Spelling suggestions: "subject:"complexes duu ruthenium (II)"" "subject:"complexes dud ruthenium (II)""
1 |
Spectroscopie électronique de complexes du nickel(II), de lor(I), du ruthénium(II) et de certains lanthanides : caractéristiques inhabituelles de leur structure électroniqueBaril-Robert, François January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
2 |
Spectroscopie électronique de complexes du nickel(II), de lor(I), du ruthénium(II) et de certains lanthanides : caractéristiques inhabituelles de leur structure électroniqueBaril-Robert, François January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
3 |
Analyse spectroscopique d'interactions métal-ligand sur la structure électronique détaillée de complexes de métaux de transitionBeaulac, Rémi January 2006 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
4 |
Synthèse de complexes originaux de Ruthénium(II) à base de ligands étendus dérivés de phénanthroline, caractérisation photophysique et propriétés d’interaction avec les G-quadruplexesSaadallah, Dounia 22 December 2016 (has links)
Depuis plusieurs années, on observe un intérêt grandissant envers des structures particulières de l’ADN, les quadruplexes de guanine ou G4. Ces structures, largement étudiées in vitro, sont encore peu connues in cellulo mais semblent jouer un rôle important dans la régulation de l’expression génétique. Elles ont rapidement été considérées comme des cibles thérapeutiques potentielles pour certaines maladies telles que le cancer. Le premier indice de leur existence dans les cellules n’a été obtenu qu’en 2013 par immunodétection sur des cellules fixées. Les recherches sont actuellement tournées vers le développement de nouveaux outils moléculaires qui permettraient la visualisation des G4 dans des cellules vivantes.C’est dans ce cadre que nous avons imaginé une série de complexes polyazaaromatiques de ruthéniumII à base de ligands plans étendus (heptacycle dpqp et octacycle dppqp). La combinaison des propriétés photophysiques des complexes de RuII associées à la présence d’un large plan étendu supposé interagir avec les G4, fait de ces molécules des outils potentiels pour l’étude des G4 in cellulo.La première partie de ce projet porte sur la synthèse de ces nouveaux complexes de ruthénium. Une méthode originale de "chimie sur complexe" a permis d'obtenir, entre autres, un complexe possédant le ligand dpqp, fonctionnalisé par une triple liaison. Il a également été possible, par « chimie sur complexe », de construire un cycle supplémentaire sur le ligand heptacyclique (dpqp) chélaté pour obtenir les complexes [Ru(L)2dppqp]2+. Les propriétés photophysiques des différents complexes ont été étudiées. Seuls deux complexes, [Ru(phen)2dpqp-Cl]2+ et [Ru(TAP)2dpqp-Cl]2+, présentent un comportement s’approchant de celui des complexes de référence; c’est à dire des rendements quantiques comparables à [Ru(bpy)3]2+ et des durées de vie de l’état excité de l’ordre de la centaine de nanosecondes. Les autres complexes sont non luminescents et l’hypothèse d’un quenching par transfert de proton à l’état excité a été avancée pour expliquer ce comportement.Les complexes ont aussi été évalués vis à vis de différentes structures oligonucléotidiques G4 et duplexes. Tous les complexes possèdent une affinité correcte envers les G4. Comme nous l'espérions, le complexe porteur du ligand octacyclique semble être particulièrement sélectif envers les G4 par rapport à l'ADN double brin. Il a aussi été montré que deux des complexes testés ont le potentiel d'être utilisés comme sondes moléculaires "light-switch ON" pour les structures G4 en milieu cellulaire. Certains des complexes synthétisés possèdent donc le potentiel pour devenir de bons outils moléculaires pour l’étude des G4 in cellulo. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
5 |
Complexes de ruthénium (II) intégrant l'unité photochromique Diméthyldihydropyrène : Vers de nouvelles photo-réactivités / Ruthenium (II) complexes with dimethyldihydropyrene photochromic unit : Towards new photo-reactivitiesJacquet, Margot 07 December 2017 (has links)
