first technique is commonly used to image collagen as those molecules have a particularly large second-order nonlinear susceptibility due to their chiral structure. CARS and SRS on the other hand are often used because they resonantly target vibrational resonances in molecules, giving rise to the aforementioned label-free imaging. Deep understanding of the nonlinear imaging process is crucial to the interpretation of the images these techniques produce. Computational tools are exceptionally suited for this task as they allow studying the electromagnetic field anywhere in the sample as well as the far-field, and one can change any of the material properties to study their effect. One such tool is finite-difference time-domain (FDTD) that our group developed for nonlinear optical microscopy simulations. It is a direct discretization of Maxwell's equation. While computationally costly, it does allow any arbitrary shaped sample to be simulated. The sample can have frequency dependent refractive indexes, and also nonlinear media with third-order nonlinearities such as Kerr media and Raman-active media, but also second-order nonlinearities for SHG. The code is designed in such a way that it can run on thousands of CPUs on a wide variety of compute cluster which allows our group to obtain nanoscale resolution. Another computational tool I use is the free-space Green's function solution to the Helmholtz equation, which can be used to calculate the Hertz vector in the frequency domain, both in the near- and far-field, based on the induced nonlinear polarization. The electric field is then calculated from this Hertz vector. This technique is much faster then FDTD and also allows for arbitrary shapes of the nonlinear electric susceptibility in the sample. However, it assumes a homogeneous refractive index throughout the entire spatial domain and requires complete knowledge of the input beam or beams that induce the nonlinear polarization. In this thesis, I use these tools to study the image formation process of various nonlinear optical processes mentioned earlier. For example, I study the effect of an inhomogeneous refractive index on the images produced by these microscopes. In literature the index of refraction is almost always assumed to be homogeneous, because, as mentioned before, the inhomogeneity of the refractive index is often small. However, I show that these small differences in the index of refraction can have a significant effect on the measured far-field intensity signal. For example, in SRS and CARS images, the measured signal can increase by an order of magnitude depending on the index mismatch and structure of the sample. Additionally, significant shifts in perceived position occur. Even nonresonant nonlinear signals can be evoked purely through a mismatch in linear refractive index. Computational modelling can also help reveal additional detail. As SHG is a coherent process, subwavelength information can be inferred through the phase information. Our experimental collaborators built an interferometric SHG (I-SHG) microscope for exactly that purpose. We used this to image collagen fibrils, which are all aligned in a parallel fashion. However, because collagen fibrils have a chiral molecular structure, they can point either ``up'' or ``down''. Using my Green's function simulations of the SHG imaging process of collagen fibrils, I was able to predict the standard deviation in the measured phase and link it to the orientation of collagen fibrils in the focal spot of the probing laser beam, even though the diameters are far below the minimum resolvable capabilities of the microscope. We found that the ``upwards'' fibrils make up 46--53% of the sample. Even with a normal SHG microscope that does not measures phase, additional subresolution information is obtainable. With our collaborators we measured the ratio of the forward SHG intensity signal to that in the backward direction and with my simulations, we are able to link this to the fibril diameters in collagen tissue. Thus we inferred that the fibril diameter increases as a function of tissue depth. Furthermore, a computational technique called ptychography is able to retrieve phase information without an interferometric reference beam. Additionally, it increases resolution to the theoretical limit, independent of the laser focal spot size, and corrects for distortions in the input beam as well. I have developed this technique for use with nonlinear optical microscopy and was able to show it is a viable alternative to I-SHG by imaging simulated rat tail tendon at the diffraction limit while retrieving the orientation of the fibrils through the phase of the SHG signal. I also implemented the algorithm for CARS, where the phase information can be used to greatly increase the signal-to-noise ratio by reducing the nonresonant background radiation that results from competing nonlinear optical processes. I showed an example of this by imaging a simulated fibroblast cell where the CARS process was tuned to the lipid droplets inside of the cell. I am currently in talk with experimentalists to apply this theoretical technique to experiments as that would further demonstrate the impact of my work. Finally, keeping in theme with the collagen fibrils, I show that the ratio of the forward SHG signal to the backward signal, the F/B ratio, is affected by a mismatch in the refractive index for fibrils larger than 100nm. This measure is an indicator of fibril diameter and thus important for making qualitative predictions. Single fibrils are generally too small to be significantly affected by near-field effects, but the bigger fibrils can be. Fibrils in rat tail tendon have a distribution of fibrils diameters and the large fibrils occur infrequent. However, I found that the large fibrils are largely responsible for the forward as well as backward signal, thus refractive index mismatches still affect the F/B ratio significantly despite their infrequency. The F/B ratio for a collection of fibrils placed in a n=1.47 medium was found to be 31.8±0.7% higher than for those in a n=1.33 medium. Our experimental colleagues have done preliminary measurements on mouse tail tendon where they found an increase of 40±20%, in line with the value of 28.1±0.6% that I found for simulations with mouse tail tendon. In conclusion, the theoretical tools I have used in my thesis have provided me with the ability to study nonlinear optical image formation processes with a level of detail that would be near-impossible to do experimentally. I have used this ability to show how refractive index mismatches, such as those found in biological tissue, can significantly distort the far-field intensity signals. I have shown this for SRS and CARS where the far-field intensity signal appeared an order-of-magnitude larger compared to the same sample without a refractive index mismatch with the background medium. Additionally, shifts in the perceived position of the object under investigation were observed and I showed the presence of a nonresonant background signal in AM-SRS. Likewise I showed that in the SHG imaging of collagen fibrils significant changes in the F/B ratio can occur. All of these effects have important implications as these types of images as biomedical researches rely on the correct interpretation of nonlinear optical microscopy images for both research and diagnostics. Apart from showing the effect of a refractive index mismatch, I have also shown that computation modelling can be used to infer subwavelength features in SHG imaging experiments of collagen fibril such as fibril orientation and fibril diameter. These methods have the potential to aid medical researchers as changes in the structure of collagen are often an early indicator of diseases such as osteoarthritis. Finally, I showed that the ptychography algorithm I developed for nonlinear optical microscopy is able to retrieve phase information of the nonlinear electric susceptibility in SHG and CARS imaging while also enhancing the resolution and correcting for distortions in the input beams. I can also use much larger laser spot sizes than in conventional experiments without compromising the obtained resolution, thus fewer measurements are required. The technique is not limited to SHG and CARS either; it will work for other nonlinear optical processes as well. Experimental verification of nonlinear ptychography will be done soon. This technique has to potential to significantly improve current imaging techniques since access to the phase information allows one to observe additional information about the sample as we showed with the I-SHG microscope.
5

