• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 597
  • 245
  • 82
  • 57
  • 35
  • 32
  • 23
  • 13
  • 9
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 1345
  • 512
  • 511
  • 479
  • 298
  • 277
  • 235
  • 228
  • 185
  • 147
  • 144
  • 106
  • 92
  • 92
  • 87
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

On the plasma induced degradation of organosilicate glass (OSG) as an interlevel dielectric for sub 90 nm CMOS /

Huang, Amy. January 2008 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2008. / Typescript. Includes bibliographical references (leaves 79-80).
22

0.18 [mu]m high performance CMOS process optimization for manufacturability /

Gurcan, Zeki B. January 2005 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2005. / Typescript. Includes bibliographical references (leaves 84-86).
23

Independent Domination in Complementary Prisms

Góngora, Joel A., Haynes, Teresa W., Jum, Ernest 01 July 2013 (has links)
The complementary prism of a graph G is the graph formed from a disjoint union of G and its complement ̄G by adding the edges of a perfect matching between the corresponding vertices of G and G. We study independent domination numbers of complementary prisms. Exact values are determined for complementary prisms of paths, complete bipartite graphs, and subdivided stars. A natural lower bound on the independent domination number of a complementary prism is given, and graphs attaining this bound axe characterized. Then we show that the independent domination number behaves somewhat differently in complementary prisms than the domination and total domination numbers. We conclude with a sharp upper bound.
24

Independent Domination in Complementary Prisms

Góngora, Joel A., Haynes, Teresa W., Jum, Ernest 01 July 2013 (has links)
The complementary prism of a graph G is the graph formed from a disjoint union of G and its complement ̄G by adding the edges of a perfect matching between the corresponding vertices of G and G. We study independent domination numbers of complementary prisms. Exact values are determined for complementary prisms of paths, complete bipartite graphs, and subdivided stars. A natural lower bound on the independent domination number of a complementary prism is given, and graphs attaining this bound axe characterized. Then we show that the independent domination number behaves somewhat differently in complementary prisms than the domination and total domination numbers. We conclude with a sharp upper bound.
25

Sequence-specific local structural variations in solution structures of d(CGXX'CG)2 and d(CAXX'TG)2 self-complementary deoxyribonucleic acids.