Le travail présenté dans ce mémoire est dédié à l'élaboration de complexes de ruthénium(II) photo-commutables originaux incorporant le couple photochrome Diméthyldihydropyrène (DHP) / Cyclophanediène (CPD), pour de futurs dispositifs moléculaires optoélectroniques.Dans le but de réaliser des systèmes complexes pouvant reproduire les fonctions d'un circuit logique, une stratégie intéressante repose sur l'association de molécules photo-commutables et de complexes métalliques. Cependant, cette stratégie se confronte à certains obstacles majeurs, généralement associés à la perte des propriétés de commutation des photochromes organiques. En réponse aux précédents résultats confirmant cette tendance, deux nouvelles familles de complexes terpyridiniques de ruthénium(II) à base de DHP ont été synthétisées. Sachant que la présence de fonction pyridinium améliore significativement les propriétés d'isomérisation du cœur DHP, les centres métalliques ont été connectés soit via un lien benzyle pyridinium (Ru-Lpy+tpy) soit via un lien aryle pyridinium (Ru-LZincke). Bien que fonctionnant à plus faible énergie, le complexe Ru-LZincke présente des performances amoindries, en revanche les complexes Ru-Lpy+tpy affichent une préservation notable de leurs propriétés de commutation. Suite à la découverte d'une photo-réactivité originale favorisée par la présence du centre métallique, une famille analogue à base de complexes bipyridiniques de ruthénium(II) (Ru-Lpy+bpy) a été étudiée. Même si les mécanismes ne sont pas complètement rationalisés, les complexes Ru-Lpy+bpy se sont révélés être de remarquables candidats pour la réalisation de photo-commutateurs réversibles quantitativement dans le domaine du visible. / The work of this thesis is devoted to the development of original photo-switchable ruthenium(II) complexes incorporating the photochromic Dimethyldihydropyrene (DHP) / Cyclophanediene (CPD), for future optoelectronic molecular devices.In order to realize complex systems capable of reproducing the functions of a logic circuit, an interesting strategy is based on the association of photo-switchable molecules and metal complexes. However, this strategy is confronted with some major obstacles, generally associated with the loss of the switching properties of organic photochromes. In response to previous results confirming this trend, two new families of DHP-based terpyridine ruthenium(II) complexes have been synthesized. Since the presence of pyridinium function significantly improves the isomerization properties of the DHP core, the metal centers were connected either via a pyridinium benzyl linkage (Ru-Lpy+tpy) or via an aryl pyridinium linkage (Ru-LZincke). Although operating at lower energy, Ru-LZincke complex exhibits lessened performance, whereas Ru-Lpy+tpy complexes exhibit a notable preservation of their switching properties. Following the discovery of an original photo-reactivity favored by the presence of metal center, an analogue family based on ruthenium (II) bipyridine complexes (Ru-Lpy+bpy) was studied. Even if the mechanisms are not completely rationalized, Ru-Lpy+bpy complexes have proved to be remarkable candidates for the realization of quantitatively reversible photo-switches in the visible domain.
|
6 |
Complexes de Ruthénium Bis-Terdentates pour la réalisation d'assemblages photoactivablesLiatard, Sebastien 03 April 2012 (has links) (PDF)
Ce mémoire est consacré à la synthèse et la caractérisation de complexes bis-terdentates de ruthénium pour leur potentielle utilisation dans des triades photosensibles, ou pour la fabrication de dispositifs photosensibles. La première partie se concentre sur les propriétés photophysiques de deux complexes de RuII bis-terdentates. Le premier est un complexe homoleptique, formé de ligands tridentates comprenant deux sous-unités carbène (CNC), le second est un complexe hétéroleptique composé d'un ligand CNC et d'une terpyridine. Ce complexe hétéroleptique est luminescent à température ambiante, contrairement à ses deux complexes parents homoleptiques. Les propriétés électrochimiques et photoélectrochimiques de complexes de type [M(tpy)2]2+ (M=FeII ou RuII), dont les ligands terpyridine sont substitués par des groupements thiols, sont étudiées dans une seconde partie. Ces complexes électropolymérisent de manière organisée sur des électrodes d'or, par oxydation des thiols en disulfures. Ces propriétés ont été utilisées pour construire des diades [RuII]-[FeII] sur des électrodes d'or, dont le photocourant a pu être mesuré. Dans le dernier chapitre, les propriétés photophysiques et d'électropolymérisation du complexe de ruthénium décrit dans le chapitre 2 sont utilisées pour tenter de fabriquer un transistor pho-toactivable.
