• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 97
  • 49
  • 10
  • 10
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 238
  • 238
  • 49
  • 45
  • 42
  • 34
  • 33
  • 33
  • 31
  • 29
  • 20
  • 20
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The annual assemblage variation of commercial prawns near the coastal waters of Yunlin

Jang, Ing-yang 19 August 2009 (has links)
The variation of the composition of assemblages and the relative abundance of commercial prawns collected from the coastal waters of Yunlin was studied. The data of shrimp fishery was collected from Jan 1997 to Dec 2008 through the program of Integrated Assessment and Management of Environmental Resources for the Industrial District on the Outer-Bank of Yunlin Islands. The dominant species landed in this area are Parapenaeopsis hardwickii, Metapenaeus ensis, and Penaeus penicillatus. Their peak catch seasons are November to May, March to August, and July to March, respectively. The composition of the assemblages of commercial shrimps belonged to three groups according to the seasons: winter (December to February), spring to summer (March to July), and late summer to autumn (August to November). According to time series analysis, the relative abundance is auto-regressed to that of the previous month and the same month one year age. In addition, Jhuo-Shuei river runoff ware correlated to a significant decrease of the shrimp abundance five months later. Based on this information, we obtained a seasonal and factored ARIMA time series equation of the relative abundance of commercial shrimps.
62

Coral reef assessment: An index utilizing sediment constituents

Daniels, Camille A 01 June 2005 (has links)
Resource managers need inexpensive bioindicators to evaluate the health of coral reef ecosystems and to inform decisions on when and where to utilize more expensive assessment techniques. Following USEPA Guidelines for Evaluating Ecological Indicators, I developed the SEDCON Index (SI), a rapid-assessment protocol whichutilizes reef sediment composition to assess the integrity of coral-reef communities. Keyadvantages of this index are that it entails non-destructive sampling and is applicable to reefs worldwide. The underlying assumption of the index is that community structure is reflected by proportions of recognizable remnants of calcareous shells and skeletal remains of mixotrophic (zooxanthellate corals and larger foraminifers), autotrophic (calcareous and coralline algae), and heterotrophic (e.g., bryozoans, molluscs, smaller foraminifers) benthic organisms, as well as unrecognizable debris as a proxy for bioerosion.
63

Microbial Population Analysis in Leachate From Simulated Solid Waste Bioreactors and Evaluation of Genetic Relationships and Prevalence of Vancomycin Resistance Among Environmental Enterococci

Nayak, Bina S. 01 January 2009 (has links)
Degradation of the several million tons of solid waste produced in the U.S. annually is microbially mediated, yet little is known about the structure of prokaryotic communities actively involved in the waste degradation process. In the first study, leachates generated during degradation of municipal solid waste (MSW) in the presence (co-disposal) or absence of biosolids were analyzed using laboratory-scale bioreactors over an eight-month period. Archaeal and bacterial community structures were investigated by denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes. Regardless of waste composition, microbial communities in bioreactor leachates exhibited high diversity and temporal trends. Methanogen sequences from a co-disposal bioreactor were predominantly affiliated with the orders Methanosarcinales and Methanomicrobiales. Effect of moisture content on indicator organism (IO) survival during waste degradation was studied using culture-based methods. Fecal coliform and Enterococcus concentrations in leachate decreased below detection limits within fifty days of bioreactor operation during the hydrated phase. IOs could be recovered from the bioreactor leachate even after a prolonged dry period. This study advances the basic understanding of changes in the microbial community during solid waste decomposition. The purpose of the second study was to compare the ability of BOX-PCR to determine genetic relatedness with that of the "gold standard" method, 16S rRNA gene sequencing. BOX-PCR typing could clearly differentiate the strains within different Enterococcus species but closely related genera were not as distinguishable. In contrast, 16S rRNA gene sequencing clearly differentiates between closely related genera but cannot distinguish between different strains of Enterococcus species. This study adds to our knowledge of genetic relationships of enterococci portrayed by two separate molecular methods. The incidence of vancomycin resistant enterococci (VRE) in environmental matrices, residential and hospital wastewater was also investigated. Low-level VRE ( vanC genotype) were isolated from environmental matrices and residential wastewater. VRE isolates from hospital wastewater were identified as E. faecium and demonstrated resistance to ampicillin, ciprofloxacin and vancomycin (vanA genotype), but sensitivity to chloramphenicol and rifampin. Although no high-level VRE were isolated from surface waters, the high proportion of low-level VRE in environmental matrices is a cause for concern from the public health perspective.
64

