• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 378
  • 52
  • 47
  • 20
  • 12
  • 9
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 764
  • 308
  • 259
  • 204
  • 183
  • 171
  • 75
  • 70
  • 61
  • 60
  • 52
  • 52
  • 51
  • 49
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

On Extending Hansel's Theorem to Hypergraphs

Churchill, Gregory Sutton 08 November 2017 (has links)
For integers $n \geq k \geq 2$, let $V$ be an $n$-element set, and let $\binom{V}{k}$ denote the family of all $k$-element subsets of $V$. For disjoint subsets $A, B \subseteq V$, we say that $\{A, B\}$ {\it covers} an element $K \in \binom{V}{k}$ if $K \subseteq A \dot\cup B$ and $K \cap A \neq \emptyset \neq K \cap B$. We say that a collection $\cC$ of such pairs {\it covers} $\binom{V}{k}$ if every $K \in \binom{V}{k}$ is covered by at least one $\{A, B\} \in \cC$. When $k=2$, covers $\cC$ of $\binom{V}{2}$ were introduced in~1961 by R\'enyi~\cite{Renyi}, where they were called {\it separating systems} of $V$ (since every pair $u \neq v \in V$ is separated by some $\{A, B\} \in \cC$, in the sense that $u \in A$ and $v \in B$, or vice-versa). Separating systems have since been studied by many authors. For a cover $\cC$ of $\binom{V}{k}$, define the {\it weight} $\omega(\cC)$ of $\cC$ by $\omega(\cC) = \sum_{\{A, B\} \in \cC} (|A|+|B|)$. We define $h(n, k)$ to denote the minimum weight $\omega(\cC)$ among all covers $\cC$ of $\binom{V}{k}$. In~1964, Hansel~\cite{H} determined the bounds $\lceil n \log_2 n \rceil \leq h(n, 2) \leq n\lceil \log_2 n\rceil$, which are sharp precisely when $n = 2^p$ is an integer power of two. In~2007, Bollob\'as and Scott~\cite{BS} extended Hansel's bound to the exact formula $h(n, 2) = np + 2R$, where $n = 2^p + R$ for $p = \lfloor \log_2 n\rfloor$. The primary result of this dissertation extends the results of Hansel and of Bollob\'as and Scott to the following exact formula for $h(n, k)$, for all integers $n \geq k \geq 2$. Let $n = (k-1)q + r$ be given by division with remainder, and let $q = 2^p + R$ satisfy $p = \lfloor \log_2 q \rfloor$. Then h(n, k) = np + 2R(k-1) + \left\lceil\frac{r}{k-1}\right\rceil (r + k - 1). A corresponding result of this dissertation proves that all optimal covers $\cC$ of $\binom{V}{k}$, i.e., those for which $\omega(\cC) = h(n, k)$, share a unique {\it degree-sequence}, as follows. For a vertex $v \in V$, define the {\it $\cC$-degree} $\deg_{\cC}(v)$ of $v$ to be the number of elements $\{A, B\} \in \cC$ for which $v \in A \dot\cup B$. We order these degrees in non-increasing order to form $\bd(\cC)$, and prove that when $\cC$ is optimal, $\bd(\cC)$ is necessarily binary with digits $p$ and $p+1$, where uniquely the larger digits occur precisely on the first $2R(k-1) + \lceil r/(k-1) \rceil (r + k - 1)$ many coordinates. That $\bd(\cC)$ satisfies the above for optimal $\cC$ clearly implies the claimed formula for $h(n,k)$, but in the course of this dissertation, we show these two results are, in fact, equivalent. In this dissertation, we also consider a $d$-partite version of covers $\cC$, written here as {\it $d$-covers} $\cD$. Here, the elements $\{A,B\} \in \cC$ are replaced by $d$-element families $\{A_1, \dots, A_d\} \in \cD$ of pairwise disjoint sets $A_i \subset V$, $1 \leq i \leq d$. We require that every element $K \in \binom{V}{k}$ is covered by some $\{A_1, \dots, A_d\} \in \cD$, in the sense that $K \subseteq A_1 \dot\cup \cdots \dot\cup A_d$ where $K \cap A_i \neq \emptyset$ holds for each $1 \leq i \leq d$. We analogously define $h_d(n,k)$ as the minimum weight $\omega(\cD) = \sum_{D \in \cD} \sum_{A \in D} |A|$ among all $d$-covers $\cD$ of $\binom{V}{k}$. In this dissertation, we prove that for all $2 \leq d \leq k \leq n$, the bound $h_d(n,k) \geq n \log_{d/(d-1)} (n/(k-1))$ always holds, and that this bound is asymptotically sharp whenever $d = d(k) = O (k/\log^2 k)$ and $k = k(n) = O(\sqrt{\log \log n})$.
212

