• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 398
  • 129
  • 99
  • 44
  • 39
  • 28
  • 11
  • 10
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 957
  • 195
  • 126
  • 118
  • 88
  • 81
  • 77
  • 72
  • 69
  • 68
  • 62
  • 61
  • 60
  • 52
  • 51
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
461

An On-Road Investigation of Commercial Motor Vehicle Operators and Self-Rating of Alertness and Temporal Separation as Indicators of Driver Fatigue

Belz, Steven M. 29 November 2000 (has links)
This on-road field investigation employed, for the first time, a completely automated, trigger-based data collection system capable of evaluating driver performance in an extended duration real-world commercial motor vehicle environment. The complexities associated with the development of the system, both technological and logistical and the necessary modifications to the plan of research are presented herein This study, performed in conjunction with an on-going three year contract with the Federal Highway Administration, examined the use of self-rating of alertness and temporal separation (minimum time-to-collision, minimum headway, and mean headway) as indicators of driver fatigue. Without exception, the regression analyses for both the self-rating of alertness and temporal separation yielded models low in predictive ability; neither metric was found to be a valid indicator of driver fatigue. Various reasons for the failure of self-rating of fatigue as a valid measure are discussed. Dispersion in the data, likely due to extraneous (non-fatigue related) factors (e.g., other drivers) are credited with reducing the sensitivity of the temporal separation indicators. Overall fatigue levels for all temporal separation incidents (those with a time-to-collision equal to or less than four seconds) were found to be significantly higher than for those randomly triggered incidents. On this basis, it is surmised that temporal separation may be a sensitive indicator for time-to-collision values greater than the 4-second criterion employed in this study. Two unexpected relationships in the data are also discussed. A "wall" effect was found to exist for minimum time-to-collision values at 1.9 seconds. That is, none of the participants who participated in this research effort exhibited following behaviors with less than a 1.9-second time-to-collision criterion. In addition, based upon the data collected for this research, anecdotal evidence suggests that commercial motor vehicle operators do not appear to follow the standard progression of events associated with the onset of fatigue. / Ph. D.
462

Augmented Reality Pedestrian Collision Warning: An Ecological Approach to Driver Interface Design and Evaluation

Kim, Hyungil 17 October 2017 (has links)
Augmented reality (AR) has the potential to fundamentally change the way we interact with information. Direct perception of computer generated graphics atop physical reality can afford hands-free access to contextual information on the fly. However, as users must interact with both digital and physical information simultaneously, yesterday's approaches to interface design may not be sufficient to support the new way of interaction. Furthermore, the impacts of this novel technology on user experience and performance are not yet fully understood. Driving is one of many promising tasks that can benefit from AR, where conformal graphics strategically placed in the real-world can accurately guide drivers' attention to critical environmental elements. The ultimate purpose of this study is to reduce pedestrian accidents through design of driver interfaces that take advantage of AR head-up displays (HUD). For this purpose, this work aimed to (1) identify information requirements for pedestrian collision warning, (2) design AR driver interfaces, and (3) quantify effects of AR interfaces on driver performance and experience. Considering the dynamic nature of human-environment interaction in AR-supported driving, we took an ecological approach for interface design and evaluation, appreciating not only the user but also the environment. The requirement analysis examined environmental constraints imposed on the drivers' behavior, interface design translated those behavior-shaping constraints into perceptual forms of interface elements, and usability evaluations utilized naturalistic driving scenarios and tasks for better ecological validity. A novel AR driver interface for pedestrian collision warning, the virtual shadow, was proposed taking advantage of optical see-through HUDs. A series of usability evaluations in both a driving simulator and on an actual roadway showed that virtual shadow interface outperformed current pedestrian collision warning interfaces in guiding driver attention, increasing situation awareness, and improving task performance. Thus, this work has demonstrated the opportunity of incorporating an ecological approach into user interface design and evaluation for AR driving applications. This research provides both basic and practical contributions in human factors and AR by (1) providing empirical evidence furthering knowledge about driver experience and performance in AR, and, (2) extending traditional usability engineering methods for automotive AR interface design and evaluation. / Ph. D.
463

Driver Behavior in Car Following - The Implications for Forward Collision Avoidance