Regulation of Collagen Fibril Structure and Function by DDR1 in the Murine Aorta

Tonniges, Jeffrey R. 30 December 2016 (has links)
No description available.
6

Strukturuntersuchungen an biologischen Materialien mit Hilfe rasterkraftmikroskopiebasierender Nanotomographie

Röper, Stephanie 01 June 2011 (has links) (PDF)
Ziel ist die räumliche Abbildung biologischer Materialien (Knochen, Kollagenfibrillen und Zähne) hinsichtlich deren Struktur auf der Nanometerskala mit Hilfe der Nanotomographie. Die Nanotomographie ist eine moderne dreidimensionale Volumenabbildungsmethode auf der Nanometerskala basierend auf der Rasterkraftmikroskopie. Für die Nanotomographie wurden Ätzprotokolle an Zähnen, Kollagenfibrillen und Knochen entwickelt, die einen gleichmäßigen Abtrag bewirken. Lineare Verschiebungen der aufgenommenen Schichten werden mit Hilfe der manuellen Registrierung korrigiert und zu einem Volumenbild rekonstruiert. Ein zentrales Ergebnis sind dabei erste hochaufgelöste Volumenbilder einzelner Kollagenfibrillen im nativen Knochen. Neben der konventionellen Nanotomographie wird ein Ansatz zur automatisierten Nanotomographie mit einer Auflösung von 10 nm am Beispiel des menschlichen Knochens und Zahnes demonstriert. Mit Hilfe von mikroskopischen und elektronenmikroskopischen Techniken wurden die verschiedenen Strukturebenen des humanen Zahn und Knochens abgebildet und die räumlichen Strukturen der TM-AFM-Bilder auf der Mikro- und Nanometerskala eingeordnet. Darüber hinaus konnte mit Hilfe analytischer Messmethoden die chemische Zusammensetzung des kortikalen nativen Knochens erfasst werden und Änderungen durch das Ätzen detektiert werden.
7

Strukturuntersuchungen an biologischen Materialien mit Hilfe rasterkraftmikroskopiebasierender Nanotomographie

