Spelling suggestions: "subject:"combustion chamber."" "subject:"ombustion chamber.""
51 |
Stochastic dynamical system identification applied to combustor stability margin assessmentCordeiro, Helio de Miranda 16 December 2008 (has links)
A new approach was developed to determine the operational stability margin of a laboratory scale combustor. Applying modern and robust techniques and tools from Dynamical System Theory, the approach was based on three basic steps. In the first step, a gray-box thermoacoustical model for the combustor was derived. The second step consisted in applying System Identification techniques to experimental data in order to validate the model and estimate its parameters. The application of these techniques to experimental data under different operating conditions allowed us to determine the functional dependence of the model parameters upon changes in an experimental control parameter. Finally, the third step consisted in using that functional dependence to predict the response of the system at different operating conditions and, ultimately, estimate its operational stability margin. The results indicated that a low-order stochastic non-linear model, including two excited modes, has been identified and the combustor operational stability margin could be estimated by applying a continuation method.
|
52 |
Flame stabilization and mixing characteristics in a stagnation point reverse flow combustorBobba, Mohan Krishna. January 2007 (has links)
Thesis (Ph.D)--Aerospace Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Seitzman, Jerry; Committee Member: Filatyev, Sergei; Committee Member: Jagoda, Jechiel; Committee Member: Lieuwen, Timothy; Committee Member: Shelton, Samuel; Committee Member: Zinn, Ben. Part of the SMARTech Electronic Thesis and Dissertation Collection.
|
53 |
Coupled Large Eddy Simulations of combustion chamber-turbine interactions / Simulations aux Grandes Echelles couplées des interactions chambre de combustion-turbinePapadogiannis, Dimitrios 06 May 2015 (has links)
Les turbines à gaz modernes deviennent de plus en plus compactes, ce qui augmente les interactions entre leurs différents composants. Les interactions chambre de combustion-turbine sont particulièrement critiques car elles peuvent changer le champ aérothermique dans la turbine et réduire la durée de vie du moteur. Aujourd’hui, ces deux composants sont traités de façon indépendante, ce qui ne permet pas de prendre en compte leurs interactions. Cette thèse propose une approche couplée, basée sur les Simulations aux Grandes Échelles (SGE), une technique qui permet de prendre en compte toutes les interactions chambre de combustion-turbine. Dans la première partie de cette thèse, une méthode, compatible avec le code SGE AVBP, est proposée pour traiter les configurations rotor/stator de manière rigoureuse. Une série de cas test académiques vient prouver que l’interface respecte les propriétés des schémas numériques du code. Cette étude est suivie par une validation de l’approche dans le cas d'une turbine haute-pression mono-étage. Les résultats sont comparés avec des mesures expérimentales et l’influence des différents paramètres et modèles est établi. La deuxième partie de cette travail est dédiée à la prédiction des interactions chambre de combustion-turbine en utilisant les méthodes précédemment décrites et validées. Le premier type d’interaction étudié est la génération du bruit de combustion indirect dans une turbine haute pression. Ce bruit est créé lorsque des hétérogénéités de température, générées dans la chambre de combustion, sont accélérées dans la turbine. Pour simplifier les calculs, les hétérogénéités sont modélisées par des fluctuations de température sinusoïdales, injectées dans la turbine par les conditions limites. Les mécanismes de génération de bruit sont mis en évidence et le bruit de combustion indirect est mesuré et comparé avec une théorie analytique et des prédictions 2D. La deuxième application est un calcul couplé chambre de combustion-turbine qui analyse les interactions entre ces deux composants d’un point de vue aérothermique. Les caractéristiques instationnaires de l’écoulement à l’entrée de la turbine et la migration des hétérogénéités de température dans la turbine sont étudiées. Un calcul de la turbine seule est aussi effectué pour comparaison avec le calcul couplé. / Modern gas turbines are characterized by compact designs that enhance the interactions between its different components. Combustion chamber-turbine interactions, in particular, are critical as they may alter the aerothermal flow field of the turbine which can drastically impact the engine life duration. Current state-of-the-art treats these two components in a decoupled way and does not take into account their interactions. This dissertation proposes a coupled approach based on the high-fidelity Large Eddy Simulation (LES) formalism that can take into account all the potential paths of interactions between components. In the first part of this work, an overset grid method is proposed to treat rotor/stator configurations in a rigorous fashion that is compatible with the LES solver AVBP. This interface treatment is shown not to impact the characteristics of the numerical schemes on a series of academic test cases of varying complexity. The approach is then validated on a realistic high-pressure turbine stage. The results are compared against experimental measurements and the influence of different modeling and simulation parameters is evaluated. The second part of this work is dedicated to the prediction of combustion chamber-turbine interactions using the developed methodologies. The first type of interactions evaluated is the indirect combustion noise generation across a high-pressure turbine stage. This noise arises when combustor-generated temperature heterogeneities are accelerated in the turbine. To simplify the simulations the heterogeneities are modeled by sinusoidal temperature fluctuations injected in the turbine through the boundary conditions. The noise generation mechanisms are revealed by such LES and the indirect combustion noise is measured and compared to an analytical theory and 2D predictions. The second application is a fully-coupled combustor-turbine simulation that investigates the interactions between the two components from an aerothermal point of view. The rich flow characteristics at the turbine inlet, issued by the unsteady combustion in the chamber, are analyzed along with the migration of the temperature heterogeneities. A standalone turbine simulation serves as a benchmark to compare the impact of the fully coupled approach.
