• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 32
  • 8
  • 2
  • 1
  • Tagged with
  • 98
  • 98
  • 40
  • 40
  • 40
  • 37
  • 31
  • 25
  • 21
  • 21
  • 20
  • 19
  • 19
  • 19
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Machine learning predictions for bending capacity of ECC-concrete composite beams hybrid reinforced with steel and FRP bars

Ge, W., Zhang, F, Wang, Y., Ashour, Ashraf, Luo, L., Qiu, L., Fu, S., Cao, D. 31 August 2024 (has links)
Yes / This paper explores the development of the most suitable machine learning models for predicting the bending capacity of steel and FRP (Fiber Reinforced Ploymer) bars hybrid reinforced ECC (Engineered Cementitious Composites)-concrete composite beams. Five different machine learning models, namely Support Vector Regression (SVR), Extreme Gradient Boosting (XGBoost), Multilayer Perceptron (MLP), Random Forest (RF), and Extremely Randomized Trees (ERT), were employed. To train and evaluate these predictive models, the study utilized a database comprising 150 experimental data points from the literature on steel and FRP bars hybrid reinforced ECC-concrete composite beams. Additionally, Shapley Additive Explanations (SHAP) analysis was employed to assess the impact of input features on the prediction outcomes. Furthermore, based on the optimal model identified in the research, a graphical user interface (GUI) was designed to facilitate the analysis of the bending capacity of hybrid reinforced ECC-concrete composite beams in practical applications. The results indicate that the XGBoost algorithm exhibits high accuracy in predicting bending capacity, demonstrating the lowest root mean square error, mean absolute error, and mean absolute percentage error, as well as the highest coefficient of determination on the testing dataset among all models. SHAP analysis indicates that the equivalent reinforcement ratio, design strength of FRP bars, and height of beam cross-section are significant feature parameters, while the influence of the compressive strength of concrete is minimal. The predictive models and graphical user interface (GUI) developed can offer engineers and researchers with a reliable predictive method for the bending capacity of steel and FRP bars hybrid reinforced ECC-concrete composite beams.
62

Delamination Modeling and Detection in Composite Structures

Keshava Kumar, S January 2014 (has links) (PDF)
Composite laminated structures are prone to delamination. Rotorcraft flexbeams, apart from many other aerospace primary load carrying members are made up of composite laminated structures. A delaminated primary load carrying member can lead to catastrophic failure of the system of which it is a part. Delamination modeling and detection in composite laminated structures are challenging areas of ongoing research worldwide. Existing literature falls short of addressing effects of widthwise partial delamination on the modal characteristics of beams. To address this issue, a new partial delamination model for composite beams is proposed and implemented using the finite element method. Homogenized cross-sectional stiffness of the delaminated beam is obtained by the proposed analytical technique, including extension-bending, extension-twist and torsion-bending coupling terms, and hence can be used with an existing finite element method. A two-noded C1-type Timoshenko beam element with four degrees of freedom per node for dynamic analysis of beams is implemented. The results for different delamination scenarios and beams subjected to different boundary conditions are validated with available experimental results in the literature and/or with a 3-D finite element simulation using COMSOL. Results of the first torsional mode frequency for the partially delaminated beam are validated with the COMSOL results. The key point of the current work is that even partial delamination in long structures can be analyzed using a 1-D beam model, rather than using computationally more demanding 3-D or 2-D models. Rotor craft flexbeams are prone to delaminations, which in most realistic situations are partial along both the length and the width. However, the effect of partial delamination on the modal characteristics of the beam is not studied by researchers to the best of the author’s knowledge. Addressing this issue, a rotorcraft flexbeam is analysed here in the presence of delamination. A set of nonlinear governing equations for the rotating flexbeam are developed in hybrid basis. The flexbeam model developed has axial stretch, transverse displacement and flexural rotation in flapwise direction and twist as its degrees of freedom. The nonlinear governing differential equations are linearised and solved for eigenvalues and eigenvectors using a finite element method. The effects of angular speed and delamination size and location on the flexbeam modes are analysed. The results obtained using the proposed model are validated with the COMSOL 3-D finite element simulations. Next, the issue of delamination detection in beams is addressed. Mode shape curvature and Katz fractal dimension are used to detect the presence of partial delaminations in a beam. The effects of boundary conditions and location of delamination on the fractal dimension curve are studied. Usage of higher mode shape data for detection of delamination in beams is evaluated. Limitations of the Katz fractal dimension curve for delamination detection are enumerated. It is shown that fractal dimension measure and mode shape curvature can be used to detect the presence of partial delamination in beams. It is found that the torsional mode shape is best suited for partial delamination detection in beams. Apart from beams, Shell-and plate-like structures are also extensively used in aerospace structures. The modeling of multilayered plates is introduced herein with the intention to model delaminations in 2D. Carrera Unified Formulation(CUF)plate model, developed using variational formulations, is used to derive the stiffness matrices and to apply, the Principle of Virtual Displacement(PVD) and the Reissner Mixed Variational Theorem (RMVT). It is known that FEM implementation for plates leads to the phenomenon of numerical locking: the so-called membrane and shear locking effects. A well-known remedy for addressing locking is the use of the Mixed Interpolated Tensorial Components(MITC) technique. A strategy similar to MITC approach in the RMVT formulation is used to construct an advanced locking-free finite element to treat the multilayered plates. Composite laminated plates are prone to delamination. Implementation of delamination in the CUF frame work using nine-noded quadrilateral MITC9 elements is discussed. MITC9 elements are devoid of shear locking and membrane locking. Delaminated structures, as well as the corresponding healthy structures, are analysed for free vibration modes. The results from the present work are compared with those from available experimental or/and theoretical research articles or/and the 3-D finite element simulations. The effects of different kinds and different percentages of interfacial area of delaminations on the first three natural frequencies of the structure are discussed. The presence of the open-mode or breathing mode delamination mode shape for large delaminations within the first three natural frequencies is discussed. Also, the switching of the places between the second bending mode and the first torsional mode frequencies is discussed. Results obtained from different ordered theories are compared in the presence of delamination. Advantage of layer wise theory as compared to equivalent single layer theories for very large delaminations is stated. The effects of different kinds of delamination and its effect on the second bending and first torsional mode shapes are discussed.
63