Röper, Stephanie 13 May 2011 (has links)
Ziel ist die räumliche Abbildung biologischer Materialien (Knochen, Kollagenfibrillen und Zähne) hinsichtlich deren Struktur auf der Nanometerskala mit Hilfe der Nanotomographie. Die Nanotomographie ist eine moderne dreidimensionale Volumenabbildungsmethode auf der Nanometerskala basierend auf der Rasterkraftmikroskopie. Für die Nanotomographie wurden Ätzprotokolle an Zähnen, Kollagenfibrillen und Knochen entwickelt, die einen gleichmäßigen Abtrag bewirken. Lineare Verschiebungen der aufgenommenen Schichten werden mit Hilfe der manuellen Registrierung korrigiert und zu einem Volumenbild rekonstruiert. Ein zentrales Ergebnis sind dabei erste hochaufgelöste Volumenbilder einzelner Kollagenfibrillen im nativen Knochen. Neben der konventionellen Nanotomographie wird ein Ansatz zur automatisierten Nanotomographie mit einer Auflösung von 10 nm am Beispiel des menschlichen Knochens und Zahnes demonstriert. Mit Hilfe von mikroskopischen und elektronenmikroskopischen Techniken wurden die verschiedenen Strukturebenen des humanen Zahn und Knochens abgebildet und die räumlichen Strukturen der TM-AFM-Bilder auf der Mikro- und Nanometerskala eingeordnet. Darüber hinaus konnte mit Hilfe analytischer Messmethoden die chemische Zusammensetzung des kortikalen nativen Knochens erfasst werden und Änderungen durch das Ätzen detektiert werden.
8

Histologische Charakterisierung eines murinen Knorpeldestruktionsmodells in der BALB/c Maus

Naue, Janine 02 November 2015 (has links) (PDF)
Die rheumatoide Arthritis ist eine chronisch-entzündliche Bindegewebserkrankung mit symmetrischem Befall der Gelenke. Die genaue Ätiologie ist bisher unbekannt. Aktivierte synoviale Fibroblasten sollen durch gesteigerte Adhäsion und Produktion von proinflammatorischen Zytokinen und Matrix-lysierenden Proteasen maßgeblich an der Gelenkdestruktion beteiligt sein. Ziel dieser Arbeit war es, ein neues in-vivo-Knorpeldestruktions-Modell zu etablieren, in welchem unter immunkompetenten Bedingungen, die Invasion und Destruktion von Gelenkknorpel durch die Fibroblasten-Zelllinie LS48 über einen längeren Zeitraum simuliert werden kann. Die am Institut für klinische Immunologie der Medizinischen Fakultät der Universität Leipzig etablierte Zelllinie LS48 wurde in die ipsilateralen Kniegelenke von BALB/c-Mäusen injiziert. Die dadurch induzierte Gewebsdestruktion wurde über zehn Wochen in zweiwöchigem Abstand histopathologisch beurteilt und klassifiziert. Als vergleichende Fibroblasten-Zelllinie wurden nicht-invasive NIH/3T3-Zellen eingesetzt. An Hand der Score-Parameter Zellinvasion, Pannusformation und Knorpeldestruktion wurde eine mäßige bis schwer-wiegende Gewebsdestruktion durch die LS48-Zellen bereits ab der zweiten Untersuchungswoche lichtmikroskopisch nachgewiesen, ohne dass dabei pathologische Effekte in den kontralateralen Kniegelenken aufgetreten sind. Polarisationsmikroskopisch wurden für den Parameter Knorpeldestruktion vergleichbare Ergebnisse erzielt. Damit wurde gezeigt, dass das Modell BALB/c LS48 ein erfolgversprechendes Instrument darstellt, das zur Testung neuer therapeutischer Strategien gegen die Gelenkdestruktion verwendet werden kann. Inwieweit die Auseinandersetzung der LS48-Zellen mit dem spezifischen Immunsystem der BALB/c-Maus Auswirkungen auf den Verlauf der Gewebsdestruktion hat, sollte in weiterführenden Experimenten untersucht werden.
9

Histologische Charakterisierung eines murinen Knorpeldestruktionsmodells in der BALB/c Maus

