• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 62
  • 62
  • 62
  • 32
  • 21
  • 20
  • 20
  • 20
  • 19
  • 16
  • 16
  • 15
  • 14
  • 14
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Enhancing Solid Propellants with Additively Manufactured Reactive Components and Modified Aluminum Particles

Diane Collard (11189886) 27 July 2021 (has links)
<p>A variety of methods have been developed to enhance solid propellant burning rates, including adjusting oxidizer particle size, modifying metal additives, tailoring the propellant core geometry, and adding catalysts or wires. Fully consumable reactive wires embedded in propellant have been used to increase the burning rate by increasing the surface area; however, the manufacture of propellant grains and the observation of geometric effects with reactive components has been restricted by traditional manufacturing and viewing methods. In this work, a printable reactive filament was developed that is tailorable to a number of use cases spanning reactive fibers to photosensitive igniters. The filament employs aluminum fuel within a printable polyvinylidene fluoride matrix that can be tailored to a desired burning rate through stoichiometry or aluminum fuel configuration such as particle size and modified aluminum composites. The material is printable with fused filament fabrication, enabling access to more complex geometries such as spirals and branches that are inaccessible to traditionally cast reactive materials. However, additively manufacturing the reactive fluoropolymer and propellant together comes attendant with many challenges given the significantly different physical properties, particularly regarding adhesion. To circumvent the challenges posed by multiple printing techniques required for such dissimilar materials, the reactive fluoropolymer was included within a solid propellant carrier matrix as small fibers. The fibers were varied in aspect ratio (AR) and orientation, with aspect ratios greater than one exhibiting a self-alignment behavior in concordance with the prescribed extrusion direction. The effective burning rate of the propellant was improved nearly twofold with 10 wt.% reactive fibers with an AR of 7 and vertical orientation. </p> <p>The reactive wires and fibers in propellant proved difficult to image in realistic sample designs, given that traditional visible imaging techniques restrict the location and dimensions of the reactive wire due to the necessity of an intrusive window next to the wire, a single-view dynamic X-ray imaging technique was employed to analyze the evolution of the internal burning profile of propellant cast with embedded additively manufacture reactive components. To image complex branching geometries and propellant with multiple reactive components stacked within the same line of sight, the dynamic X-ray imaging technique was expanded to two views. Topographic reconstructions of propellants with multiple reactive fibers showed the evolution of the burning surface enhanced by the geometric effects caused by the faster burning fibers. These dual-view reconstructions provide a method for accurate quantitative analysis of volumetric burning rates that can improve the accessibility and viability of novel propellant grain designs.</p>
32

Lateral Fusion Bonding of Additive Manufactured Fiber-Reinforced Polymer Composites

Pasita Pibulchinda (9012281) 02 August 2023 (has links)
<p>Extrusion Deposition Additive Manufacturing (EDAM) is a process in which fiber-filled thermoplastic polymers pellets get molten in the extruder and deposited onto a build plate in a layer-by-layer basis. The use of short fiber composite for EDAM has enabled large-scale 3D printing structures and tools for traditional composite manufacturing processes. Successful EDAM production critically depends on the understanding of the process-structure-property relationship. Especially on the bonding between the beads which is of paramount importance in additive manufacturing since it affects primarily the fracture and strength characteristics of the printed part. Bonding is influenced mainly by the temperature history and the contact between the beads. Both of which is dependent on the fiber orientation within the bead induced by the flow deformation that occurs according to the printing parameters. This study aims to investigate and model the complex relationship between the printing conditions and inter-bead bonding in the lateral direction.</p> <p>A framework was developed to facilitate this aim, and it contains a fusion bonding model that couples the time-temperature history and the bead-to-bead contact interface. Four deposition parameters were studied: the nozzle height, ratio of the print velocity to extrudate velocity, bead-to-bead spacing, and layer time. First, a deposition flow model was developed, utilizing the anisotropic viscous flow model and smooth particle hydrodynamic finite element formulation, to predict the fiber orientation state across the deposited bead and the bead-to-bead interface for the given set of deposition parameters. Next, the effect of printing conditions on the temperature history of the bead was discovered by utilizing the heat transfer process simulation in ADDITIVE3D. Third, the experimental characterization procedure for mode I fracture toughness in the lateral direction was developed, and the fracture toughness was characterized using linear elastic fracture mechanics principles. Lastly, the phenomenological model for non-isothermal lateral fusion bonding was characterized using the bead contact interface, temperature history, and fracture toughness properties. This work showed a comprehensive effort in fusion bonding modeling while also presented a valuable process-structure-property-performance relationship in EDAM.  Guidance on the selection of printing conditions and strategy can be made using the developed model to print higher-strength parts.  </p>
33