Combinatorial Rigidity and Generation of Discrete Structures / 離散構造物の組合せ論的剛性特徴付けと高速列挙アルゴリズムの開発

Tanigawa, Shinichi 23 March 2010 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第15317号 / 工博第3196号 / 新制||工||1481(附属図書館) / 27795 / 京都大学大学院工学研究科建築学専攻 / (主査)教授 加藤 直樹, 教授 門内 輝行, 教授 竹脇 出 / 学位規則第4条第1項該当
213

An Optimal Medium-Strength Regularity Algorithm for 3-uniform Hypergraphs

Theado, John 25 June 2019 (has links)
Szemere´di’s Regularity Lemma [32, 33] is an important tool in combinatorics, with numerous appli- cations in combinatorial number theory, discrete geometry, extremal graph theory, and theoretical computer science. The Regularity Lemma hinges on the following concepts. Let G = (V, E) be a graph and let ∅ /= X, Y ⊂ V be a pair of disjoint vertex subsets. We define the density of the pair (X, Y ) by dG(X, Y ) = |E[X, Y ]|/(|X||Y |) where E[X, Y ] denotes the set of edges {x, y} ∈ E with x ∈ X and y ∈ Y . We say the pair (X, Y ) is ε-regular if all subsets XI ⊆ X and Y I ⊆ Y satisfying |XI| > ε|X| and |Y I| > ε|Y | also satisfy |dG(XI, Y I) − dG(X, Y )| < ε. The Regularity Lemma states that, for all ε > 0, all large n-vertex graphs G = (V, E) admit a partition V = V1 ∪ · · · ∪ Vt, where t = t(ε) depends on ε but not on n, so that all but εt2 pairs (Vi, Vj), 1 ≤ i < j ≤ t, are ε-regular. While Szemere´di’s original proof demonstrates the existence of such a partition, it gave no method for (efficiently) constructing such partitions. Alon, Duke, Lefmann, Ro¨dl, and Yuster [1, 2] showed that such partitions can be constructed in time O(M (n)), where M (n) is the time needed to multiply two n × n {0, 1}-matrices over the integers. Kohayakawa, Ro¨dl, and Thoma [17, 18] improved this time to O(n2). The Regularity Lemma can be extended to k-uniform hypergraphs, as can algorithmic for- mulations thereof. The most straightforward of these extends the concepts above to k-uniform hypergraphs H = (V, E) in a nearly verbatim way. Let ∅ /= X1, . . . , Xk ⊂ V be pairwise disjoint subsets, and let E[X1, . . . , Xk] denote the set of k-tuples {x1, . . . , xk} ∈ E satisfying x1 ∈ X1, . . . , xk ∈ Xk. We define the density of (X1, . . . , Xk) as dH(X1, . . . , Xk) = |E[X1, . . . , Xk]| / |X1| · · · |Xk|. We say that (X1, . . . , Xk) is ε-regular if all subsets XiI ⊆ Xi, 1 ≤ i ≤ k, satisfying |XiI| > ε|Xi| also satisfy |dH (X1I , . . . , XkI ) − dH (X1, . . . , Xk)| < ε. With these concepts, Szemeredi’s original proof can be applied to give that, for all integers k ≥ 2 and for all ε > 0, all n-vertex k-uniform hypergraphs H = (V, E) admit a partition V = V1 ∪· · ∪ Vt, where t = t(k, ε) is independent of n, so that all but εtk many k-tuples (Vi1 , . . . , Vik) are ε-regular, where 1 ≤ i1 < · · · < ik ≤ t. Czygrinow and Ro¨dl [4] gave an algorithm for such a regularity lemma, which in the context above, runs in time O(n2k−1 log5 n). In this dissertation, we consider regularity lemmas for 3-uniform hypergraphs. In this setting, our first main result improves the algorithm of Czygrinow and Ro¨dl to run in time O(n3), which is optimal in its order of magnitude. Our second main result shows that this algorithm gives a stronger notion of regularity than what is described above, where this stronger notion is described in the course of this dissertation. Finally, we discuss some ongoing applications of our constructive regularity lemmas to some classical algorithmic hypergraph problems.
214

