• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 3
  • Tagged with
  • 33
  • 21
  • 18
  • 18
  • 15
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

[en] DYNAMIC DECISION MODEL TO FOSTER RENEWABLE SOURCES IN BRAZIL / [pt] MODELO DECISÓRIO DINÂMICO PARA INCENTIVAR AS FONTES RENOVÁVEIS NO BRASIL

ADERSON CAMPOS PASSOS 01 April 2016 (has links)
[pt] Este trabalho apresenta um framework de investimento dinâmico para carteiras de energia, baseados em opções reais, que visa maximizar o valor, corrigido pelo risco, do investimento conjunto em projetos de geração de energia com fontes renováveis. Diferente de outros modelos semelhantes, várias classes de incerteza são levadas em consideração simultaneamente e os valores de projeto são calculados por um modelo de otimização híbrido robusto e estocástico. O framework de investimento é adequado para qualquer mercado que permita a negociação bilateral, conforme feita no Ambiente de Contratação Livre, e é construído na visão da empresa de geração, ou comercializadora de energia, que pretende investir em uma carteira de geração. Utilizando este framework é possível definir o quanto investir em cada fonte renovável, quanto vender da carteira de energia e o melhor momento para investir. Além disso, com essa modelagem é calculado o prêmio do investimento simultâneo em fontes renováveis complementares. Ele estende os modelos de decisão estáticos, já abordados na literatura, para um contexto dinâmico, ou seja, considerando a decisão ótima de investimento no tempo. Isso é feito utilizando a abordagem numérica desenvolvida por Bastian-Pinto [9], para descrever cenários de variáveis estocásticas que se comportam como um processo de reversão à média (típico dos preços de energia). Ao final são mostrados estudos de caso realistas que demonstram o valor do framework. Este modelo aprimora as decisões da indústria de energia, contribui para aumentar a competitividade das fontes renováveis e reduz a necessidade de subsídios para o investimento. Com isso, impulsiona a penetração das fontes renováveis no mercado brasileiro de energia elétrica. / [en] This dissertation presents a dynamic framework for renewable energy portfolios, based on real options, that maximize the risk-averse investment value. Differently from similar models, several classes of uncertainty are taken into account simultaneously and the project values are calculated by means of a hybrid robust and stochastic optimization model. The investment framework is suitable for any market that allows bilateral trading (as in the Brazilian free contracting environment) and is designed for a generation company or energy trading company, that intends to invest in a renewablesource portfolio. Using this framework it is possible to define how much to buy or build from each renewable source, how much to sell from the energy portfolio, and the best moment to invest. Additionally, the premium for investing simultaneously in several complementary renewable sources is also determined. The section responsible for supporting the dynamic investment timing decision uses the binomial lattice proposed by Bastian-Pinto et al [9], to describe mean reverting processes. This framework improves industry practices, contributes to increase renewables competitiveness and proposes an arragement that reduces the need for subsidies. As a consequence, this model contributes to foster the penetration of renewable sources in Brazilian electricity market.
32

[en] ON THE COMPARISON OF COMPUTATIONALLY EFFICIENT QUOTA-SHARING METHODOLOGIES FOR LARGE-SCALE RENEWABLE GENERATION PORTFOLIOS / [pt] COMPARAÇÃO DE METODOLOGIAS COMPUTACIONALMENTE EFICIENTES PARA RATEIO DE QUOTAS DE PORTFOLIOS DE GERAÇÃO DE ENERGIA RENOVÁVEL DE LARGA ESCALA

LUCAS FREIRE 17 July 2017 (has links)
[pt] Portfólios de fontes renováveis de energia elétrica são mecanismos de gerenciamento de risco interessantes para comercialização de energia em mercados de negociação bilateral. Quando formados por agentes que pertencem a diferentes companhias sua estabilidade depende da maneira com que os benefícios de mitigação de risco gerados pelo portfólio são alocados individualmente entre os participantes. O problema de se encontrar uma solução estável pode ser matematicamente formulado através da busca de um vetor de alocação de quotas que pertença ao núcleo do jogo cooperativo, que por sua vez pode ser formulado como um conjunto de restrições lineares que aumenta exponencialmente com o número de participantes. Adicionalmente, o lado direito de cada restrição que define o núcleo do jogo cooperativo define o valor de uma determinada coalisão que, no presente trabalho, é obtido através de um modelo de otimização estocástica de dois estágios. Este trabalho compara diferentes metodologias computacionalmente eficientes baseadas em programação linear inteira mista e na técnica de decomposição de Benders para encontrar vetores de alocação de quotas que pertençam ao núcleo de portfólios de larga escala de geradores de energia renovável. São apresentados estudos de casos que utilizam dados reais do sistema elétrico brasileiro. / [en] Portfolios of renewable electricity sources are interesting risk-management mechanisms for trading in electricity contract markets. When they are formed by players belonging to different companies, their stability relies on the way the riskmitigation benefit generated by the optimal portfolio is allocated through individual participants. The problem of reaching a stable allocation can be mathematically formulated in terms of finding a quota-sharing vector belonging to the Core of a cooperative game, which can be formulated as a set of linear constraints that exponentially grows with the number of participants. Moreover, the right-hand-side of each constraint defining the Core relies on a given coalition value which, in the present work, is obtained by a two-stage stochastic optimization model. This work presents and compares efficient methodologies mainly based on mixed integer linear programming and Benders decomposition to find quota allocation vectors that belongs to the Core of large-scale renewable energy portfolios. Case studies are presented with realistic data from the Brazilian power system.
33