The assessment of soil microbial and plant physiological changes during the treatment of soil containing bromacil, tebuthiuron and ethidimuron / M. de Beer

De Beer, Misha January 2005 (has links)
Increased amounts of pesticide production and application of pesticides for agriculture, plant protection and animal health has resulted in soil, water and air pollution, consequently relating a serious risk to the environment and also to human health. Pesticides include several groups of compounds, herbicides, insecticides, rodenticides and fumigants consisting of several hundred individual chemicals. Herbicides are an integral pan of modem agriculture and for industries requiring total vegetation control. Most herbicides are soil applied and more and more concern is raised that herbicides not only affect target organisms but also the microbial community present in soil. The ESKOM sub-station Zeus, in Mpumalanga (South Africa) used to apply an industrial weed control program for the eradication of vegetation, which led to the contamination of soil by several herbicides. These herbicides consisted of Bromacil, Tebuthiuron and Ethidimuron which are all photosynthesis inhibitors, more specifically, they disrupt the plastoquinone protein during electron transport at photosystem I1 (PSII). In this study the effect of biostimulation and bio-augmentation of a specific bioremediation agent (B350) as prescribed by ESKOM, on residual herbicides, Bromacil, Tebuthiuron and Ethidimuron was evaluated by monitoring the soil physical and chemical properties, microbial attributes, including potential microbial activity and community structure, as well as the physiological effect experienced by plants (Cynodoh dactylon and Zea mays). Results from soil physical and chemical analyses were correlated with results obtained for the functional and structural diversity of microbial communities. All results were investigated through statistical and multivariate analysis and the most prominent soil physical and chemical parameters that influence the biological and biochemical properties of the soil were identified. Results obtained from this study indicated that there were no significant difference (p < 0.05) between the treatments, with bioremediation agent, irradiated agent and without the agent based on results obtained from soil microbial properties and plant physiology. Before the trial started the uncontaminated soil showed an active microbial function, characterised by dehydrogenase, urease and arylsulphatase activity, but community structure was not very diverse. The contaminated soil, irradiated contaminated soil and silica sand showed less enzymatic function and was characterised by phospholipid fatty acid groups, mid-branched saturated fatty acids, terminally branched saturated fatty acids, normal saturated fatty acids and monosaturated fatty acids which are indicative of microorganisms that survive better in harsh environments. Three weeks after the addition of the specific bioremediation took place, the uncontaminated soil showed an increase in P-glucosidase activity and percentage organic carbon (%C), which could be a result of the presence of available plant material. Furthermore, an increase in major PLFA groups were seen, suggesting that an increase in diversity within the soil community occurred. The contaminated soil, irradiated contaminated soil and silica sand once again was characterised by a low microbial function and diversity, showing no improvement. Fluorescence data clearly show a decline in PS 11 function that result in the decline of the rate of photosynthesis, which was seen from COz gas exchange rates. Furthermore, the decrease in photosynthetic activity after three weeks was too severe to supply additional information about the mechanism within photosynthesis or the photoprotective mechanisms. A detailed study was conducted in which a 3: 1 dilution of contaminated soil with silica sand, was also monitored for changes within plant physiology. Results revealed that inhibition of PS I1 function already takes place within a few days time and the decline in photosynthesis is as a result of electron transport that does not supply adenosine triphosphate (ATP) and P-nicotinamide adenine dinucleotide (NADPH) to the Calvin cycle (or Reductive Pentose Phosphate pathway). It does not appear that rubulose-1,sbisphosphate carboxylase-oxygenase (Rubisco) is affected within the Calvin cycle. As a result of PS I1 function failure, reaction centres are damaged by the production of harmful singlet oxygen and photoprotective mechanisms (xanthophyll cycle) can not be activated. Thus, except for dealing with ineffective electron transport, additional damage is caused to physiological functions. After six weeks a decrease in the estimated viable biomass for all growth mediums was found. Results of the of trans- to cis- monoenoic fatty acids and cyclopropyl fatty acids to their monoenoic precursors ratios indicated that the soil microbial community for the contaminated growth mediums, all experienced nutritional stress throughout this trail. The specific bioremediation agent (B350) used, seemed to have no effect on the microbial function and community structure within soil and as agent had no effect on the residual herbicides or the plant physiology which experienced an extreme decline in major metabolic functions. / Thesis (M. Environmental Science)--North-West University, Potchefstroom Campus, 2
65