|
54 |
Análise comparativa do desempenho de turbocompressores veiculares com câmara de combustão tubular na microgeração de energiaPinto, Daniel Vieira 19 September 2017 (has links)
Esta dissertação de mestrado apresenta o desenvolvimento de um trabalho que tem como objetivos avaliar a composição de turbocompressores veiculares para microgeração de energia e desenvolver um modelo de câmara de combustão tubular para equipar microturbinas a gás derivadas de turbocompressores. No desenvolvimento do trabalho, utilizando o software Cycle-Tempo, foi feita a avaliação de possíveis configurações de microturbinas a gás derivadas de turbocompressores, no que diz respeito ao número de eixos e dispositivos de aumento de eficiência térmica (intercooler, recuperador de calor e reaquecedor). No total foram simuladas, dez diferentes configurações, sendo que as análises foram feitas diretamente nos parâmetros de eficiência térmica dos conjuntos avaliando-se a relação entre a energia aportada pelo combustível e a energia entregue num gerador elétrico hipotético. Na sequência são definidos os turbocompressores para compor uma determinada configuração de microturbina a gás e, para tanto, utilizaram-se os mapas de desempenho dos turbocompressores de um fabricante. A partir dos parâmetros de operação dos equipamentos foi desenvolvido um modelo tridimensional de câmara de combustão em software de CAD. O modelo passou por cinco etapas de simulações em Dinâmica dos Fluidos Computacional (Computational Fluid Dynamics - CFD). As primeiras três etapas serviram para desenvolver e aprimorar o modelo tridimensional de câmara de combustão e, por limitações do software, não envolveram combustão. Utilizando condições de contorno operacionais, foram avaliados: o perfil de velocidades ao longo da câmara de combustão, a perda de pressão, a intensidade da turbulência, a homogeneização entre os reagentes ar e combustível e a divisão do fluxo mássico em cada seção da câmara de combustão. A partir do modelo tridimensional foi desenvolvido um protótipo da câmara de combustão, construído a partir de tubos comerciais de PVC. O protótipo foi avaliado experimentalmente com escoamento do ar a temperatura ambiente, utilizando o acoplamento em série entre um ventilador centrífugo e um soprador. No experimento foi avaliada a divisão de fluxo mássico de ar em cada seção da câmara de combustão e a perda de pressão. As simulações CFD foram refeitas na quarta etapa, onde as condições de contorno foram os parâmetros de fluxo mássico, pressão e temperatura, obtidos experimentalmente. Com isto, pode ser feita a comparação direta entre os resultados obtidos experimentalmente e os resultados das simulações CFD. Concluindo o trabalho foi realizada a quinta etapa, onde foi inserida uma fonte de calor simulando o aporte de energia da combustão, permitindo a avaliação da temperatura na câmara de combustão. As simulações CFD indicaram resultados semelhantes ao que é previsto em bibliografia, no que diz respeito à divisão do fluxo mássico, perda de pressão e à distribuição de velocidades. Já as avaliações experimentais apresentaram incerteza de medição elevada para a divisão de fluxo mássico. Quanto à perda de pressão o método experimental mostrou-se adequado. / Submitted by Ana Guimarães Pereira (agpereir@ucs.br) on 2017-10-25T17:02:08Z
No. of bitstreams: 1
Dissertacao Daniel Vieira Pinto.pdf: 7889874 bytes, checksum: a3dd417da94a3175c511cb73b3577fd2 (MD5) / Made available in DSpace on 2017-10-25T17:02:08Z (GMT). No. of bitstreams: 1
Dissertacao Daniel Vieira Pinto.pdf: 7889874 bytes, checksum: a3dd417da94a3175c511cb73b3577fd2 (MD5)
Previous issue date: 2017-10-25 / This master's work presents the development of a work that has the objective of evaluating the composition of vehicular turbochargers for microgeneration of energy and to develop a tubular combustion chamber model to equip gas microturbines derived from turbochargers. In the development of the work, using the software Cycle-Tempo, it is made the evaluation of possible configurations of gas micro turbines derived from turbochargers, with respect to the number of axes and devices of increasing thermal efficiency (intercoolers, heat recover e reheater). In total, ten different configurations were simulated, and the analyzes were done directly in the thermal efficiency parameters of the sets, evaluating the relation between the energy contributed by the fuel and the energy delivered in a hypothetical electric generator. Turbochargers are then defined to form a particular gas micro turbine configuration and, being used the turbocharger performance maps from a manufacturer. From the