Spelling suggestions: "subject:"common belief"" "subject:"common unbelief""
1 |
不完全資訊下對局的探討張光華, Chang,K.H. Unknown Date (has links)
對局理論的發展中,以往都著重於合作對局的探討與應用,且有相當的成
就與理論根據,但實際的現實生活中,合作對局並無法與之配合。譬如商
業上,經濟上的競爭,乃至於政治上,參與對局的任何一方,皆不願意把
其資訊,商情,完全的公開,此時,參與者彼此之間的資訊及對整個對局
的了解所產生的信念就對對局均衡解有極重大的影響。最初的對局乃假設
對局的結構(如償付、參與者)是完全資訊。爾後 Harsanyi將其引入自
然(nature)此一參與者及型式(type)和信念(belief)使得償付無法成為彼
此的共識(common knowledge),但在不完全資訊下的對局仍可使用完全資
訊對局的方法概念,幫助我們如何求得不完全資訊對局之均衡解。因此本
文乃將先回顧完全資訊下的對局求解方法,然後探討如何引入資訊概念,
並求得不完全資訊對局之均衡解以及如何精簡(refi- nement)其解,和其
解是否存在。而不完全資訊對局先介紹型式、信念及均衡解的概念,並特
別對共識、近似共識(almost common knowledge)加以探討。本文分為七
章,第一章為前言,第二章為古典對局其主要分為正規型式對局(normal-
form games)及擴展型式對局(extensive-form games),及回顧Nash均衡
解之定義,並討論數種均衡解之求法,並証明混合策略 Nash均衡存在定
理,其主要參考資料為參考文獻[10][12][23]。第三章為不完全資訊下的
靜態對局,其主要乃說明貝氏均衡的概念並以此詮釋完全資訊下混合策略
Nash均衡的涵義。第四章為不完全資訊下的動態對局,其著重於敘述完全
貝氏均衡(Perfect Baysian Equilibrium),及一般對局精簡之概念即逐
次均衡(Sequential Equilibrium)、完全均衡(Perfect Equilibrium
or Trembling-Hand Perfect Equilibrium)和Proper Equilibrium。第
五章討論第四章的重要特例即不完全資訊下的動態對局─訊息對局,並應
用到1973年Spence工會─廠商訊息對局(Job-market signaling game)。
第六章討論共識的意義及性質,並應用在電子郵件系統,其主要參考資料
為參考文獻為[3],[24]。第七章介紹一種近似共識及及共有$p-$信念(
common $p-$belief)的概念可幫助我們解決第六章遭遇的問題,其主要參
考資料為參考文獻[20]。最後第八章乃結論。
|
Page generated in 0.0413 seconds