Soil microbial community function and structure as assessment criteria for the rehabilitation of coal discard sites in South Africa / Sarina Claassens

Claassens, Sarina January 2003 (has links)
Mining activities cause severe disturbance to the soil environment in terms of soil quality and productivity and are of serious concern worldwide. Under South African legislation, developers are required to ecologically rehabilitate damaged environments. The application of agronomic approaches for the rehabilitation of coal discard sites has failed dismally in the arid areas of southern Africa. It is obvious that compliance with mitigation and rehabilitation requirements cannot be enforced without a thorough understanding of the ecological principles that ensure ecological stability and subsequent sustainability of soil ecosystems. Soil micro organisms are crucial role-players in the processes that make energy and nutrients available for recycling in the soil ecosystem. Poor management practices and other negative impacts on soil ecosystems affect both the physical and chemical properties of soil, as well as the functional and structural properties of soil microbial communities. Disturbances of soil ecosystems that impact on the normal functioning of microbial communities are potentially detrimental to soil formation, energy transfers, nutrient cycling, plant reestablishment and long-term stability. In this regard, an extensive overview of soil properties and processes indicated that the use of microbiological and biochemical soil properties, such as microbial biomass, enzymatic activity and the analysis of microbial community structure by the quantification of specific signature lipid biomarkers are useful as indicators of soil ecological stress or restoration properties because they are more responsive to small changes than physical and chemical characteristics. In this study, the relationship between the physical and chemical characteristics and different biological indicators of soil quality in the topsoil covers of seven coal discard sites under rehabilitation in South Africa, as well as three reference sites was investigated. Through the assimilation of basic quantitative data and the assessment of certain physical, chemical and biological properties of the topsoil covers obtained from the various coal discard sites as well as the reference sites, the relative success or progress of rehabilitation and the possible correlation between the biological indicators of soil quality and the establishment of self sustaining vegetation covers was determined. Results from soil physical and chemical analyses and percentage vegetation cover were correlated with the results obtained for the functional and structural diversity of microbial communities at the various sites. All results were investigated through statistical and multivariate analysis and the most prominent physical and chemical parameters that influence the biological and biochemical properties of the soil and possibly the establishment of self-sustainable vegetation cover on these mine-tailing sites were identified. Results obtained from this study indicated no significant difference (p>0.05) between the various discard sites based on conventional microbiological enumeration techniques. However, significant differences (p<0.05) could be observed between the three reference sites. All enzymatic activities assayed for the rehabilitation sites, with the exception of urease and alkaline phosphatase displayed a strong, positive association with the organic carbon content (%C). Ammonium concentration had a weak association with all the enzymes studied and pH only showed a negative association with acid phosphatase activity. A positive association was observed between the viable microbial biomass, vegetation cover and the organic carbon content, ammonium, nitrate and phosphorus concentrations of the soil. The various rehabilitation and reference sites could be differentiated based on the microbial community structure as determined by phospholipid fatty acid (PLFA) analysis. It is hypothesised that the microbial community structure of the Hendrina site is not sustainable when classified along an r-K gradient and that the high percentage of vegetation cover and high levels of estimated viable microbial biomass are an artificial reflection of the current management practices being employed at this site. Results obtained during this study, suggest that an absence or low percentage of vegetation cover and associated lower organic matter content of the soil have a significant negative impact on soil biochemical properties (enzymatic activity) as well as microbial population size. Furthermore, prevailing environmental physico-chemical and management characteristics significantly influences the vegetation cover and subsequently the microbial community structure. The results indicate that the microbial ecosystems in the coal discard sites could become more stable and ecologically self-regulating, provided effective management to enhance the organic carbon content of the soil. This could enhance nutrient cycling, resulting in changes of soil structure and eventually an improved soil quality which could facilitate the establishment of self sustaining vegetation cover. Results obtained during this study suggest that a polyphasic assessment of physical and chemical properties; microbial activities by enzymatic analysis; the characterisation of microbial community structure by analysis of phospholipid fatty acids; and the multifactorial analysis of the data obtained can be used as complementary assessment criteria for the evaluation of the trend of rehabilitation of mine tailings and discard sites. Strategic management criteria are recommended based on the soil quality environmental sustainability indices to facilitate the establishment of self sustainable vegetation covers. The contribution of this research to soil ecology is significant with regards to the intensive investigation and explanation of characteristics and processes that drive ecological rehabilitation and determine the quality of the soil environment. The multidisciplinary approach that is proposed could, furthermore, assist in the successful rehabilitation and establishment of self-sustaining vegetation covers at industrially disturbed areas, as well as assist in improving degraded soil quality associated with both intensive and informal agriculture. Additionally, this approach could negate the negative social and environmental impacts frequently associated with these activities. / Thesis (M. Environmental Science)--North-West University, Potchefstroom Campus, 2004.
66