Chen, Rong 13 July 2016 (has links)
Forward Collision Avoidance Systems (FCAS) are a type of active safety system which have great potential for rear-end collision avoidance. These systems use either radar, lidar, or cameras to track objects in front of the vehicle. In the event of an imminent collision, the system will warn the driver, and, in some cases, can autonomously brake to avoid a crash. However, driver acceptance of the systems is paramount to the effectiveness of a FCAS system. Ideally, FCAS should only deliver an alert or intervene at the last possible moment to avoid nuisance alarms, and potentially have drivers disable the system. A better understanding of normal driving behavior can help designers predict when drivers would normally take avoidance action in different situations, and customize the timing of FCAS interventions accordingly. The overall research object of this dissertation was to characterize normal driver behavior in car following events based on naturalistic driving data. The dissertation analyzed normal driver behavior in car-following during both braking and lane change maneuvers. This study was based on the analysis of data collected in the Virginia Tech Transportation Institute 100-Car Naturalistic Driving Study which involved over 100 drivers operating instrumented vehicles in over 43,000 trips and 1.1 million miles of driving. Time to Collision in both braking and lane change were quantified as a function of vehicle speed and driver characteristics. In general, drivers were found to brake and change lanes more cautiously with increasing vehicle speed. Driver age and gender were found to have significant influence on both time to collision and maximum deceleration during braking. Drivers age 31-50 had a mean braking deceleration approximately 0.03 g greater than that of novice drivers (age 18-20), and female drivers had a marginal increase in mean braking deceleration as compared to male drivers. Lane change maneuvers were less frequent than braking maneuvers. Driver-specific models of TTC at braking and lane change were found to be well characterized by the Generalized Extreme Value distribution. Lastly, driver's intent to change lanes can be predicted using a bivariate normal distribution, characterizing the vehicle's distance to lane boundary and the lateral velocity of the vehicle. This dissertation presents the first large scale study of its kind, based on naturalistic driving data to report driver behavior during various car-following events. The overall goal of this dissertation is to provide a better understanding of driver behavior in normal driving conditions, which can benefit automakers who seek to improve FCAS effectiveness, as well as regulatory agencies seeking to improve FCAS vehicle tests. / Ph. D.
464

Collision Avoidance Using a Low-Cost Forward-Looking Sonar for Small AUVs

Morency, Christopher Charles 22 March 2024 (has links)
In this dissertation, we seek to improve collision avoidance for autonomous underwater vehicles (AUVs). More specifically, we consider the case of a small AUV using a forward-looking sonar system with a limited number of beams. We describe a high-fidelity sonar model and simulation environment that was developed to aid in the design of the sonar system. The simulator achieves real-time visualization through ray tracing and approximation, and can be used to assess sonar design choices, such as beam pattern and beam location, and to evaluate obstacle detection algorithms. We analyze the benefit of using a few beams instead of a single beam for a low-cost obstacle avoidance sonar for small AUVs. Single-beam systems are small and low-cost, while multi-beam sonar systems are more expensive and complex, often incorporating hundreds of beams. We want to quantify the improvement in obstacle avoidance performance of adding a few beams to a single-beam system. Furthermore, we developed a collision avoidance strategy specifically designed for the novel sonar system. The collision avoidance strategy is based on posterior expected loss, and explicitly couples obstacle detection, collision avoidance, and planning. We demonstrate the strategy with field trials using the 690 AUV, built by the Center for Marine Autonomy and Robotics at Virginia Tech, with a prototype forward-looking sonar comprising of nine beams. / Doctor of Philosophy / This dissertation focuses on improving collision avoidance capabilities for small autonomous underwater vehicles (AUVs). Specifically, we are looking at the scenario of an AUV equipped with a forward-looking sonar system using only a few beams to detect obstacles in our environment. We develop a sophisticated sonar model and simulation environment to facilitate the design of the sonar system. Our simulator enables real-time visualization, offering insights into sonar design aspects. It also serves as a tool for evaluating obstacle detection algorithms. The research investigates the advantages of utilizing multiple beams compared to a single-beam system for a cost-effective obstacle avoidance solution for small AUVs. Single-beam sonar systems are small and affordable, while multi-beam sonar systems are more complex and expensive. The aim is to quantify the improvement in obstacle avoidance performance when adding additional sonar beams. Additionally, a collision avoidance strategy tailored to the novel sonar system is developed. This strategy, developed using a statistical model, integrates obstacle detection, collision avoidance, and planning. The effectiveness of the strategy is demonstrated through field trials using the 690 AUV, constructed by the Center for Marine Autonomy and Robotics at Virginia Tech, equipped with a prototype forward-looking sonar using nine beams.
465