DYNAMIC FAILURE OF POLYMER BONDED EXPLOSIVE SYSTEMS: FROM IDEALIZED SINGLE CRYSTAL TO VARIATIONS OF THE TRADITIONAL PARTICULATE REINFORCED COMPOSITE

Kerry Ann M Stirrup (16405512) 24 July 2023 (has links)
<p>  </p> <p>Polymer bonded explosives (PBX) are a particle reinforced composite containing a high solids loading of explosive particulates bound in a polymer matrix. Commercially produced energetic particulates contain some percentage of flaws in the form of contaminants, porosity, and preexisting fractures. Additional large-scale porosity within the composite is generated during PBX formulation. The introduction of novel additive manufacturing techniques to the energetics field alters the known composite structure and introduces a porosity variable that has not been fully characterized. Porosity collapse during deformation is believed to be a predominant mechanism for hotspot formation, which dominates shock initiation behaviors. These phenomena are difficult to experimentally characterize due to inherent small spectral and temporal scales, and as such numerical and computational models are relied upon to inform fundamental physics. Experimental characterization of the behaviors of energetic materials during deformation is necessary to better inform computational studies and improve our understanding of hotspot formation mechanisms. </p> <p>This dissertation experimentally evaluates the high-rate deformation of porosity in individual explosive particulates and within the overall composite structure. This has included the development of a novel micromachining technique for pore generation in energetic single crystals using the focused ion beam (FIB), resulting in precise and controllable porosity generation that is easily reproducible in collaboration with computational studies. FIB was shown to be an effective pore generation technique, verified by assessing surface roughness and pore quality compared to contemporary manufacturing methods. Three experimental subsets are evaluated: surface cracks in HMX single crystals, polygonal pores in HMX single crystals, and large-scale porosity variations in mock vibration assisted print (VAP) produced composites of borosilicate glass beads and Sylgard 184® binder. A single stage light gas gun was used to impact the samples at 400 m/s and the impact event and resultant material response were observed in real time using x-ray phase contrast imaging (PCI). Machined surface cracks were shown to have negligible effect on the final fracture behaviors of HMX crystals. In polygonal pores fractures were shown to originate due to stress concentration during impact followed by otherwise expected brittle fracture behaviors. For wedge-like pores, the shockwave culminates on the front face of the pore and contributed to early fracture in some samples as well as a consistent open fracture opposite the impact along the shockwave direction in later stages of impact. For the blunt rectangular-like pores two differing behaviors were observed, wherein either the pore condensed and fracture at the pore was not seen during the impact event or large open fractures formed at the pore corners opposite the shockwave. The variance in response is attributed to the energy of fracture dissipating somewhere else in the material bulk, like the behaviors observed in the milled slot samples. Finally, additively manufactured PBX deformation behaviors were observed to be dominated by the collapse of the existing ordered porosity in the bulk which occurred at an increased rate relative to the bulk material compression. This resulted in a three-stage progression of deformation, consisting of a rapid collapse of large-scale ordered porosity, followed by the densification of the remaining features, and ultimately ending in compaction of the bulk as the impact projectile fully compressed the samples. Future work includes exploration of further FIB produced pore effects on dynamic fractures, evaluation of printed material deformation behaviors at additional rates, as well as application and evaluation of additional VAP printed material formulations.  </p>
34

Macroscale Modeling of the Piezoresistive Effect in Nanofiller-Modified Fiber-Reinforced Composites