|
7 |
Complexes de Ruthénium Bis-Terdentates pour la réalisation d'assemblages photoactivables / Bis-terdentate ruthenium complexes for the construction of photoactive assemblies.Liatard, Sébastien 03 April 2012 (has links)
Ce mémoire est consacré à la synthèse et la caractérisation de complexes bis-terdentates de ruthénium pour leur potentielle utilisation dans des triades photosensibles, ou pour la fabrication de dispositifs photosensibles. La première partie se concentre sur les propriétés photophysiques de deux complexes de RuII bis-terdentates. Le premier est un complexe homoleptique, formé de ligands tridentates comprenant deux sous-unités carbène (CNC), le second est un complexe hétéroleptique composé d'un ligand CNC et d'une terpyridine. Ce complexe hétéroleptique est luminescent à température ambiante, contrairement à ses deux complexes parents homoleptiques. Les propriétés électrochimiques et photoélectrochimiques de complexes de type [M(tpy)2]2+ (M=FeII ou RuII), dont les ligands terpyridine sont substitués par des groupements thiols, sont étudiées dans une seconde partie. Ces complexes électropolymérisent de manière organisée sur des électrodes d'or, par oxydation des thiols en disulfures. Ces propriétés ont été utilisées pour construire des diades [RuII]-[FeII] sur des électrodes d'or, dont le photocourant a pu être mesuré. Dans le dernier chapitre, les propriétés photophysiques et d'électropolymérisation du complexe de ruthénium décrit dans le chapitre 2 sont utilisées pour tenter de fabriquer un transistor pho-toactivable. / This thesis deals with the synthesis and characterization of several bis-terdentate complexes, and their potential use for the construction of photoactive molecular triads, or the fabrication of photoactive devices. The first chapter focuses on the photophysical properties of two new bis-terdentate RuII com-plexes. The first one is a homoleptic complex containing two N-heterocyclic carbene-based ligands (CNC) allowing close-to-perfect octahedral coordination geometry. The second one is a heteroleptic complex bearing a CNC ligand and an ancillary terpyridine ligand. This second complex displays room temperature luminescence whereas both homoleptic terpyridine-based and CNC-based RuII complexes are only luminescent at 77 K. The second chapter describes the electrochemical properties of a [M(tpy)2]2+-type (M = RuII or FeII) complex bearing thiol groups on both of the terpyridines are described. These complexes display electropolymerization properties through oxidation of thiols into disulfides. This phenomenon happens only on gold, suggesting that the polymer chains organize on the surface of the electrodes. Moreover, self-assembled monolayers of the RuII complexes were formed on gold, and their ability to exchange charges with the electrode upon irradiation was studied. Finally, self-organisation and electropolymerization properties were used to form [RuII]-[FeII] diads on a gold surface, and their photoresponse was recorded. The last chapter describes the attempts to construct a molecular photosensitive device by electropolymerizing the RuII complexes depicted in the second chapter in nanogaps between gold electrodes.
|
8 |
Ligand design for Ru(II) photosensitizers in photocatalytic hydrogen evolutionRupp, Mira Theresa 07 1900 (has links)
This thesis was conducted as cotutelle-de-thèse between the Université de Montréal and the Universität Würzburg (Germany).
Cette thèse a été réalisée en cotutelle de thèse entre l'Université de Montréal et l'Universität Würzburg (Allemagne). / Cette thèse étudie la conception de différentes ligands pour les complexes de Ru(II) et leur activité comme photosensibilisateur (PS) dans l'évolution photocatalytique de l'hydrogène. Le système catalytique contient généralement un catalyseur, un donneur d'électron sacrificiel (SED) et un PS, qui doit présenter une forte absorption et luminescence et un comportement redox réversible. Les substituants pyridine attracteurs d'électrons sur le récepteur d'ions métalliques terpyridine entraînent une augmentation de la durée de vie de l'état excité et du rendement quantique (Φ = 74*10-5; τ = 3.8 ns) et permettent au complexe III-C1 de présenter une activité en tant que PS. Bien que la fréquence (TOFmax) et le nombre de cycle catalytique (TON) soient relativement faibles (TOFmax = 57 mmolH2 molPS-1 min 1; TON(44 h) = 134 mmolH2 molPS-1), le système catalytique a une longue durée de vie, ne perdant que 20% de son activité au cours de 12 jours. De manière intéressante, la conception hétérolytique dans III-C1 s'avère être bénéfique pour la performance en tant que PS, malgré des propriétés photophysiques et électrochimiques comparables à celles du complexe homoleptique IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). L'extinction réductive de la PS excitée par le SED est identifiée comme l'étape limitant la vitesse dans les deux cas.