An Investigation of the Effectiveness of A Strobe Light As An Imminent Rear Warning Signal

Schreiner, Lisa Marie 06 December 2000 (has links)
Strobe lights have been used successfully in many transportation applications to increase conspicuity. It was hoped that a strobe signal could also be applied to more effectively warn distracted drivers of an unexpected rear end conflict. This "proof of concept study" used a 2 x 2 between-subjects design using thirty-three subjects (16 subjects in the strobe condition, 17 subjects in the no strobe condition) who were divided into two age groups: younger (25-35) and older (60-70). The driver unexpectedly encountered a stopped "surrogate" vehicle in the roadway (with or without a rear-facing strobe light) in a controlled on-road study at the Smart Road located at the Virginia Tech Transportation Institute (VTTI). Results suggested that younger subjects' perception times improved as a result of being exposed to the strobe signal. Faster perception of the situation allowed more time to initiate a brake response. Older subjects perception and response times remained unchanged by the strobe signal. More severe initial steering rate and subjective responses indicated that the strobe conveyed a sense of urgency irrespective of age. Visual distraction of subjects proved difficult. Hence, the impact of the strobe on attracting the attention of a visually distracted driver to the stimulus could not be as fully investigated as originally hoped. The formulation of a more difficult distraction task was suggested for future research to truly assess the ability of the strobe light at alerting visually distracted drivers. / Master of Science
466

Evaluation of Hand Collision in Mixed Reality

Tegelind, Adrian January 2024 (has links)
Background. With the growing prospects of extended realities (XR), new use casesand experiences are constantly being developed. Especially with the introduction ofmixed reality (MR), allowing for a more seamless blend of the physical and digitalspace, it provides great opportunities in many fields such as education and trainingwhere dangerous procedures can be practiced safely. However, to make these experi-ences as effective and educational as possible, there is a need to make the experiencesrealistic. Objectives. One important aspect of creating realistic experiences is believablecollision between the user’s physical hand and the digital objects. This study specif-ically takes aim at this aspect. Trying to find how the performance difference anduser experience (UX) is affected by the addition of collision around the user’s handsin an MR environment. In order to help guide the way to get the answers to thesequestions, a set of objectives has been formulated. These objectives are; finding andimplementing a hand collision method, designing and performing the user study, andfinally finding and utilizing appropriate methods for analyzing the collected data. Methods. To get a better understanding of the UX and performance of using handcollision, a user study was created where the participants had to complete a seriesof tasks, with and without collision around their hands. For each task, answering aquestionnaire about their experience. Once the data have been collected, it will beanalyzed with the help of the SUS scoring system and statistical tests. Results. The study had 12 participants. With and without hand collision receivedan average SUS score of 62,5 and 69,2 respectively. The results show that the methodusing no collision performed better in terms of time to complete the task. However,hand collision performed better with fewer grabs used. No statistically significantdifference was detected between having or not having hand collision in terms of in-tuitiveness and realism. However, participants were observed to intuitively use thehand collision to their advantage. Conclusions. In conclusion, the participants did not perform better with handcollision, however, did indicate some level of increased intuition and realism. Thenegative aspects of the hand collision are believed to be attributed to the methodused to implement it, and potential in the area exists for further improvements andresearch. / Bakgrund. Med ett växande potential för extended realities (XR), nya använd-ningsområden och upplevelser utvecklas ständigt. Speciellt med införandet av mixedrealities (MR), möjligjorde en mer enad upplevelse av det fysiska och digitala, medstora möjligheter inom utbildning och träning där det farligt sitvationer kan övas påett säkert sätt. Men, för att göra dessa upplevelser så effektiva och pedagogiska sommöjligt behöves mer realistiska upplevelser. Syfte. En viktig aspekt av att skapa realistiska upplevelser är att skapa trovärdigakollisioner mellan användarens fysiska hand och the digitala objekten. Detta är ettav målen denna studien tar sikte på. Att försöker hitta hur prestandaskillnaden äroch användarupplevelsen (UX) påverkas med tillägget av kollision runt användarenshänder i en MR-miljö. För att enklare kunna hitta en väg till svaret för dessa frå-gor har mål formulerats. Dessa mål är att; hitta och implementera en handkollisionsmetod, designa och utför en användarstudie, och hitta samt använd lämpliga metoderför att analysera den insamlade datan. Metod. För att få en bättre förståelse för hur UX och prestanda för använd-ning av handkollsion skapades en användarstudie där deltagarna genomförde en serieuppgifter, med och utan kollision runt deras händer. För varje uppgift besvaradesett frågeformulär om deras upplevelse. När uppgifterna har samlats in kommer deatt analyseras med hjälp av SUS poängsystem och statistiska tester. Resultat. Denna studie hade 12 deltagare. Med och utan handkollision fick engenomsnittlig SUS-poäng av 62,5 respektive 69,2. Resultaten visar att metoden sominte använder någon kollision presterade bättre när det gäller tid för att slutförauppgiften. Men, kollision fick dock bättre med resultat med ett färre antal greppsom används. Det var ingen statistiskt signifikant skillnad som upptäcktes mellanmed och utan handkollision i avsikt på intuitivitet och realism. Dock observeradesdeltagarna att använda kollisionen på ett mer intuitivt sätt till sin fördel. Slutsatser. Sammanfattningsvis, deltagarna presterade inte bättre med kollision,men indikerade viss nivå av ökad intuition och realism. De negativa aspekterna avkollisionen tros att vara i grund på den metod som använts för att implementera den,och potential finns inom området för ytterligare förbättringar och forskning.
467