The structuring of aquatic macroinvertebrate communities within cave streams

Watson, Troy Norton January 2010 (has links)
The unusual environmental conditions within caves provided unique opportunities for developing an understanding of ecosystem processes. However, relatively few studies have been conducted on the ecology of New Zealand cave systems. The primary aim of this research was to investigate changes in aquatic invertebrate communities along a longitudinal gradient from the surface into caves and investigate the fundamental drivers of cave communities. This study was carried out in three streams (two in pasture catchments and one in a forested catchment) flowing into caves in the Waitomo region, North Island, New Zealand. In order to address these aims I carried out a longitudinal survey of 12 sites in each stream, an experimental manipulation of food, and an isotopic study of a single stream. The longitudinal survey of the three cave streams revealed light intensity as well as algal and CPOM biomass all decreased significantly from outside the caves into caves. In contrast, water temperature, dissolved oxygen, stream width, depth, and velocity did not vary significantly with distance into caves. Benthic aquatic macroinvertebrate communities within the caves were a depauperate subset of surface communities, appearing to be structured by gradients in resources and colonisation through drift. However, some invertebrate taxa (primarily predators) were rarely found within caves, further suggesting that resource gradients were structuring cave communities. Surprisingly, the densities of some collector-browsers (primarily mayflies) increased within cave streams relative to surface densities. This may be due to a decrease in competition and predation, flexible feeding strategies, and high drift propensity. However, the benthic densities of most taxa within the caves appeared to be related to drift densities. Although surface forest and pastoral stream communities differed in community composition and density 32 meters within the caves invertebrate community diversity and density became similar, although specific taxa within communities varied. This convergence was attributed to similar environmental gradients within the caves. The resource addition experiment (adding leaf packs) indicated that cave streams were resource limited; the addition of leaves produced communities of similar richness and density across the environmental gradient. The isotopic survey suggested cave stream invertebrate communities were reliant upon similar basal resources to surface streams. However, within the cave epilithon appeared to be increasingly important while filamentous algae were absent. Cave aquatic invertebrates were also found to support terrestrial predators (spiders, harvestmen, and glow-worms), presumably increasing the abundance and diversity of terrestrial cave communities. In conclusion, aquatic cave communities were reliant upon surface derived resources and consequently strongly linked to surface land-use and managerial practices.
67