Mixed-mode partition theories for one-dimensional fracture

Harvey, Christopher M. January 2012 (has links)
Many practical cases of fracture can be considered as one-dimensional, that is, propagating in one dimension and characterised by opening (mode I) and shearing (mode II) action only with no tearing (mode III) action. A double cantilever beam (DCB) represents the most fundamental one-dimensional fracture problem. There has however been considerable confusion in calculating its mixed-mode energy release rate (ERR) partition. In this work, new and completely analytical mixed-mode partition theories are developed for one-dimensional fractures in isotropic homogeneous and laminated composite DCBs, based on linear elastic fracture mechanics (LEFM) and using the Euler and Timoshenko beam theories. They are extended to isotropic homogeneous and laminated composite straight beam structures and isotropic homogeneous plates based on the Kirchhoff-Love and Mindlin-Reissner plate theories. They are also extended to non-rigid elastic interfaces for isotropic homogeneous DCBs. A new approach is used, based on orthogonal pure fracture modes. Two sets of orthogonal pairs of pure modes are found. They are distinct from each other in the present Euler beam and Kirchhoff-Love plate partition theories and coincide on the first set in the present Timoshenko beam and Mindlin-Reissner plate partition theories. After the two sets of pure modes are shown to be unique and orthogonal, they are used to partition mixed modes. Interaction is found between the mode I and mode II modes of the first set in the present Euler beam and Kirchhoff-Love plate partition theories. This alters the ERR partition but does not affect the total ERR. There is no interaction in the present Timoshenko beam or Mindlin-Reissner plate partition theories. The theories distinguish between local and global ERR partitions. Local pureness is defined with respect to the crack tip. Global pureness is defined with respect to the entire region mechanically affected by the crack. It is shown that the global ERR partition using any of the present partition theories or two-dimensional elasticity is given by the present Euler beam or Kirchhoff-Love plate partition theories. The present partition theories are extensively validated using the finite element method (FEM). The present beam and plate partition theories are in excellent agreement with results from the corresponding FEM simulations. Approximate 'averaged partition rules' are also established, based on the average of the two present beam or plate partition theories. They give close approximations to the partitions from two-dimensional elasticity. The propagation of mixed-mode interlaminar fractures in laminated composite beams is investigated using experimental results from the literature and various partition theories. The present Euler beam partition theory offers the best and most simple explanation for all the experimental observations. It is in excellent agreement with the linear failure locus and is significantly closer than other partition theories. It is concluded that its excellent performance is either due to the failure of materials generally being based on global partitions or due to the through-thickness shear effect being negligibly small for the specimens tested. The present partition theories provide an excellent tool for studying interfacial fracture and delamination. They are readily applicable to a wide-range of engineering structures and will be a valuable analytical tool for many practical applications.
64