January 1996 (has links)
by Sik Lok Lam. / The "2" in the title is subscript. / Thesis (Ph.D.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (leaves 184-197). / ABSTRACT --- p.iii / ACKNOWLEDGEMENTS --- p.v / Chapter CHAPTER ONE: --- LITERATURE SURVEY OF SEQUENCE-SPECIFIC LOCAL STRUCTURAL VARIATIONS IN DEOXYRIBONUCLEIC ACID MOLECULES --- p.1 / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.2 --- General Review of DNA --- p.1 / Chapter 1.2.1 --- "Nomenclature, Symbols and Atomic Numbering Scheme of DNA" --- p.2 / Chapter 1.2.2 --- Conformations of DNAs --- p.6 / Chapter 1.2.3 --- Helix-to-Random-Coil Transition --- p.9 / Chapter 1.3 --- Sequence-Specific Local Structural Studies --- p.11 / Chapter 1.4 --- Purpose of This Work --- p.14 / Chapter CHAPTER TWO: --- DETERMINATION OF STRUCTURES OF SOLUTION DNA MOLECULES --- p.17 / Chapter 2.1 --- Introduction --- p.17 / Chapter 2.2 --- Optimization of Conditions --- p.17 / Chapter 2.3 --- Resonance Assignments --- p.19 / Chapter 2.4 --- Extraction of Structural Constraints --- p.22 / Chapter 2.4.1 --- Interproton Distances --- p.23 / Chapter 2.4.2 --- Endocyclic Sugar Torsion Angles --- p.25 / Chapter 2.4.3 --- Phosphate Backbone Torsion Angles --- p.29 / Chapter 2.4.4 --- Hydrogen Bonds --- p.31 / Chapter 2.5 --- Structural Refinement --- p.31 / Chapter CHAPTER THREE: --- SIGNIFICANCE OF DIFFERENT TYPES OF STRUCTURAL CONSTRAINTS IN STRUCTURAL REFINEMENT PROCESS --- p.35 / Chapter 3.1 --- Introduction --- p.35 / Chapter 3.2 --- Experimental --- p.36 / Chapter 3.2.1 --- DNA Model Building --- p.36 / Chapter 3.2.2 --- Generation of Structural Constraints --- p.37 / Chapter 3.2.3 --- Structural Refinement --- p.40 / Chapter 3.3 --- Results and Discussion --- p.41 / Chapter 3.3.1 --- Endocyclic Sugar Torsion Angle Constraints --- p.45 / Chapter 3.3.2 --- Phosphate Backbone Torsion Angle Constraints --- p.49 / Chapter 3.3.3 --- Hydrogen Bond Constraints --- p.50 / Chapter 3.4 --- Summary --- p.50 / Chapter CHAPTER FOUR: --- EFFECTS OF DIFFERENT VARIABLES IN THE RESTRAINED MOLECULAR DYNAMICS PROCESS --- p.52 / Chapter 4.1 --- Introduction --- p.52 / Chapter 4.2 --- Experimental --- p.53 / Chapter 4.3 --- Results and Discussion --- p.55 / Chapter 4.3.1 --- Variables in the Temperature Profile --- p.58 / Chapter 4.3.2 --- Variables in the Force Constant Profile --- p.62 / Chapter 4.4 --- Summary --- p.65 / Chapter CHAPTER FIVE: --- THE J-COUPLING RESTRAINED MOLECULAR MECHANICS PROTOCOL - AN EFFICIENT AND RELIABLE ALTERNATIVE IN DERIVING ENDOCYCLIC SUGAR TORSION ANGLE CONSTRAINTS --- p.66 / Chapter 5.1 --- Introduction --- p.66 / Chapter 5.2 --- Methodology --- p.71 / Chapter 5.2.1 --- "Establishment of the Correlation of 3J1'2, withvi" --- p.71 / Chapter 5.2.2 --- Sample Preparation --- p.73 / Chapter 5.2.3 --- NMR Analysis --- p.73 / Chapter 5.2.4 --- Theoretical Testing of the Protocol --- p.74 / Chapter 5.2.5 --- Experimental Testing of the Protocol --- p.75 / Chapter 5.3 --- Results and Discussion --- p.76 / Chapter 5.3.1 --- Selection of the Appropriate JrMM-derived Torsion Angles --- p.85 / Chapter 5.3.2 --- Theoretical Testing of the Protocol --- p.88 / Chapter 5.3.3 --- Experimental Testing of the Protocol --- p.93 / Chapter 5.4 --- Summary --- p.98 / Chapter CHAPTER SIX: --- HETERONUCLEAR SINGLE QUANTUM COHERENCE DERIVED BACKBONE TORSION ANGLE CONSTRAINTS --- p.99 / Chapter 6.1 --- Introduction --- p.99 / Chapter 6.2 --- Experimental --- p.102 / Chapter 6.3 --- Results and Discussion --- p.103 / Chapter 6.3.1 --- Determination of the Backbone Torsion Angles β and E --- p.103 / Chapter 6.3.2 --- Error Estimation on 3JC4'p- and 3JH3'p-derived E --- p.109 / Chapter 6.4 --- Summary --- p.110 / Chapter CHAPTER SEVEN: --- SOLUTION STRUCTURES OF d(CGXX,CG)2 AND d(CAXX´ةTG)2 --- p.111 / Chapter 7.1 --- Introduction --- p.111 / Chapter 7.2 --- Experimental --- p.111 / Chapter 7.2.1 --- Sample Preparation --- p.112 / Chapter 7.2.2 --- Resonance Assignment --- p.112 / Chapter 7.2.3 --- Melting Profile Study --- p.112 / Chapter 7.2.4 --- Extraction of Structural Constraints --- p.113 / Chapter 7.2.5 --- Structural Refinement --- p.115 / Chapter 7.2.6 --- Structural Parameter Analysis --- p.116 / Chapter 7.3 --- Results and Discussion --- p.116 / Chapter 7.3.1 --- Melting Profile Study --- p.117 / Chapter 7.3.2 --- Structural Constraints --- p.120 / Chapter 7.3.3 --- Structural Refinement --- p.129 / Chapter 7.3.4 --- Structural Features --- p.135 / Chapter CHAPTER EIGHT: --- SEQUENCE-SPECIFIC LOCAL STRUCTURAL STUDY --- p.156 / Chapter 8.1 --- Introduction --- p.156 / Chapter 8.2 --- Predictions from the Calladine's Rules --- p.156 / Chapter 8.3 --- Predictions from Olson's Base-Pair Morphology Dependent Clash Function --- p.160 / Chapter 8.4 --- Re-formulation of Calladine's Idea and its Relationship to Sequence-Specific Local Structural Function ΣLS --- p.163 / Chapter 8.4.1 --- Sequence-Specific Base-Pair Geometry Analysis --- p.164 / Chapter 8.4.2 --- Sequence-Specific Base-Pair Step Geometry Analysis --- p.166 / Chapter 8.4.3 --- Sequence-Specific Local Structural Function ΣLS --- p.167 / Chapter 8.5 --- Summary --- p.173 / Chapter CHAPTER NINE: --- CONCLUSIONS AND FURTHER WORK --- p.174 / APPENDIX I The Base Proton Regions of the lH NMR Spectra of the Hexamers --- p.177 / APPENDIX II 2D NOESY Spectra (Tm = 200 ms) of the Hexamers --- p.178 / "APPENDIX III The H1'-H27H2"" Regions of the DQF-COSY Spectra of the Hexamers" --- p.180 / APPENDIX IV The C4'-H4' Regions of the HSQC Spectra of the Hexamers --- p.182 / REFERENCES --- p.184
26