Structural Integrity Analysis of Hydrofoil on a marine vessel

Jonsson, Joel, Hofverberg, Fabian January 2024 (has links)
This study investigates the structural integrity of hydrofoils under three scenarios: regular boating, turning, and collision with an underwater obstacle. To analyse the forces acting on the hydrofoil, calculations were performed and simulations were conducted in SolidWorks using a CAD model of the hydrofoil.The simulations reveal that the weld between the struts and the wing undergoes plastic deformation during both regular boating and turning. This deformation is particularly problematic during turning, as the forces on the weld increase significantly. Under the collision scenario, the bolts at the breakpoint fail before critical damage occurs to the components above.The results highlight the weakness of the weld and the need for a redesign of the hydrofoil to eliminate it. An alternative fastening method, such as bolted joints with watertight sealing, should be considered.
468

Risk assessment for integral safety in operational motion planning of automated driving

Hruschka, Clemens Markus 14 January 2022 (has links)
New automated vehicles have the chance of high improvements to road safety. Nevertheless, from today's perspective, accidents will always be a part of future mobility. Following the “Vision Zero”, this thesis proposes the quantification of the driving situation's criticality as the basis to intervene by newly integrated safety systems. In the example application of trajectory planning, a continuous, real-time, risk-based criticality measure is used to consider uncertainties by collision probabilities as well as technical accident severities. As result, a smooth transition between preventative driving, collision avoidance, and collision mitigation including impact point localization is enabled and shown in fleet data analyses, simulations, and real test drives. The feasibility in automated driving is shown with currently available test equipment on the testing ground. Systematic analyses show an improvement of 20-30 % technical accident severity with respect to the underlying scenarios. That means up to one-third less injury probability for the vehicle occupants. In conclusion, predicting the risk preventively has a high chance to increase the road safety and thus to take the “Vision Zero” one step further.:Abstract Acknowledgements Contents Nomenclature 1.1 Background 1.2 Problem statement and research question 1.3 Contribution 2 Fundamentals and relatedWork 2.1 Integral safety 2.1.1 Integral applications 2.1.2 Accident Severity 2.1.2.1 Severity measures 2.1.2.2 Severity data bases 2.1.2.3 Severity estimation 2.1.3 Risk assessment in the driving process 2.1.3.1 Uncertainty consideration 2.1.3.2 Risk as a measure 2.1.3.3 Criticality measures in automated driving functions 2.2 Operational motion planning 2.2.1 Performance of a driving function 2.2.1.1 Terms related to scenarios 2.2.1.2 Evaluation and approval of an automated driving function 2.2.2 Driving function architecture 2.2.2.1 Architecture 2.2.2.2 Planner 2.2.2.3 Reference planner 2.2.3 Ethical issues 3 Risk assessment 3.1 Environment model 3.2 Risk as expected value 3.3 Collision probability and most probable collision configuration 4 Accident severity prediction 4.1 Mathematical preliminaries 4.1.1 Methodical approach 4.1.2 Output definition for pedestrian collisions 4.1.3 Output definition for vehicle collisions 4.2 Prediction models 4.2.1 Eccentric impact model 4.2.2 Centric impact model 4.2.3 Multi-body system 4.2.4 Feedforward neural network 4.2.5 Random forest regression 4.3 Parameterisation 4.3.1 Reference database 4.3.2 Training strategy 4.3.3 Model evaluation 5 Risk based motion planning 5.1 Ego vehicle dynamic 5.2 Reward function 5.3 Tuning of the driving function 5.3.1 Tuning strategy 5.3.2 Tuning scenarios 5.3.3 Tuning results 6 Evaluation of the risk based driving function 6.1 Evaluation strategy 6.2 Evaluation scenarios 6.3 Test setup and simulation environment 6.4 Subsequent risk assessment of fleet data 6.4.1 GIDAS accident database 6.4.2 Fleet data Hamburg 6.5 Uncertainty-adaptive driving 6.6 Mitigation application 6.6.1 Real test drives on proving ground 6.6.2 Driving performance in simulation 7 Conclusion and Prospects References List of Tables List of Figures A Extension to the tuning process
469