The assessment of soil microbial and plant physiological changes during the treatment of soil containing bromacil, tebuthiuron and ethidimuron / M. de Beer

De Beer, Misha January 2005 (has links)
Increased amounts of pesticide production and application of pesticides for agriculture, plant protection and animal health has resulted in soil, water and air pollution, consequently relating a serious risk to the environment and also to human health. Pesticides include several groups of compounds, herbicides, insecticides, rodenticides and fumigants consisting of several hundred individual chemicals. Herbicides are an integral pan of modem agriculture and for industries requiring total vegetation control. Most herbicides are soil applied and more and more concern is raised that herbicides not only affect target organisms but also the microbial community present in soil. The ESKOM sub-station Zeus, in Mpumalanga (South Africa) used to apply an industrial weed control program for the eradication of vegetation, which led to the contamination of soil by several herbicides. These herbicides consisted of Bromacil, Tebuthiuron and Ethidimuron which are all photosynthesis inhibitors, more specifically, they disrupt the plastoquinone protein during electron transport at photosystem I1 (PSII). In this study the effect of biostimulation and bio-augmentation of a specific bioremediation agent (B350) as prescribed by ESKOM, on residual herbicides, Bromacil, Tebuthiuron and Ethidimuron was evaluated by monitoring the soil physical and chemical properties, microbial attributes, including potential microbial activity and community structure, as well as the physiological effect experienced by plants (Cynodoh dactylon and Zea mays). Results from soil physical and chemical analyses were correlated with results obtained for the functional and structural diversity of microbial communities. All results were investigated through statistical and multivariate analysis and the most prominent soil physical and chemical parameters that influence the biological and biochemical properties of the soil were identified. Results obtained from this study indicated that there were no significant difference (p < 0.05) between the treatments, with bioremediation agent, irradiated agent and without the agent based on results obtained from soil microbial properties and plant physiology. Before the trial started the uncontaminated soil showed an active microbial function, characterised by dehydrogenase, urease and arylsulphatase activity, but community structure was not very diverse. The contaminated soil, irradiated contaminated soil and silica sand showed less enzymatic function and was characterised by phospholipid fatty acid groups, mid-branched saturated fatty acids, terminally branched saturated fatty acids, normal saturated fatty acids and monosaturated fatty acids which are indicative of microorganisms that survive better in harsh environments. Three weeks after the addition of the specific bioremediation took place, the uncontaminated soil showed an increase in P-glucosidase activity and percentage organic carbon (%C), which could be a result of the presence of available plant material. Furthermore, an increase in major PLFA groups were seen, suggesting that an increase in diversity within the soil community occurred. The contaminated soil, irradiated contaminated soil and silica sand once again was characterised by a low microbial function and diversity, showing no improvement. Fluorescence data clearly show a decline in PS 11 function that result in the decline of the rate of photosynthesis, which was seen from COz gas exchange rates. Furthermore, the decrease in photosynthetic activity after three weeks was too severe to supply additional information about the mechanism within photosynthesis or the photoprotective mechanisms. A detailed study was conducted in which a 3: 1 dilution of contaminated soil with silica sand, was also monitored for changes within plant physiology. Results revealed that inhibition of PS I1 function already takes place within a few days time and the decline in photosynthesis is as a result of electron transport that does not supply adenosine triphosphate (ATP) and P-nicotinamide adenine dinucleotide (NADPH) to the Calvin cycle (or Reductive Pentose Phosphate pathway). It does not appear that rubulose-1,sbisphosphate carboxylase-oxygenase (Rubisco) is affected within the Calvin cycle. As a result of PS I1 function failure, reaction centres are damaged by the production of harmful singlet oxygen and photoprotective mechanisms (xanthophyll cycle) can not be activated. Thus, except for dealing with ineffective electron transport, additional damage is caused to physiological functions. After six weeks a decrease in the estimated viable biomass for all growth mediums was found. Results of the of trans- to cis- monoenoic fatty acids and cyclopropyl fatty acids to their monoenoic precursors ratios indicated that the soil microbial community for the contaminated growth mediums, all experienced nutritional stress throughout this trail. The specific bioremediation agent (B350) used, seemed to have no effect on the microbial function and community structure within soil and as agent had no effect on the residual herbicides or the plant physiology which experienced an extreme decline in major metabolic functions. / Thesis (M. Environmental Science)--North-West University, Potchefstroom Campus, 2
68