operating parameters of the equipment, a three-dimensional combustion chamber model was developed in CAD software. The model went through five stages of simulations in Computational Fluid Dynamics (CFD). The first three steps served to develop and improve the three-dimensional model of combustion chamber and, due to software limitations, did not involve combustion. Using operational contour conditions, the velocity profile along the combustion chamber, the pressure loss, the turbulence intensity, the homogenization between the air and fuel reactants and the division of the mass flow in each section of the combustion chamber were evaluated. From the three-dimensional model was developed a prototype of the combustion chamber, built from commercial PVC pipes. The prototype was evaluated experimentally with air flow at room temperature using the coupling in series between a centrifugal fan and a blower. In the experiment the air mass flow division in each section of the combustion chamber and the loss of pressure were evaluated. The CFD simulations were redone in the fourth stage, where the boundary conditions were the parameters of mass flow, pressure and temperature, obtained experimentally. Thus, a direct comparison between the results obtained experimentally and the results of CFD simulations can be made. At the end of the work the fifth step was performed, where a heat source was inserted simulating the energy input of the combustion, allowing the temperature evaluation in the combustion chamber. The CFD simulations indicated results similar to those predicted in the literature, regarding the division of mass flow, pressure loss and velocity distribution. However, the experimental evaluations presented high measurement uncertainty for the mass flow division. Regarding pressure loss, the experimental method proved to be adequate.
|
55 |
Dynamics and nonlinear thermo-acoustic stability analysis of premixed conical flames / Dynamique et analyse non-linéaire de stabilité thermo-acoustique de flammes coniques prémélangéesCuquel, Alexis 11 June 2013 (has links)
Les instabilités thermo-acoustiques présentes dans les chambres de combustion sont générées par des interactions entre une flamme et l’acoustique du foyer. Ces oscillations auto-entretenues peuvent être observées dans de nombreux systèmes industriels tels que des chaudières domestiques, des fours industriels, des turbines à gaz ou des moteurs fusée. Bien que ce phénomène ait fait l’objet de nombreux travaux, il n’existe toujours pas de cadre d’étude assez général et robuste pour prédire le déclenchement de ces oscillations auto-entretenues et pour déterminer l’évolution des variables de l’écoulement à l’intérieur de la chambre de combustion. Ce travail s’appuie à la fois sur des modèles et des expériences. L’objectif est d’améliorer la description de la réponse de flammes coniques laminaires prémélangées à des perturbations de l’écoulement et les prédictions d’instabilités thermo-acoustiques dans des foyers alimentés par des flammes coniques. Dans la première partie du manuscrit, une revue des modèles décrivant la dynamique de flammes coniques est entreprise et un cadre général d’étude pour la modélisation de la Fonction de Transfert de Flamme (FTF) est présenté. Le dispositif expérimental ainsi que les diagnostics utilisés sont ensuite décrits. Ces systèmes sont utilisés pour mesurer la FTF de flammes coniques laminaires prémélangées soumises à des perturbations harmoniques de l’écoulement. Une nouvelle technique expérimentale est proposée pour contrôler les perturbations de l’écoulement à la sortie du brûleur. Elle est utilisée pour moduler l’écoulement avec un bruit blanc aléatoire et déterminer la FTF avec une résolution fréquentielle bien meilleure. Pour de faibles niveaux d’excitation, les résultats obtenus avec cette technique sont en accord avec ceux obtenus par la méthode classique utilisant des perturbations harmoniques. Les limites de cette technique sont décrites lorsque le niveau de perturbation augmente. Plusieurs expressions analytiques de la FTF de flammes coniques sont établies dans la seconde partie de cette thèse en introduisant progressivement plus de phénomènes physiques dans le modèle. Les modèles basés sur des perturbations convectées par l’écoulement sont étendus en tenant compte de la nature incompressible du champ de perturbation de vitesse. La prévision de la phase de la FTF de flamme conique est améliorée et présente un bon accord avec les mesures. Ensuite, une étude détaillée des interactions de la base de la flamme avec le bord du brûleur est conduite en tenant compte des pertes thermiques instationnaires