Sultan Mohammedali Ghazzawi (18369387) 16 April 2024 (has links)
<p dir="ltr">The demand and utilization of fiber-reinforced composites are increasing in various sectors, including aerospace, civil engineering, and automotive industries. Non-destructive methods are necessary for monitoring fiber-reinforced composites due to their complex and often visually undetectable failure modes. An emerging method for monitoring composite structures is through the integration of self-sensing capabilities. Self-sensing in nanocomposites can be achieved through nanofiller modifications, which involve introducing an adequate amount of nanofillers into the matrix, such as carbon nanotubes (CNTs) and carbon nanofillers (CNFs). These fillers form an electrically well-connected network that allows the electrical current to travel through conductive pathways. The disruption of connectivity of these pathways, caused by mechanical deformations or damages, results in a change in the overall conductivity of the material, thereby enabling intrinsic self-sensing.</p><p dir="ltr">Currently, the majority of predictive modeling attempts in the field of self-sensing nanocomposites have been dedicated to microscale piezoresistivity. There has been a lack of research conducted on the modeling of strain-induced resistivity changes in macroscale fiber-matrix material systems. As a matter of fact, no analytical macroscale model that addresses the impact of continuous fiber reinforcement in nanocomposites has been presented in the literature. This gap is significant because it is impossible to make meaningful structural condition predictions without models relating observed resistivity changes to the mechanical condition of the composite. Accordingly, this dissertation presents a set of three research contributions. The overall objective of these contributions is to address this knowledge gap by developing and validating an analytical model. In addition to advancing our theoretical understanding, this model provides a practical methodology for predicting the piezoresistive properties of continuous fiber-reinforced composites with integrated nanofillers.</p><p dir="ltr">To bridge the above-mentioned research gap, three scholarly contributions are presented in this dissertation. The first contribution proposes an analytical model that aims to predict the variations in resistivity within a material system comprising a nanofiller-modified polymer and continuous fiber reinforcement, specifically in response to axial strain. The fundamental principle underlying our methodology involves the novel use of the concentric cylindrical assembly (CCA) homogenization technique to model piezoresistivity. The initial step involves the establishment of a domain consisting of concentric cylinders that represent a continuous reinforcing fiber phase wrapped around by a nanofiller-modified matrix phase. Subsequently, the system undergoes homogenization to facilitate the prediction of changes in the axial and transverse resistivity of the concentric cylinder as a consequence of longitudinal deformations. The second contribution investigates the effect of radial deformations on piezoresistivity. Here, we demonstrate yet another novel application of the CCA homogenization technique to determine piezoresistivity. This contribution concludes by presenting closed-form analytical relations that describe changes in axial and transverse resistivity as functions of externally applied radial strain. The third contribution involves computationally analyzing piezoresistivity in fiber-reinforced laminae by using three-dimensional representative volume elements (RVE) with a CNF/epoxy matrix. By comparing the single-fiber-based analytical model with the computational model, we can investigate the impact of interactions between multiple adjacent fibers on the piezoresistive properties of the material. The study revealed that the differences between the single-fiber CCA analytical model and the computational model are quite small, particularly for composites with low- to moderate-fiber volume fractions that undergo relatively minor deformations. This means that the analytical methods herein derived can be used to make accurate predictions without resorting to much more laborious computational methods.</p><p dir="ltr">In summary, the impact of this dissertation work lies in the development of novel analytical closed-form nonlinear piezoresistive relations. These relations relate the electrical conductivity/resistivity changes induced by axial or lateral mechanical deformations in directions parallel and perpendicular to the reinforcing continuous fibers within fiber-reinforced nanocomposites and are validated against in-depth computational analyses. Therefore, these models provide an important and first-ever bridge between simply observing electrical changes in a self-sensing fiber-reinforced composite and relating such observations to the mechanical state of the material.</p>
35