Search for Perfect Complementary Codes Using Nonlinear Numerical Methods

Tsai, shian-ming 02 September 2005 (has links)
This paper present three kinds of nonlinear numerical methods to search for perfect complementary codes, include Newtonian Methods¡BLevenberg-Marquardt Algorithm and Trust-Regions. By searching for the solution of theses nonlinear equations, we can get complementary codes when setting for the length of element codes and the flock size. These search results is very generous. Complete complementary codes¡Bsuper complementary code and poly-phase complementary code are subsets of these searching results¡C These nonlinear equations are set to have ideal auto-correlation and cross-correlation properties, so the searching results of these nonlinear equations are still have perfect orthogonal complementary properties. Because the orthogonal complementary code is obtained via these nonlinear equations, the results are the most generous. So nonlinear numerical method is a good choice to search for another complementary code we don¡¦t know.
27

Chip Level Space-Time-Frequency Complementary Code Design

Wu, Yi-Zhang 05 August 2008 (has links)
none
28

Performance of Complementary Coded CDMA Performance of Complementary Coded CDMA Systems Using Modified Jakes Fading Channel Simulator

Li, Jyun-Sian 08 September 2009 (has links)
none
29

Fundamental understanding of the physics and modeling of boron source/drain extension evolution during CMOS device fabrication

Kohli, Puneet, Banerjee, Sanjay, Jain, Amitabh, January 2003 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2003. / Supervisors: Sanjay K. Banerjee and Amitabh Jain. Vita. Includes bibliographical references. Available also from UMI Company.
30

The design and implementation of an 8 bit CMOS microprocessor /

Correll, Jeffrey. January 1992 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1992. / Typescript. Includes bibliographical references.

Page generated in 0.0567 seconds