de la flamme vers le brûleur. Ce mécanisme contrôle le mouvement de la base de la flamme et la dynamique de flamme à haute fréquence. Cette contribution à la FTF détermine le comportement haute fréquence de la FTF ainsi que l’évolution non-linéaire de la FTF lorsque le niveau de perturbation augmente. Enfin, une analyse de la dynamique des flammes coniques est entreprise pour des flammes placées dans des tubes de différents diamètres. Il est montré que les effets de confinement doivent être pris en compte lorsque les gaz brûlés ne peuvent se dilater complètement. Des différences importantes sont observées entre des FTF mesurées pour des tubes de confinement de diamètres différents. Un nouveau nombre sans dimension est établi pour prendre en compte ces effets. Ces différents modèles sont ensuite utilisés pour modéliser la réponse d’une collection de petites flammes coniques stabilisées sur une plaque perforée. Il est montré qu’une combinaison de ces modèles permet de capturer le comportement de ces flammes ainsi que l’évolution de la phase de la FTF couvrant le spectre fréquentiel pertinent pour la prédiction d’instabilités thermo-acoustiques. / Thermo-acoustic instabilities in combustion chambers are generated by the interactions between a flame and the combustor acoustics, leading to a resonant coupling. These self-sustained oscillations may be observed in many practical systems such as domestic boilers, industrial furnaces, gas turbines or rocket engines. Although this phenomenon has already been the topic of many investigations, there is yet no generalized robust framework to predict the onset of these self-sustained oscillations and to determine the evolution of the flow variables within the combustor during unstable operation. This work builds on previous models and experiments to improve the description of the response of laminar conical flames to flow perturbations and the prediction of thermoacoustic instability in burners operating with conical flames. In the first part of the manuscript, an extensive review of conical flame dynamics modeling is undertaken and a general framework for the modeling of their Flame Transfer Function (FTF) is presented. The experimental setup and the diagnostics used to characterize their response to flow disturbances are then described. They are used to measure the FTF when the flames are submitted to harmonic flow perturbations. A novel experimental technique is also proposed to control the flow perturbation level at the burner outlet. It enables to modulate the flow with random white noise perturbations and to measure the FTF with a better frequency resolution. Results with this alternative technique compare well with results from the classical method using harmonic signals for small disturbances. Limits of this technique are also highlighted when the perturbation level increases. Different analytical expressions for the FTF of conical flames are derived in the second part of the thesis by progressively introducing more physics into the models. Models based on convected flow disturbances are extended by taking into account the incompressible nature of the perturbed velocity field. It is shown that the prediction of the FTF phase lag of a conical flame is greatly improved and collapses well with measurements. Then, a thorough investigation of the flame base dynamics interacting with the anchoring device is conducted by considering unsteady heat loss from the flame to the burner. This mechanism is shown to drive the motion of the flame base and the flame dynamics at high frequencies. It is also shown that this contribution to the FTF rules the high frequency behavior of the FTF as well as the nonlinear evolution of the FTF when the perturbation level increases. Finally, an analysis is conducted on the dynamics of a single conical flame placed into cylindrical flame tubes featuring different diameters. It is shown that confinement effects need to be taken into account when the burnt gases cannot fully expand. Large differences are observed between FTF measured for different confinement tube diameters. A new dimensionless number is derived to take these effects into account and make all the FTF collapse on a single curve. These different models are then used to model the response of a collection of small conical flames stabilized on a perforated plate. It is shown that by sorting out the different contributing mechanisms to the FTF, the expressions proposed in this work may be combined to capture the main behavior and correct phase lag evolution of these flames in the frequency range of interest for thermo-acoustic instability prediction.