Soil microbial community function and structure as assessment criteria for the rehabilitation of coal discard sites in South Africa / Sarina Claassens

Claassens, Sarina January 2003 (has links)
Mining activities cause severe disturbance to the soil environment in terms of soil quality and productivity and are of serious concern worldwide. Under South African legislation, developers are required to ecologically rehabilitate damaged environments. The application of agronomic approaches for the rehabilitation of coal discard sites has failed dismally in the arid areas of southern Africa. It is obvious that compliance with mitigation and rehabilitation requirements cannot be enforced without a thorough understanding of the ecological principles that ensure ecological stability and subsequent sustainability of soil ecosystems. Soil micro organisms are crucial role-players in the processes that make energy and nutrients available for recycling in the soil ecosystem. Poor management practices and other negative impacts on soil ecosystems affect both the physical and chemical properties of soil, as well as the functional and structural properties of soil microbial communities. Disturbances of soil ecosystems that impact on the normal functioning of microbial communities are potentially detrimental to soil formation, energy transfers, nutrient cycling, plant reestablishment and long-term stability. In this regard, an extensive overview of soil properties and processes indicated that the use of microbiological and biochemical soil properties, such as microbial biomass, enzymatic activity and the analysis of microbial community structure by the quantification of specific signature lipid biomarkers are useful as indicators of soil ecological stress or restoration properties because they are more responsive to small changes than physical and chemical characteristics. In this study, the relationship between the physical and chemical characteristics and different biological indicators of soil quality in the topsoil covers of seven coal discard sites under rehabilitation in South Africa, as well as three reference sites was investigated. Through the assimilation of basic quantitative data and the assessment of certain physical, chemical and biological properties of the topsoil covers obtained from the various coal discard sites as well as the reference sites, the relative success or progress of rehabilitation and the possible correlation between the biological indicators of soil quality and the establishment of self sustaining vegetation covers was determined. Results from soil physical and chemical analyses and percentage vegetation cover were correlated with the results obtained for the functional and structural diversity of microbial communities at the various sites. All results were investigated through statistical and multivariate analysis and the most prominent physical and chemical parameters that influence the biological and biochemical properties of the soil and possibly the establishment of self-sustainable vegetation cover on these mine-tailing sites were identified. Results obtained from this study indicated no significant difference (p>0.05) between the various discard sites based on conventional microbiological enumeration techniques. However, significant differences (p<0.05) could be observed between the three reference sites. All enzymatic activities assayed for the rehabilitation sites, with the exception of urease and alkaline phosphatase displayed a strong, positive association with the organic carbon content (%C). Ammonium concentration had a weak association with all the enzymes studied and pH only showed a negative association with acid phosphatase activity. A positive association was observed between the viable microbial biomass, vegetation cover and the organic carbon content, ammonium, nitrate and phosphorus concentrations of the soil. The various rehabilitation and reference sites could be differentiated based on the microbial community structure as determined by phospholipid fatty acid (PLFA) analysis. It is hypothesised that the microbial community structure of the Hendrina site is not sustainable when classified along an r-K gradient and that the high percentage of vegetation cover and high levels of estimated viable microbial biomass are an artificial reflection of the current management practices being employed at this site. Results obtained during this study, suggest that an absence or low percentage of vegetation cover and associated lower organic matter content of the soil have a significant negative impact on soil biochemical properties (enzymatic activity) as well as microbial population size. Furthermore, prevailing environmental physico-chemical and management characteristics significantly influences the vegetation cover and subsequently the microbial community structure. The results indicate that the microbial ecosystems in the coal discard sites could become more stable and ecologically self-regulating, provided effective management to enhance the organic carbon content of the soil. This could enhance nutrient cycling, resulting in changes of soil structure and eventually an improved soil quality which could facilitate the establishment of self sustaining vegetation cover. Results obtained during this study suggest that a polyphasic assessment of physical and chemical properties; microbial activities by enzymatic analysis; the characterisation of microbial community structure by analysis of phospholipid fatty acids; and the multifactorial analysis of the data obtained can be used as complementary assessment criteria for the evaluation of the trend of rehabilitation of mine tailings and discard sites. Strategic management criteria are recommended based on the soil quality environmental sustainability indices to facilitate the establishment of self sustainable vegetation covers. The contribution of this research to soil ecology is significant with regards to the intensive investigation and explanation of characteristics and processes that drive ecological rehabilitation and determine the quality of the soil environment. The multidisciplinary approach that is proposed could, furthermore, assist in the successful rehabilitation and establishment of self-sustaining vegetation covers at industrially disturbed areas, as well as assist in improving degraded soil quality associated with both intensive and informal agriculture. Additionally, this approach could negate the negative social and environmental impacts frequently associated with these activities. / Thesis (M. Environmental Science)--North-West University, Potchefstroom Campus, 2004.
69