Naue, Janine 21 September 2015 (has links)
Die rheumatoide Arthritis ist eine chronisch-entzündliche Bindegewebserkrankung mit symmetrischem Befall der Gelenke. Die genaue Ätiologie ist bisher unbekannt. Aktivierte synoviale Fibroblasten sollen durch gesteigerte Adhäsion und Produktion von proinflammatorischen Zytokinen und Matrix-lysierenden Proteasen maßgeblich an der Gelenkdestruktion beteiligt sein. Ziel dieser Arbeit war es, ein neues in-vivo-Knorpeldestruktions-Modell zu etablieren, in welchem unter immunkompetenten Bedingungen, die Invasion und Destruktion von Gelenkknorpel durch die Fibroblasten-Zelllinie LS48 über einen längeren Zeitraum simuliert werden kann. Die am Institut für klinische Immunologie der Medizinischen Fakultät der Universität Leipzig etablierte Zelllinie LS48 wurde in die ipsilateralen Kniegelenke von BALB/c-Mäusen injiziert. Die dadurch induzierte Gewebsdestruktion wurde über zehn Wochen in zweiwöchigem Abstand histopathologisch beurteilt und klassifiziert. Als vergleichende Fibroblasten-Zelllinie wurden nicht-invasive NIH/3T3-Zellen eingesetzt. An Hand der Score-Parameter Zellinvasion, Pannusformation und Knorpeldestruktion wurde eine mäßige bis schwer-wiegende Gewebsdestruktion durch die LS48-Zellen bereits ab der zweiten Untersuchungswoche lichtmikroskopisch nachgewiesen, ohne dass dabei pathologische Effekte in den kontralateralen Kniegelenken aufgetreten sind. Polarisationsmikroskopisch wurden für den Parameter Knorpeldestruktion vergleichbare Ergebnisse erzielt. Damit wurde gezeigt, dass das Modell BALB/c LS48 ein erfolgversprechendes Instrument darstellt, das zur Testung neuer therapeutischer Strategien gegen die Gelenkdestruktion verwendet werden kann. Inwieweit die Auseinandersetzung der LS48-Zellen mit dem spezifischen Immunsystem der BALB/c-Maus Auswirkungen auf den Verlauf der Gewebsdestruktion hat, sollte in weiterführenden Experimenten untersucht werden.:Bibliographische Zusammenfassung II Inhaltsverzeichnis III Abkürzungsverzeichnis IV 1 Einleitung 1 1.1 Rheumatische Erkrankungen 1 1.2 Die rheumatoide Arthritis 2 1.2.1 Immunologische Grundlagen der rheumatoiden Arthritis 2 1.2.1.1 Hypothese der Fibroblasten-Abhängigkeit 3 1.2.1.2 Hypothese der T-Zell-Abhängigkeit 4 1.3 Allgemeine Anatomie und Histologie des Kniegelenks 6 1.4 Die Histopathologie der rheumatoiden Arthritis 9 1.4.1 Verschiedene Synovialmembrantypen bei rheumatoider Arthritis 10 1.5 Tiermodelle zur Untersuchung der rheumatoiden Arthritis 11 1.5.1 Das Tiermodell der Fibroblasten-induzierten Gelenkdestruktion in der BALB/c-Maus 12 1.6 Histopathologische Score-Systeme der rheumatoiden Arthritis in Tiermodellen 13 1.7 Ziel 13 1.7.1 Fragestellungen 14 2 Material und Methoden 16 2.1 Zelllinien und Versuchstiere 16 2.1.1 Die Fibroblasten-Zelllinie NIH/3T3 16 2.1.2 Die Fibroblasten-Zelllinie LS48 16 2.1.3 Die BALB/c-Maus 17 2.2 Tierversuchsplan 18 2.3 Zellkultur 19 2.3.1 Geräte und Verbrauchsmaterialien 19 2.3.2 Reagenzien 20 2.3.3 Durchführung 21 2.4 Isolation der murinen Kniegelenke 22 2.5 Histologische Aufarbeitung 23 2.5.1 Geräte und Verbrauchsmaterialien 23 2.5.2 Reagenzien 24 2.5.3 Entkalkung, Entwässerung, Einbettung und Schneiden der Präparate 26 2.5.4 Azanfärbung nach Heidenhain (Kernechtrubin-Anillinblau-Orange G-Färbung) 27 2.6 Klassifikation mit dem Durchlichtmikroskop für das Modell der