|
56 |
Análise comparativa do desempenho de turbocompressores veiculares com câmara de combustão tubular na microgeração de energiaPinto, Daniel Vieira 19 September 2017 (has links)
Esta dissertação de mestrado apresenta o desenvolvimento de um trabalho que tem como objetivos avaliar a composição de turbocompressores veiculares para microgeração de energia e desenvolver um modelo de câmara de combustão tubular para equipar microturbinas a gás derivadas de turbocompressores. No desenvolvimento do trabalho, utilizando o software Cycle-Tempo, foi feita a avaliação de possíveis configurações de microturbinas a gás derivadas de turbocompressores, no que diz respeito ao número de eixos e dispositivos de aumento de eficiência térmica (intercooler, recuperador de calor e reaquecedor). No total foram simuladas, dez diferentes configurações, sendo que as análises foram feitas diretamente nos parâmetros de eficiência térmica dos conjuntos avaliando-se a relação entre a energia aportada pelo combustível e a energia entregue num gerador elétrico hipotético. Na sequência são definidos os turbocompressores para compor uma determinada configuração de microturbina a gás e, para tanto, utilizaram-se os mapas de desempenho dos turbocompressores de um fabricante. A partir dos parâmetros de operação dos equipamentos foi desenvolvido um modelo tridimensional de câmara de combustão em software de CAD. O modelo passou por cinco etapas de simulações em Dinâmica dos Fluidos Computacional (Computational Fluid Dynamics - CFD). As primeiras três etapas serviram para desenvolver e aprimorar o modelo tridimensional de câmara de combustão e, por limitações do software, não envolveram combustão. Utilizando condições de contorno operacionais, foram avaliados: o perfil de velocidades ao longo da câmara de combustão, a perda de pressão, a intensidade da turbulência, a homogeneização entre os reagentes ar e combustível e a divisão do fluxo mássico em cada seção da câmara de combustão. A partir do modelo tridimensional foi desenvolvido um protótipo da câmara de combustão, construído a partir de tubos comerciais de PVC. O protótipo foi avaliado experimentalmente com escoamento do ar a temperatura ambiente, utilizando o acoplamento em série entre um ventilador centrífugo e um soprador. No experimento foi avaliada a divisão de fluxo mássico de ar em cada seção da câmara de combustão e a perda de pressão. As simulações CFD foram refeitas na quarta etapa, onde as condições de contorno foram os parâmetros de fluxo mássico, pressão e temperatura, obtidos experimentalmente. Com isto, pode ser feita a comparação direta entre os resultados obtidos experimentalmente e os resultados das simulações CFD. Concluindo o trabalho foi realizada a quinta etapa, onde foi inserida uma fonte de calor simulando o aporte de energia da combustão, permitindo a avaliação da temperatura na câmara de combustão. As simulações CFD indicaram resultados semelhantes ao que é previsto em bibliografia, no que diz respeito à divisão do fluxo mássico, perda de pressão e à distribuição de velocidades. Já as avaliações experimentais apresentaram incerteza de medição elevada para a divisão de fluxo mássico. Quanto à perda de pressão o método experimental mostrou-se adequado. / This master's work presents the development of a work that has the objective of evaluating the composition of vehicular turbochargers for microgeneration of energy and to develop a tubular combustion chamber model to equip gas microturbines derived from turbochargers. In the development of the work, using the software Cycle-Tempo, it is made the evaluation of possible configurations of gas micro turbines derived from turbochargers, with respect to the number of axes and devices of increasing thermal efficiency (intercoolers, heat recover e reheater). In total, ten different configurations were simulated, and the analyzes were done directly in the thermal efficiency parameters of the sets, evaluating the relation between the energy contributed by the fuel and the energy delivered in a hypothetical electric generator. Turbochargers are then defined to form a particular gas micro turbine configuration and, being used the turbocharger performance maps from a manufacturer. From the operating parameters of the equipment, a three-dimensional combustion chamber model was developed in CAD software. The model went through five stages of simulations in Computational Fluid Dynamics (CFD). The first three steps served to develop and improve the three-dimensional model of combustion chamber