Factors Shaping Macrofaunal Polychaete Communities in the Gulf of Mexico

Carvalho, Russell G 02 October 2013 (has links)
This dissertation addresses large-scale trends in composition, density, taxonomic and functional diversity in deep-sea benthic polychaete communities in the Gulf of Mexico (GoM). The study includes samples from two major sampling programs: the Deep Gulf of Mexico Benthos (DGoMB) program (2000–2002) (51 stations, 200-3700 m) and the SIGSBEE program (Universidad Nacional Autónoma de México), 2008-2010 (27 stations on the Sigsbee Abyssal Plain). Polychaete density decreased exponentially with depth. Alpha diversity did not show a mid-depth maximum and reached its peak near the Mississippi trough. Feeding guild diversity was also highest in the Mississippi trough. The environmental parameters that determine diversity and density of polychaete assemblages and species distribution ranges were examined. Depth, export flux of particulate organic carbon (POC), percent sand and silt were the best predictors of heterogeneity of polychaetes in the GoM. We performed an ecological niche modeling analysis (ENM) based on ‘presence-only’ data of four cosmopolitan species belonging to the Cirratulidae and Spionidae in the GoM. The GoM, being a semi-enclosed ocean basin, offers complex topographic features and hydrographic processes. Comparisons of the overall polychaete diversity and richness patterns from this study for this region indicate a strong geographic variation with increasing depth and distance from the shore. Additionally, the environmental gradients observed play a major role in shaping the spatial distribution of polychaete communities in this region.
70

Effect of clay on plant residue decomposition.