Par conséquent, les ligands sont modifiés pour être plus accepteurs d'électrons, soit par N-méthylation des substituants pyridine périphériques, soit par introduction d'un cycle pyrimidine dans le récepteur d'ion métallique, ce qui conduit à une augmentation des durées de vie des états excités (τ = 9–40 ns) et des rendements quantiques de luminescence (Φ = 40–400*10-5). Cependant, le caractère plus accepteur d'électrons des ligands entraîne également des potentiels de réduction décalés anodiquement, ce qui conduit à un manque de force motrice pour le transfert d'électrons du PS réduit au catalyseur. Ainsi, cette étape de transfert d'électrons s'avère être un facteur limitant de la performance globale du PS. Alors que des TOFmax plus élevés dans les expériences d'évolution de l'hydrogène sont observés pour les PS contenant le motif pyrimidine (TOFmax = 300–715 mmolH2 molPS-1 min-1), la longévité de ces systèmes est réduite avec des temps de demi-vie de 2–6 h.
L'expansion des ligands contenant le motif pyrimidine en complexes dinucléaires conduit à une absorptivité plus forte (ε = 100–135*103 L mol-1 cm-1), une luminescence accrue (τ = 90–125 ns, Φ = 210–350*10-5) et peut également entraîner un TOFmax plus élevé si la force motrice est suffisante pour le transfert d'électrons vers le catalyseur (1500 mmolH2 molPS-1 min-1). En comparant des complexes avec des forces motrices similaires, une luminescence plus forte se traduit par un TOFmax plus élevé. Outre les considérations thermodynamiques, les effets cinétiques et l'efficacité du transfert d'électrons sont supposés avoir un impact sur l'activité observée dans l'évolution de l'hydrogène. En résumé, ce travail montre que la conception ciblée de ligands peut faire du groupe précédemment négligé des complexes de Ru(II) avec des ligands tridentés des candidats attrayants pour une utilisation comme PS dans l'évolution photocatalytique de l'hydrogène. / This thesis investigates different ligand designs for Ru(II) complexes and the activity of the complexes as photosensitizer (PS) in photocatalytic hydrogen evolution. The catalytic system typically contains a catalyst, a sacrificial electron donor (SED) and a PS, which needs to exhibit strong absorption and luminescence, as well as reversible redox behavior. Electron-withdrawing pyridine substituents on the terpyridine metal ion receptor result in an increase of excited-state lifetime and quantum yield (Φ = 74*10-5; τ = 3.8 ns) and lead to complex III-C1 exhibiting activity as PS. While the turn-over frequency (TOFmax) and turn-over number (TON) are relatively low (TOFmax = 57 mmolH2 molPS-1 min-1; TON(44 h) = 134 mmolH2 molPS-1), the catalytic system is long-lived, losing only 20% of its activity over the course of 12 days. Interestingly, the heteroleptic design in III-C1 proves to be beneficial for the performance as PS, despite III-C1 having comparable photophysical and electrochemical properties as the homoleptic complex IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). Reductive quenching of the excited PS by the SED is identified as rate-limiting step in both cases.
Hence, the ligands are designed to be more electron-accepting either via N-methylation of the peripheral pyridine substituents or introduction of a pyrimidine ring in the metal ion receptor, leading to increased excited-state lifetimes (τ = 9–40 ns) and luminescence quantum yields (Φ = 40–400*10-5). However, the more electron-accepting character of the ligands also results in anodically shifted reduction potentials, leading to a lack of driving force for the electron transfer from the reduced PS to the catalyst. Hence, this electron transfer step is found to be a limiting factor to the overall performance of the PS. While higher TOFmax in hydrogen evolution experiments are observed for pyrimidine-containing PS (TOFmax = 300–715 mmolH2 molPS-1 min-1), the longevity for these systems is reduced with half-life times of 2–6 h.