DEVELOPMENT OF ELECTROCHEMICAL AND COLORIMETRIC SENSING PLATFORMS FOR AGRICULTURE AND HEALTHCARE APPLICATIONS

Ana Maria NA Ulloa Gomez (14209715) 04 December 2022 (has links)
<p>Fully portable, rapid, and user-friendly sensors can successfully lead to the continuous monitoring of toxins present in the ecosystem as well as the detection of biomarkers to prevent diseases. Towards this goal, we explore electrochemical and colorimetric methods to develop platforms for the on-site detection of pesticides, heavy metals, and inflammation biomarkers. </p> <p>This thesis presents work with the primary aim of developing non-biological and biological-based platforms. Chapter 2 describes a fully roll-to-roll electrochemical sensor with high sensing and manufacturing reproducibility for detecting nitroaromatic organophosphorus pesticides (NOPPs). This sensor is based on a flexible, screen-printed silver electrode modified with a graphene nanoplatelets coating and a zirconia coating. This chapter outlines the evaluation of the electrocatalytic activity of zirconia towards the reduction of NOPPs, using methyl parathion as a pesticide sample. Furthermore, it describes the fundamentals of electrochemistry focused on voltammetry techniques used for surface characterization and quantification. The topics reviewed serve as the first step to further manufacturing sensors through large-scale methods (e.g., roll-to-roll). Chapter 3 describes the development of a dual-modality sensing system for the detection of mercury in river waters with high accuracy and precision. The objective of this project was to incorporate colorimetric platforms into the electrochemical methods to create a dual detection design and avert false positives and negatives. Here, novel bio-functional aptamers were incorporated in a sensor containing a paper test that detects mercury by a color change and an electrochemical test that measures charge transfer resistance changes upon aptamer-target interaction. For this platform, the colorimetric test demonstrates the utilization of two systems that consist of silver and gold citrate-capped nanoparticles bio-functionalized with highly specific aptamers. The mechanism of detection of these two systems is through Ps-AgNPs and Ps-AuNPs aggregation as a result of ssDNA-Hg2+ interaction. Using Ps-AuNPs microparticles, Chapter 4 describes a fully colorimetric and smartphone-based biosensor for detecting cardiac troponin T, a biomarker for diagnosing acute myocardial infarction. Here, a comparison in detection performance between Whatman grade 1 and high-flow filter paper is reviewed. Finally, Chapter 5 evaluates the colorimetric detection performance of Ps-AuNPs microparticles towards imidacloprid and carbendazim, two of the pesticides most found in imported produce in the United States. The chapter compares gold-based microparticles in which different aptamers were immobilized, and image acquisition approaches.</p> <p>All sensors reported in this thesis are especially suitable for environmental contaminants monitoring or point-of-care diagnosis applications. The materials selection, use or synthesis, and platforms’ performance optimization, development, and feasibility for scale-up manufacturing are expected to advance on-site biosensing technologies and their commercialization.</p>
36

NOVEL HIGH-RATE MANUFACTURING PROCESS FOR MULTIFUNCTIONAL THERMOPLASTIC COMPOSITES

Jessica Lavorata Anderson (17593293) 11 December 2023 (has links)
<p dir="ltr">In pursuit of enhanced fuel economy, the automotive industry is exploring the substitution of metal components with lightweight polymer composites. These components must withstand elevated static loading and crash performance, while ideally offering added functionalities and reduced weight. To tackle these challenges, this research presents an innovative manufacturing method aimed at reducing costs and cycle times associated with continuous fiber polymer composites. This method involves producing a linear thermoplastic composite rod known as M-TOW (Multi-tow), which can be molded into intricate shapes to serve as tailored structural reinforcement in hybrid-molded parts. The research encompasses the processing of M-TOW, with a focus on predicting consolidation using Darcy’s law, integrating functional components for thermal and electrical conductivity using overbraided metallic wire or sensing using optical fibers, and its application in real-world scenarios. These advancements showcase the versatility and potential of M-TOW in high-rate continuous fiber manufacturing, paving the way for multifunctional hybrid molded structures.<br><br></p>
37

Making Temperature Measurements Inside An Ammonium Perchlorate Crystal Using Encapsulated Thermophosphors

Chase William Wernex (17551410) 05 December 2023 (has links)
<p dir="ltr">Phosphor thermography is an effective technique for making spatially resolved temperature measurements on surfaces, however little consideration has been given to incorporating the phosphors inside crystalline materials to make internal measurements. Doing so would grant optical access to the phosphors through the crystal. In this work, we prepared a thermographic energetic composite via fast crash encapsulation of BaMgAl<sub>10</sub>O<sub>17</sub>:Eu (BAM) in ammonium perchlorate (AP) crystals, which enabled the use of phosphor thermography to spatially resolve the temperature of the energetic composite. We demonstrate that the temperature measurements show good agreement with thermocouple measurements. The ability to calibrate the material was also demonstrated and compared to the response in dynamic thermal environments. Usability limits as well as thermal stability issues of the composite were also investigated and discussed. The successful encapsulation of BAM within AP and demonstration of thermographic behavior in the composite, indicate the viability of using encapsulation as a method to produce thermographic energetic composites.</p>
38