Umar, Shariah January 2010 (has links)
Plant residues added to soil are a source of nutrients for plants and soil organisms and increase soil organic matter which has an important role in improving soil structure and fertility, hence maintaining soil quality for sustainable agriculture. In order to utilize plant residues for increasing soil organic matter more effectively, it is necessary to understand the mechanisms of plant residue decomposition. Soil organic matter decomposition is influenced by several factors such as plant residue quality, temperature, water availability, soil structure and soil texture, particularly clay content. The interaction of clay and decomposition of organic matter has been studied in the past. Nevertheless, many studies investigated this interaction in natural soil or under field conditions over long periods of time. Variation in environmental factors may influence the interaction of clay and decomposition of organic matter, thus in most previous studies their effect cannot be separated from the direct effect of clay on decomposition. To study the direct effect of clay on organic matter decomposition, four experiments with different objectives were carried out using isolated natural clay, under controlled conditions (e.g. temperature and organic matter input) and a short incubation period (approximately one month). All experiments were carried out using a sand matrix to which different clay types, clay fractions (natural or with iron oxide partially removed) or clay concentrations were added together with mature wheat straw (C/N 122 in most experiments, except Experiment 2 where the wheat straw had a C/N of 18) and a microbial inoculum. To investigate the effect of clay type, two clay types were added. They were isolated from Wiesenboden (W) and Red Brown Earth (RBE) soil. Clay types from both soils contained kaolinite and illite, but smectite only occurred in W clay. Iron oxide is thought to be important for the binding of organic matter to clay, therefore two clay fractions were used, the clay with native iron oxide (natural clay) and clay from which iron oxide was partially removed by citrate-dithionite-bicarbonate treatment (citrate-dithionite clay, CD clay). The following parameters were measured: pH, water loss, respiration rate, microbial community structure using phospholipid fatty acid analysis and, in some experiments, particulate organic matter. In all experiments, the water content of the substrate mixes was adjusted only at the start; water loss was greatest in the control and decreased with increasing clay content. The aim of the first experiment was to study the effect of the concentration of W clay on decomposition of wheat residues. Respiration (i.e. decomposition of the wheat straw) was affected by clay in two ways (i) decreased decomposition, thus protection of organic matter, in the initial phase at all concentrations (5, 10, 20 and 40%) and throughout the incubation period at ≤ 20% clay, and (ii) greater water retention at higher clay concentration particularly 40% clay that allowed maintenance of higher respiration rates towards the end of incubation. Generally, clay concentration had an effect on microbial community structure but not on microbial biomass. The effect of clay concentration was also investigated in the second experiment, but using RBE clay and a narrower range of concentrations (0, 2.5, 5, 10 and 20% clay) than in the first experiment with W clay. The wheat residue used in this experiment had a lower C/N ratio compared to the other three experiments (C/N 18 compared to 122). In contrast to the first experiment, cumulative respiration of the clay treatments was greater than that of control throughout the incubation, thus clay increased rather than decreased decomposition. This may be due to the properties of the wheat residue used in this experiment which contained more water-soluble compounds, the diffusion of which would be enhanced in treatments with clay compared to the control due to their higher water availability. However, considering only the treatments with added clay, cumulative respiration followed the same pattern as in the first experiment, with highest cumulative respiration at 20% clay. In general, microbial community structure, microbial biomass and microbial groups (i.e. bacterial and fungal fatty acids) were affected by the presence of clay and sampling time, but there was no clear relationship between these factors and the richness and diversity of the microbial community. The aim of the third experiment was to determine the effect of clay concentration (5 and 40% of W clay) and fraction (natural or citrate-dithionite clay) on decomposition of wheat straw and microbial community structure. Clay fraction and concentration strongly affected the respiration rate and microbial community structure as well as microbial biomass but not the concentration of particulate organic matter (POM). Compared to the control, partial removal of iron oxide strongly increased decomposition at both concentrations whereas clay with iron oxides reduced the decomposition. Microbial community structure was affected by clay fractions, particularly at 40% clay. The aim of the fourth experiment was to determine the effect of clay fraction (natural and citrate-dithionite clay) and clay type (W clay or RBE clay) at 5% clay on decomposition of wheat straw and microbial community structure. Clay type and the partial removal of iron oxide had a significant effect on the decomposition rate but did not affect POM concentration. As in the third experiment, partial removal of iron oxide increased respiration rate, the effect was less pronounced in RBE clay than in W clay. Clay type and fraction strongly affected microbial community structure. In conclusion, the experiments showed that native clay generally reduces organic matter decomposition by binding and occlusion. The importance of iron oxide for the protective effect of clay on organic matter decomposition was shown by the fact that partial removal of iron oxide strongly increased decomposition rate compared to the native clay. The two clay types differed in their effect. The W clay containing smectite protects organic matter to a greater extent than RBE clay with predominantly illite and kaolinite due to its higher surface area and CEC that lead to binding and or occlusion. The results also showed that although clay reduces organic matter decomposition under optimal water availability, this effect can be reversed as the substrates dry out because the greater water retention of substrates with clay concentrations > 10% compared to the pure sand matrix allows maintenance of a greater microbial activity. Clay type, fraction and concentration affected microbial community structure via their effect on organic matter and water availability. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1521949 / Thesis (M.Ag.Sc.) -- University of Adelaide, School of Earth and Environment Science, 2010

Page generated in 0.07 seconds