Development of virtual reality tools for arthroscopic surgery training / Développement d'outils de réalité virtuelle pour l'enseignement de la chirurgie arthroscopique

Yaacoub, Fadi 12 November 2008 (has links)
The minimally invasive approach of arthroscopy means less pain and faster recovery time for patients compared to open surgery. However, it implies a high difficulty of performance. Therefore, surgeon should remain at a high level of technical and professional expertise to perform such operations. Surgeon’s skills are being developed over years of surgical training on animals, cadavers and patients. Nowadays, cadavers and animal specimens present an ethical problem also the practice on real humans is usually risky. For surgeons to reach a high level, new and alternative ways of performing surgical training are required. Virtual reality technology has opened new realms in the practice of medicine. Today, virtual reality simulators have become one of the most important training methods in the medical field. These simulators allow medical students to examine and study organs or any structure of the human body in ways that were not possible few years earlier. Similarly, the surgeon as well as the medical student can gain a valuable experience by performing a particular surgery with an anatomical accuracy and realism as it is actually performed in the real world. Thus, they can practice on virtual operation before they proceed and operate on real patients. In this thesis, a virtual reality training simulator for wrist arthroscopy is introduced. Two main issues are addressed: the 3-D reconstruction process and the 3-D interaction. Based on a sequence of CT images a realistic representation of the wrist joint is obtained suitable for the computer simulation. Two main components of the computer-based system interface are illustrated: the 3-D interaction to guide the surgical instruments and the user interface for haptic feedback. In this context, algorithms that model objects using the convex hull approaches and simulate real time exact collision detection between virtual objects are presented. A force feedback device, coupled with a haptic algorithm, is used as a haptic interface with the computer simulation system. This leads in the development of a low cost system with the same benefits as professional devices. In this regard, the wrist arthroscopy can be simulated and medical students can learn the basic skills required with safety, flexibility and less cost / La chirurgie arthroscopique présente actuellement un essor très important pour le bénéfice du plus grand nombre des patients. Cependant, cette technique possède un certain nombre d’inconvénients et il est donc nécessaire pour le médecin de s’entrainer et répéter ses gestes afin de pouvoir exécuter ce type d’opération d’une façon efficace et certaine. En effet, les méthodes traditionnelles d’enseignement de la chirurgie sont basées sur l’autopsie des cadavres et l’entrainement sur des animaux. Avec l’évolution de notre société, ces deux pratiques deviennent de plus en plus critiquées et font l’objet de réglementations très restrictives. Afin d’atteindre un niveau plus élevé, de nouveaux moyens d’apprentissage sont nécessaires pour les chirurgiens. Récemment, la réalité virtuelle commence d’être de plus en plus utilisée dans la médecine et surtout la chirurgie. Les simulateurs chirurgicaux sont devenus une des matières les plus récentes dans la recherche de la réalité virtuelle. Ils sont également devenus une méthode de formation et un outil d’entrainement valable pour les chirurgiens aussi bien que les étudiants en médecine. Dans ce travail, un simulateur de réalité virtuelle pour l’enseignement de la chirurgie arthroscopique, surtout la chirurgie du poignet, a été préesenté. Deux questions principales sont abordées : la reconstruction et l’interaction 3-D. Une séquence d’images CT a été traitée afin de générer un modèle 3-D du poignet. Les deux principales composantes de l’interface du système sont illustrées : l’interaction 3-D pour guider les instruments chirurgicaux et l’interface de l’utilisateur pour le retour d’effort. Dans ce contexte, les algorithmes qui modélisent les objets en utilisant les approches de “Convex Hull” et qui simulent la détection de collision entre les objets virtuels en temps réel, sont présentés. En outre, un dispositif de retour d’effort est utilisé comme une interface haptique avec le système. Cela conduit au développement d’un système à faible coût, avec les mêmes avantages que les appareils professionnels. A cet égard, l’arthroscopie du poignet peut être simulée et les étudiants en médecine peuvent facilement utiliser le système et peuvent apprendre les compétences de base requises en sécurité, flexibilité et moindre coût
470