Expansion of the pyrimidine-containing ligands to dinuclear complexes yields a stronger absorptivity (ε = 100–135*103 L mol-1 cm-1), increased luminescence (τ = 90–125 ns, Φ = 210–350*10-5) and can also result in higher TOFmax given sufficient driving force for electron transfer to the catalyst (TOFmax = 1500 mmolH2 molPS-1 min-1). When comparing complexes with similar driving forces, stronger luminescence is reflected in a higher TOFmax. Besides thermodynamic considerations, kinetic effects and electron transfer efficiency are assumed to impact the observed activity in hydrogen evolution. In summary, this work shows that targeted ligand design can make the previously disregarded group of Ru(II) complexes with tridentate ligands attractive candidates for use as PS in photocatalytic hydrogen evolution. / In dieser Arbeit werden verschiedene Liganden für Ru(II)-Komplexe und die Aktivität der Komplexe als Photosensibilisatoren (PS) in der photokatalytischen Wasserstoffentwicklung untersucht. Das katalytische System besteht typischerweise aus einem Katalysator, einem Opferelektronendonator (SED) und einem PS, welcher eine starke Absorption und Lumineszenz sowie ein reversibles Redoxverhalten aufweisen sollte. Elektronenziehende Pyridin-Substituenten am Terpyridin-Metallionenrezeptor resultieren in einer Erhöhung der Lebensdauer des angeregten Zustands sowie der Quantenausbeute (Φ = 74*10-5; τ = 3.8 ns), was dazu führt, dass Komplex III-C1 als PS aktiv ist. Während die Wechselzahl (TOFmax) und der Umsatz (TON) relativ niedrig sind (TOFmax = 57 mmolH2 molPS-1 min-1; TON(44 h) = 134 mmolH2 molPS 1), ist das katalytische System langlebig und verliert im Laufe von 12 Tagen nur 20% seiner Aktivität. Das heteroleptische Design in III-C1 erweist sich als vorteilhaft für die Leistung als PS, obwohl III-C1 vergleichbare photophysikalische und elektrochemische Eigenschaften besitzt wie der homoleptische Komplex IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). In beiden Fällen erweist sich das reduktive Lumineszenzlöschen des angeregten PS durch den SED als geschwindigkeitsbestimmender Schritt.
Daher werden die Liganden entweder durch N-Methylierung der peripheren Pyridin-Substituenten oder durch Einführung eines Pyrimidinrings in den Metallionenrezeptor elektronenziehender gestaltet, was zu erhöhten Lebensdauern des angeregten Zustands (τ = 9–40 ns) und Lumineszenzquantenausbeuten (Φ = 40–400*10-5) führt. Der stärker elektronenziehende Charakter der Liganden führt allerdings auch zu anodisch verschobenen Reduktionspotentialen, wodurch die treibende Kraft für den Elektronentransfer vom reduzierten PS zum Katalysator reduziert wird. Daher erweist sich dieser Elektronentransferschritt als ein limitierender Faktor für die Gesamtleistung des PS. Während höhere TOFmax in Wasserstoffproduktionsexperimenten für Pyrimidin-haltige PS beobachtet werden (TOFmax = 300–715 mmolH2 molPS-1 min-1), ist die Langlebigkeit für diese Systeme mit Halbwertszeiten von 2–6 h deutlich reduziert.
Die Erweiterung der Pyrimidin-haltigen Liganden zu zweikernigen Komplexen führt zu einem stärkeren Absorptionsvermögen (ε = 100–135*103 L mol-1 cm-1), erhöhter Lumineszenz (τ = 90–125 ns, Φ = 210–350*10-5) und kann bei ausreichender treibender Kraft für den Elektronentransfer zum Katalysator auch zu einer höheren TOFmax führen (TOFmax = 1500 mmolH2 molPS-1 min-1). Beim Vergleich von Komplexen mit ähnlichen treibenden Kräften spiegelt sich die stärkere Lumineszenz in einem höheren TOFmax wider. Es wird angenommen, dass neben thermodynamischen Faktoren auch kinetische Effekte und die Effizienz des Elektronentransfers die beobachtete Aktivität bei der Wasserstoffentwicklung beeinflussen. Zusammenfassend zeigt diese Arbeit, dass gezieltes Ligandendesign die bisher vernachlässigte Gruppe der Ru(II)-Komplexe mit tridentaten Liganden zu attraktiven Kandidaten für den Einsatz als PS in der photokatalytischen Wasserstoffentwicklung machen kann.
|
Page generated in 0.0784 seconds