and, due to software limitations, did not involve combustion. Using operational contour conditions, the velocity profile along the combustion chamber, the pressure loss, the turbulence intensity, the homogenization between the air and fuel reactants and the division of the mass flow in each section of the combustion chamber were evaluated. From the three-dimensional model was developed a prototype of the combustion chamber, built from commercial PVC pipes. The prototype was evaluated experimentally with air flow at room temperature using the coupling in series between a centrifugal fan and a blower. In the experiment the air mass flow division in each section of the combustion chamber and the loss of pressure were evaluated. The CFD simulations were redone in the fourth stage, where the boundary conditions were the parameters of mass flow, pressure and temperature, obtained experimentally. Thus, a direct comparison between the results obtained experimentally and the results of CFD simulations can be made. At the end of the work the fifth step was performed, where a heat source was inserted simulating the energy input of the combustion, allowing the temperature evaluation in the combustion chamber. The CFD simulations indicated results similar to those predicted in the literature, regarding the division of mass flow, pressure loss and velocity distribution. However, the experimental evaluations presented high measurement uncertainty for the mass flow division. Regarding pressure loss, the experimental method proved to be adequate.
|
57 |
Acoustical behavior of a turbulent, ducted, premixed, hydrogen- flame burnerHoward, Randall E. January 1985 (has links)
The acoustic source structure, acoustic farfield, and duct terminating impedances fully describe the acoustics of a source within a duct. A main goal in the study of noise generated by turbulent combustion is to characterize the structure of the flame as an acoustic source. Data describing the farfield and duct terminating conditions allow for the testing of combustion noise models.
The acoustic farfield of a premixed flame burner is documented for various power levels and air-to-fuel ratios. The terminating impedance of the burner exhaust is determined by a method using the transfer function between two microphones that communicate with the acoustic field inside the duct. High temperature probes isolate the microphones from extreme temperatures within the duct while only slightly distorting the results. The real part of the terminating impedance agrees with a correlation in the literature for hot flow leaving a duct. / M.S.
|
58 |
Experimental and numerical investigation of laminar flame speeds of H₂/CO/CO₂/N₂ mixturesNatarajan, Jayaprakash 12 March 2008 (has links)
Coal derived synthetic gas (syngas) fuel is a promising solution for today s increasing demand for clean and reliable power. Syngas fuels are primarily mixtures of H2 and CO, often with large amounts of diluents such as N2, CO2, and H2O. The specific composition depends upon the fuel source and gasification technique. This requires gas turbine designers to develop fuel flexible combustors capable of operating with high conversion efficiency while maintaining low emissions for a wide range of syngas fuel mixtures. Design tools often used in combustor development require data on various fundamental gas combustion properties. For example, laminar flame speed is often an input as it has a significant impact upon the size and static stability of the combustor. Moreover it serves as a good validation parameter for leading kinetic models used for detailed combustion simulations.
Thus the primary objective of this thesis is measurement of laminar flame speeds of syngas fuel mixtures at conditions relevant to ground-power gas turbines. To accomplish this goal, two flame speed measurement approaches were developed: a Bunsen flame approach modified to use the reaction zone area in order to reduce the influence of flame curvature on the measured flame speed and a stagnation flame approach employing a rounded bluff body. The modified Bunsen flame approach was validated against stretch-corrected approaches over a range of fuels and test conditions; the agreement is very good (less than 10% difference). Using the two measurement approaches, extensive flame speed information were obtained for lean syngas mixtures at a range of conditions: 1) 5 to 100% H2 in the H2/CO fuel mixture; 2) 300-700 K preheat temperature; 3) 1 to 15 atm pressure, and 4) 0-70% dilution with CO2 or N2.