CHARACTERIZATION AND SIMULATED ANALYSIS OF CARBON FIBER WITH NANOMATERIALS AND ADDITIVE MANUFACTURING

Oluwaseun Peter Omole (17002056) 03 January 2024 (has links)
<p dir="ltr">Due to the vast increase and versatility of Additive Manufacturing and 3D-printing, in this study, the mechanical behavior of implementing both continuous and short carbon fiber within Nylon and investigated for its effectiveness within additively manufactured prints. Here, 0.1wt% of pure nylon was combined with carbon nanotubes through both dry and heat mixing to determine the best method and used to create printable filaments. Compression, tensile and short beam shear (SBS) samples were created and tested to determine maximum deformation and were simulated using ANSYS and its ACP Pre tool. SEM imaging was used to analyze CNT integration within the nylon filament, as well as the fractography of tested samples. Experimental testing shows that compressive strength increased by 28%, and the average SBS samples increased by 8% with minimal impacts on the tensile strength. The simulated results for Nylon/CF tensile samples were compared to experimental results and showed that lower amounts of carbon fiber samples tend to have lower errors.</p>
39

<b>Effect of Film Thickness on CeO</b><sub><strong>2</strong></sub><b>/Au Vertically Aligned Nanocomposite Morphology and Properties</b>

Matteo T Moceri (18431868) 26 April 2024 (has links)
<p dir="ltr">The primary goal of this work is to gain a fundamental understanding on how growth conditions affect the morphology and crystallography orientation of CeO<sub>2</sub>/Au vertically aligned nanocomposite (VAN) thin films. Focus has been placed on how the changes in morphology and crystallography translate to tunable optical properties. The morphological effects have been observed and analyzed via two main approaches: the change in morphology was observed at multiple points along the film thickness, and the morphology at the film/substrate interface has been analyzed with respect to total film thickness. The changes in Au crystallography orientations have been observed by measuring peak shift in XRD patterns and determining the resulting in- and out-of-plane strain. To observe additional effects of this morphology change, optical measurements have been taken for films at the bottom, middle, and top of the thickness range. Strong trends in transmittance, plasmonic absorption peak shifts and hyperbolic permittivity behavior are correlated with the film thickness. This tunability of optical properties likely arises from changes in both Au pillar phase morphology and crystal orientation. These findings demonstrate that changing film thickness may be a desirable method to easily tune the morphology and optical properties of VAN thin films.</p>
40

Modeling Boundary Effect Problems of Heterogeneous Structures by Extending Mechanics of Structure Genome

Bo Peng (5930135) 10 June 2019 (has links)
First, the theory of MSG is extended to aperiodic heterogeneous solid structures. Integral constraints are introduced to decompose the displacements and strains of the heterogeneous material into a fluctuating part and a macroscopic part, of which the macroscopic part represents the responses of the homogenized material. One advantage of this theory is that boundary conditions are not required. Consequently, it is capable of handling micro-structures of arbitrary shapes. In addition, periodic constraints can be incorporated into this theory as needed to model periodic or partially periodic materials such as textile composites. In this study, the newly developed method is employed to investigate the finite thickness effect of textile composites.<div><br></div><div>Second, MSG is enabled to deal with Timoshenko beam-like structures with spanwise heterogeneity, which provide higher accuracy than the previous available Euler–Bernoulli beam model. Its reduced form, the MSG beam cross sectional analysis, is found to be able to analyze generalized free-edge problems with arbitrary layups and subjected to general loads. In this method, the only assumption applied is that the laminate is long enough so that the Saint-Venant principle can be adopted. There is no limitation on the cross section of the laminate since no ad hoc assumption is involved with the microstructure geometry. This method solve the free-edge problem from a multiscale simulation point of view.<br></div><div><br></div>

Page generated in 0.0928 seconds