Topics in Combinatorial Algebra: Algorithms & Computations

Sieg, Richard 13 September 2017 (has links)
In this thesis we look at different topics and problems that combine the theory of combinatorics with the theory of (commutative) algebra.
215

Localized structure in graph decompositions

Bowditch, Flora Caroline 20 December 2019 (has links)
Let v ∈ Z+ and G be a simple graph. A G-decomposition of Kv is a collection F={F1,F2,...,Ft} of subgraphs of Kv such that every edge of Kv occurs in exactlyone of the subgraphs and every graph Fi ∈ F is isomorphic to G. A G-decomposition of Kv is called balanced if each vertex of Kv occurs in the same number of copies of G. In 2011, Dukes and Malloch provided an existence theory for balanced G-decompositions of Kv. Shortly afterwards, Bonisoli, Bonvicini, and Rinaldi introduced degree- and orbit-balanced G-decompositions. Similar to balanced decompositions,these two types of G-decompositions impose a local structure on the vertices of Kv. In this thesis, we will present an existence theory for degree- and orbit-balanced G-decompositions of Kv. To do this, we will first develop a theory for decomposing Kv into copies of G when G contains coloured loops. This will be followed by a brief discussion about the applications of such decompositions. Finally, we will explore anextension of this problem where Kv is decomposed into a family of graphs. We will examine the complications that arise with families of graphs and provide results for a few special cases. / Graduate
216

Comparing invariants of toric ideals of bipartite graphs

Bhaskara, Kieran January 2023 (has links)
Given a finite simple graph G, one can associate to G an ideal I_G, called the toric ideal of G. There are a number of algebraic invariants of ideals which are frequently studied in commutative algebra. In general, understanding these invariants is very difficult for arbitrary ideals. However, when the ideals are related to combinatorial objects, in this case, graphs, a deeper investigation can be conducted. If, in addition, the graph G is bipartite, even more can be said about these invariants. In this thesis, we explore a comparison of invariants of toric ideals of bipartite graphs. Our main result describes all possible values for the tuple (reg(K[E]/I_G), deg(h_{K[E]/I_G}), pdim(K[E]/I_G), depth(K[E]/I_G), dim(K[E]/I_G)) when G is a bipartite graph on n ≥ 1 vertices. / Thesis / Master of Science (MSc)
217

Novel Structural Properties and An Improved Bound for the Number Distinct Squares in a Strings

Thierry, Adrien January 2016 (has links)
Combinatorics on words explore words – often called strings in the com- puter science community, or monoids in mathematics – and their structural properties. One of the most studied question deals with repetitions which are a form of redundancy. The thesis focuses on estimating the maximum number of distinct squares in a string of length n. Our approach is to study the combinatorial properties of these overlapping structures, nested systems, and obtain insights into the intricate patterns that squares create. Determin- ing the maximum number of repetitions in a string is of interest in different fields such as biology and computer science. For example, the question arrises when one tries to bound the number of repetitions in a gene or in a computer file to be data compressed. Specific strings containing many repetitions are often of interest for additional combinatorial properties. After a brief review of earlier results and an introduction to the question of bounding the maxi- mum number of distinct squares, we present the combinatorial insights and techniques used to obtain the main result of the thesis: a strengthening of the universal upper bound obtained by Fraenkel and Simpson in 1998. / Thesis / Doctor of Philosophy (PhD)
218

Abstract Polytopes from Nested Posets

Showers, Patrick J. January 2013 (has links)
No description available.
219

Rationalization of Combinatorial Design in Architecture for Microhousing

Kim, Paul 19 September 2017 (has links)
No description available.
220

Configuration spaces of repulsive particles on a metric graph

Kim, Jimin 29 September 2022 (has links)
No description available.

Page generated in 0.0841 seconds