Nature et structure de l'isthme inter-américain, Panama : implication sur la reconstruction et l'évolution géodynamique de la plaque Caraïbe / Nature and structure of the inter-american isthmus, Panama : implication for the reconstruction and the geodynamic evolution of the Caribbean plate

Barat, Flore 16 July 2013 (has links)
L'isthme de Panama se situe en bordure SW de la plaque Caraïbe, à la jonction de trois plaques lithosphériques: les plaques Amérique du Sud, Nazca et Cocos. Cet isthme est constitué de deux arcs volcaniques formant l'Amérique Centrale. Leurs présences reflètent une histoire complexe de convergence, en subduction. L'événement majeur de cette région correspond à la collision de l'Amérique Centrale contre l'Amérique du Sud entre 12-25 Ma. L'objectif de cette thèse est de documenter les déformations avant, pendant et après le processus d'accrétion continentale. Le but est de mieux comprendre comment un arc volcanique s'accrète sur une marge continentale pour reconstruire l'histoire géodynamique de cette région de 70 Ma jusqu'à nos jours. Cette thèse combine: - une étude sédimentologique et paléontologique, - une étude structurale à partir de données spatiales, géophysiques, et de terrain, - une étude thermochronologique (AFT), - et une étude interprétative sismique. Je propose ainsi une accrétion progressive et oblique de l'Amérique Centrale sur l'Amérique du Sud, s'initiant au sud de la région d'Istmina à partir de 40-37 Ma. La plaque Caraïbe, piégée entre l'arc volcanique et la marge continentale sud-américaine, disparaît progressivement sous l'Amérique du Sud. Vers 15 Ma, l'accrétion de l'arc dans la partie colombienne se termine. Au Panama, la convergence continentale se poursuit, mais le système s'inverse. Une nouvelle subduction s'initie : la plaque Caraïbe subducte sous l'isthme. Les déformations compressives engendrées par l'accrétion contrôlent la migration des masses sédimentaires et permettent la surrection progressive de l'isthme créant le pont inter-Amériques. / The Panama Isthmus is located on the SW boundary of the Caribbean plate, at the junction of the South American, Nazca and Cocos plates. The isthmus is composed of two island arcs forming Central America. It formed by a complex history of plate subductions. The major tectonic event in this region is attributed to the accretion of Central America with South America between 12 and 25 Ma. The aim of this thesis is to document the deformation before, during and after the accretionary continental process. The main purpose is to better understand how a volcanic arc collides against a continental margin in order to reconstruct the tectonic history of this region since 70 Ma until today. This thesis combines: - a sedimentological and paleontological studies, - a structural study from spatial, geophysical and field work data, - a thermochronological study (AFT), - and an interpretative seismic study. I propose the initiation of progressive and oblique arc-continent collision during 40-37 Ma. The Caribbean plate, trapped between the arc and the continent, progressively disappeared beneath the South American continent. Around 15 Ma, the Colombian part of Central America was accreted and the convergence of Panama toward the continent progressed and produced a new subduction zone whereby the Caribbean plate subducted beneath the Panama Isthmus. Compressive deformations, caused by the collision, still actively control the migration of sedimentary masses, allowing the progressive emergence of the isthmus and forming the inter-American land bridge.

Page generated in 0.0674 seconds