[en] COMMERCIAL OPTIMIZATION OF A WIND FARM IN BRAZIL USING MONTE CARLO SIMULATION WITH EXOGENOUS CLIMATIC VARIABLES AND A NEW PREFERENCE FUNCTION / [pt] OTIMIZAÇÃO COMERCIAL DE UM PARQUE EÓLICO NO BRASIL UTILIZANDO SIMULAÇÃO DE MONTE CARLO COM VARIÁVEIS CLIMÁTICAS EXÓGENAS E UMA NOVA FUNÇÃO DE PREFERÊNCIA

CRISTINA PIMENTA DE MELLO SPINETI LUZ 03 November 2016 (has links)
[pt] Nos últimos anos, observa-se crescente penetração da energia eólica na matriz energética mundial e brasileira. Em 2015, ela já representava (seis por cento) da capacidade total de geração de energia do país, colocando-o na (décima) posição entre os países com capacidade eólica instalada. A crescente penetração dessa fonte de energia e suas características de intermitência e forte sazonalidade, passaram a demandar modelos de otimização capazes de auxiliar tanto a gestão dos sistemas elétricos com geração intermitente de energia eólica, quanto a comercialização dessa energia. Avançaram, assim, os estudos de previsões de médias a cada (dez) minutos, horárias e diárias de geração eólica, para atender a sua inserção na programação dos sistemas elétricos e a sua comercialização em mercados diários e horários. Contudo, poucos estudos deram atenção à previsão e simulação de médias mensais de geração eólica, imprescindíveis para gestão e otimização da comercialização dessa energia no Brasil, visto que esta ocorre essencialmente em base mensal. Neste contexto, insere-se esta tese, que busca avaliar a otimização comercial de um parque eólico no mercado livre de energia brasileiro, considerando diferentes modelos de simulação da incerteza de geração eólica e níveis de aversão ao risco do gestor. Para representar diferentes níveis de aversão ao risco do gestor, desenvolveu-se uma nova função de preferência, capaz de modelar a variação do nível de aversão ao risco de um mesmo gestor, para diferentes faixas de preferência, definidas a partir de percentis αs de VaRα. A função de preferência desenvolvida é uma ponderação entre o valor esperado e níveis de CVaR dos resultados. De certo modo, ela altera as probabilidades dos resultados, de acordo as preferências do gestor, similar ao efeito dos pesos de decisão na Teoria do Prospecto. Para simulação da geração eólica são adotados modelos autorregressivos com sazonalidade representada por dummies mensais (ARX-11) e periódicos (PAR). Considera-se, ainda, a inclusão de variáveis climáticas exógenas no modelo ARX-11, com ganho de capacidade preditiva. Observou-se que, para um gestor neutro ao risco, as diferentes simulações de geração eólica não alteraram a decisão ótima. O mesmo não é válido para um gestor avesso ao risco, especialmente ao ser considerado o modelo de simulação com variáveis climáticas exógenas. Portanto, é importante a definição de um único modelo de simulação a ser considerado pelo gestor avesso ao risco ou, a adoção de alguma técnica multicritério para ponderação de diferentes modelos. O perfil de risco também altera as decisões ótimas do gestor, observando-se redução do desvio-padrão e da média da distribuição dos resultados e, aumento dos CVaRs e prêmio de risco, à medida que aumenta a aversão ao risco. Assim, é importante a especificação de uma única função de preferência, que represente adequadamente o perfil de risco do gestor ou da empresa, para otimização da comercialização. A flexibilidade da função de preferência desenvolvida, ao permitir a definição de diferentes níveis de aversão ao risco do gestor, para diferentes faixas de preferência, contribui para essa especificação. / [en] In recent years, we have seen an increased penetration of wind power in the Brazilian energy matrix and also worldwide. In 2015, wind power already accounted for (six percent) of the Brazilian total power capacity and the country was the (tenth) in the world raking of wind power installed capacity. Due to the growing penetration of the source, its intermittency and strong seasonality, optimization models able to deal with the management of wind power, both in electrical systems operation and in trading environment, are necessary. Thus, we see the growth in the number of studies concerned about wind power forecasts for every (10) minutes, hours and days, meeting the electrical systems and international trading schedules. However, few studies have given attention to the forecasting and simulation of wind power monthly averages, which are essential for the management and optimization of energy trading in Brazil, since its occurs essentially on a monthly basis. In this context, we introduce this thesis, which seeks to assess the commercial optimization of a wind farm in the Brazilian energy free market, considering different simulation models for the wind power production uncertainty and different levels of manager s risk aversion. In order to represent the manager s different levels of risk aversion, we developed a new preference function, which is able to model the variation of risk aversion level of the same manager, for different preference groups. These groups are defined by α s percentiles of VaRα. The developed preference function is a weighted average between expected value of results and CVaR levels. In a way, it changes the odds of the results, according to the manager s preference, similar to the effect of the decision weights on Prospect Theory. We adopted autoregressive models to simulate wind power generation, with seasonality represented by monthly dummies (ARX -11) or periodic model (PAR). Furthermore, we consider the inclusion of climate exogenous variables in the ARX-11 model and obtain predictive gain. We observed that for a risk neutral manager, different simulations of wind power production do not change the optimal decision. However, this does not apply for risk averse managers, especially when we consider the simulation model with climate exogenous variables. Therefore, it is important that the risk averse manager establishes a single simulation model to consider or adopts some multi-criteria technique for weighting different models. The risk profile also changes the manager optimal decision. We observed that increasing risk aversion, the standard deviation and mean of the results distribution decrease, while risk premium and CVaRs increase. Therefore, to proceed the optimization, it is important to specify a single preference function, which represents adequately the manager or company risk profile. The flexibility of the developed preference function, allowing the definition of different manager s risk aversion levels for different preference groups, contributes to this specification.

Page generated in 0.0646 seconds