The second objective of this thesis is to use the flame speed data to validate leading kinetic mechanisms for syngas combustion. Comparisons of the experimental flame speeds to those predicted using detailed numerical simulations of strained and unstrained laminar flames indicate that all the current kinetic mechanisms tend to over predict the increase in flame speed with preheat temperature for medium and high H2 content fuel mixtures. A sensitivity analysis that includes reported uncertainties in rate constants reveals that the errors in the rate constants of the reactions involving HO2 seem to be the most likely cause for the observed higher preheat temperature dependence of the flame speeds. To enhance the accuracy of the current models, a more detailed sensitivity analysis based on temperature dependent reaction rate parameters should be considered as the problem seems to be in the intermediate temperature range (~800-1200 K).
|
59 |
A Multi-step Reaction Model for Stratified-Charge Combustion in Wave RotorsElharis, Tarek M. January 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Testing of a wave-rotor constant-volume combustor (WRCVC) showed the viability of the application of wave rotors as a pressure gain combustor. The aero-thermal design of the WRCVC rig had originally been performed with a time-dependent, one-dimensional model which applies a single-step reaction model for the combustion process of the air-fuel mixture. That numerical model was validated with experimental data with respect of matching the flame propagation speed and the pressure traces inside the passages of the WRCVC. However, the numerical model utilized a single progress variable representing the air-fuel mixture, which assumes that fuel and air are perfectly mixed with a uniform concentration; thus, limiting the validity of the model.
In the present work, a two-step reaction model is implemented in the combustion model with four species variables: fuel, oxidant, intermediate and product. This combustion model is developed for a more detailed representation for the combustion process inside the wave rotor.
A two-step reaction model presented a more realistic representation for the stratified air-fuel mixture charges in the WRCVC; additionally it shows more realistic modeling for the partial combustion process for rich fuel-air mixtures. The combustion model also accounts for flammability limits to exert flame extinction for non-flammable mixtures.
The combustion model applies the eddy-breakup model where the reaction rate is influenced by the turbulence time scale. The experimental data currently available from the initial testing of the WRCVC rig is utilized to calibrate the model to determine the parameters, which are not directly measured and no directly related practice available in the literature.
A prediction of the apparent ignition the location inside the passage is estimated by examination of measurements from the on-rotor instrumentations. The incorporation of circumferential leakage (passage-to-passage), and stand-off ignition models in the numerical model, contributed towards a better match between predictions and experimental data. The thesis also includes a comprehensive discussion of the governing equations used in the numerical model.
The predictions from the two-step reaction model are validated using experimental data from the WRCVC for deflagrative combustion tests. The predictions matched the experimental data well. The predicted pressure traces are compared with the experimentally measured pressures in the passages. The flame propagation along the passage is also evaluated with ion probes data and the predicted reaction zone.
|
60 |
Study of biomass combustion characteristics for the development of a catalytic combustor/gasifierDody, Joseph W. 10 June 2012 (has links)
The research reported here explored, a "new" approach to biomass energy conversion for small-scale process heat-applications. The conversion process uses close-coupled catalytic. combustion to burn combustibles in effluent generated by primary combustion or gasification of biomass fuels. Computer control of primary and secondary air flow rates allow control of the devices output power while maintaining fuel-lean or stoichiometric conditions in the effluent entering the catalytic combustion zone. The intent of the secondary combustion system is to ensure "clean" exhaust (i.e., promote complete combustion). A small-scale combustor/gasifier was built and instrumented.
Characteristics of combustion were studied for three biomass fuels so that primary and secondary air flow control strategies could be devised. A bang-bang type controller was devised for primary air flow control. Secondary air as controlled based on feedback signals from an inexpensive automobile exhaust gas oxygen sensor. The control strategies and catalytic combustion were implemented on prototype combustor/gasifier and the device was tested with good results.
Power turn down ratios of 4 to 1 and 3 to 1 were achieved. The zitconia-type automobile exhaust gas oxygen sensors adapted well to the combustion environment of biomass fuel, at least for short periods (long term durability tests were not conducted). The secondary air control system was able to maintain fuel-lean flows for the most part and, the secondary combustion system provided reductions of approximately three fourths in carbon monoxide emissions. / Master of Science
|
Page generated in 0.0833 seconds