Fibroblasten-induzierten Knorpeldestruktion (Balb/c-LS48) 29 2.7 Klassifikation mit dem Polarisationsmikroskop für das Modell der Fibroblasten-induzierten Knorpeldestruktion (Balb/c-LS48) 29 2.8 Statistik 30 3 Ergebnisse 31 3.1 Score-Erhebung mit dem Lichtmikroskop für das Modell der Fibroblasten-induzierten Knorpeldestruktion (BALB/c-LS48) 31 3.1.1 Bewertungsmodus für den Score-Parameter Zellinvasion 32 3.1.2 Bewertungsmodus für den Score-Parameter Pannusformation 35 3.1.3 Bewertungsmodus für den Score-Parameter Knorpeldestruktion 38 3.2 Datenanalyse der lichtmikroskopisch untersuchten Parameter Zellinvasion, Pannusformation und Knorpeldestruktion für das Modell der Fibroblasten-induzierten Knorpeldestruktion (BALB/c-LS48) 41 3.2.1 Zellinvasion 41 3.2.2 Pannusformation 45 3.2.3 Knorpeldestruktion 48 3.2.4 Gesamtscore 51 3.3 Score-Erhebung mit dem Polarisationsmikroskop für das Modell der Fibroblasten-induzierten Knorpeldestruktion (BALB/c-LS48) 56 3.3.1 Bewertungsmodus für den Score-Parameter Knorpeldestruktion 56 3.4 Datenanalyse des polarisationsmikroskopisch untersuchten Parameters Knorpel-destruktion für das Modell der Fibroblasten-induzierten Knorpeldestruktion (BALB/c-LS48) 59 3.5 Statistischer Vergleich der licht- und polarisationsmikroskopischen Analysemethoden für den Parameter Knorpeldestruktion 62 3.6 Statistischer Vergleich der medialen und lateralen histologischen Sagittalschnitte der Kniegelenke 63 4 Diskussion 64 4.1 Die Bedeutung der histopathologischen Score-Parameter für das Modell der Fibroblasten-induzierten Gelenkdestruktion in der BALB/c-Maus 65 4.1.1 Der Score-Parameter Zellinvasion 65 4.1.1.1 Die pathophysiologische Bedeutung des Score-Parameters Zellinvasion 67 4.1.1.2 Interpretation der lichtmikroskopischen Befunde des Score-Parameters Zellinvasion für die Zelllinie LS48 im ipsilateralen Kniegelenk im Verlauf von zehn Wochen 69 4.1.2 Der Score-Parameter Pannusformation 70 4.1.2.1 Die pathophysiologische Bedeutung des Score-Parameters Pannusformation 71 4.1.2.2 Interpretation der lichtmikroskopischen Befunde des Score-Parameters Pannusformation für die Zelllinie LS48 im ipsilateralen Kniegelenk im Verlauf von zehn Wochen 73 4.1.3 Der Score-Parameter Knorpeldestruktion 74 4.1.3.1 Die pathophysiologische Bedeutung des Score-Parameters Knorpeldestruktion 75 4.1.3.2 Interpretation der lichtmikroskopischen Befunde des Score-Parameters Knorpeldestruktion für die Zelllinie LS48 im ipsilateralen Kniegelenk im Verlauf von zehn Wochen 76 4.1.4 Interpretation des lichtmikroskopisch erhobenen Gesamtscores für das Knorpeldestruktionsmodell (BALB/c-LS48) im ipsilateralen Kniegelenk im Verlauf von zehn Wochen 78 4.1.4.1 Verlaufsvergleich zu anderen Tiermodellen 81 4.2 Die histopathologischen Auswirkungen der Zelllinien LS48 und NIH/3T3 im ipsilateralen Kniegelenk der BALB/c-Maus im Vergleich 83 4.3 Vergleich der medialen und lateralen Sagittalebenen der histologischen Präparate der Kniegelenke 85 4.4 Beurteilung histopathologischer Veränderungen in den kontralateralen Kniegelenken im Verlauf von zehn Wochen 86 4.5 Vergleich der licht- und polarisationsmikroskopischen Untersuchungsergebnisse 87 4.6 Schlussfolgerungen und Ausblick 89 Zusammenfassung 94 Literaturverzeichnis 99 Abbildungs- und Tabellenverzeichnis 116 Eigenständigkeitserklärung VIII Danksagung IX

Page generated in 0.0415 seconds