Modelagem numérica de vigas mistas aço-concreto simplesmente apoiadas: ênfase ao estudo da interface laje-viga / Numerical analysis of simple supported steel-concrete composite beam: emphasis on the study of the slab-profile interface

Kotinda, Tatianne Iamin 05 May 2006 (has links)
Largamente utilizadas nas obras de engenharia civil, as vigas mistas aço-concreto surgem como conseqüência natural da utilização de vigas de aço sob lajes de concreto, proporcionando um melhor aproveitamento das características de cada material constituinte. Para que se comporte como um elemento misto, é necessário haver um trabalho conjunto entre laje e viga, razão pela qual são utilizados elementos metálicos denominados conectores de cisalhamento, que visam restringir o escorregamento longitudinal e o descolamento vertical na interface. Tendo em vista os aspectos mencionados, são apresentados neste trabalho modelos numéricos tridimensionais de vigas mistas com vistas a simular o seu comportamento estrutural, principalmente no referente à interface entre viga de aço e laje de concreto. Os modelos são constituídos por vigas mistas simplesmente apoiadas com laje de faces planas e conectores de cisalhamento do tipo pino com cabeça. As simulações foram realizadas por meio do código de cálculo ANSYS versão 8.0, que tem como base o método dos elementos finitos. Os resultados obtidos foram comparados com valores experimentais, extraídos de trabalhos apresentados por outros pesquisadores / Widely used in civil engineering frameworks, steel-concrete composite beams appear as consequence of the use of steel beams with concrete slab, providing better management of each constituent material properties. To act as a composite element, it is necessary that the slab and the beam work together, aspect obtained by using metallic elements called shear connectors, that restrict the longitudinal slipping and the uplifting between steel beam and concrete slab. In this sense, this work presents three-dimensional numerical models of steel-concrete composite beams in order to simulate its structural behavior with emphasis, in particular, at the interface between steel beam and concrete slab. The numerical models are constituted of simply supported composite beams with plain faces slab and stud bolt shear connectors. The simulations had been carried out by means of the code ANSYS version 8.0, based on finite elements method. The results had been compared with experimental values, extracted of works presented by others researchers
65

Análise numérica de vigas mistas de madeira e concreto em situação de incêndio / Numerical analysis of timber-concrete composite beams in fire situation

Fernandes, Felipi Pablo Damasceno 10 May 2018 (has links)
As vigas mistas de madeira e concreto são formadas pela união de vigas de madeira a lajes de concreto armado por meio de conectores de cisalhamento. Quando os pisos mistos de madeira e concreto são comparados aos pisos construídos unicamente em madeira ou àqueles confeccionados somente em concreto armado é possível destacar algumas vantagens, incluindo o bom desempenho em situações de incêndio. Os elementos estruturais quando submetidos a ações térmicas sofrem redução de resistência e rigidez, sendo, desta forma, necessário conhecer as modificações sofridas por cada um de seus componentes, que para o caso estudado são: a madeira, o concreto e os conectores de cisalhamento. Desta forma, foi elaborada uma estratégia de modelagem numérica para o estudo de vigas mistas de madeira e concreto em situação de incêndio, utilizando o programa computacional ABAQUS, o qual é baseado no método dos elementos finitos. Em uma primeira etapa da pesquisa foram realizadas modelagens numéricas de vigas de madeira e mistas de madeira e concreto em temperatura ambiente, encontrando-se boa correlação entre as curvas força versus deslocamento no meio do vão obtida numericamente e por meio de ensaios disponíveis na literatura. Em seguida procedeu-se a calibração das propriedades térmicas e mecânicas da madeira brasileira, alcançando-se resultados numéricos próximos aos experimentais, seja em relação às temperaturas do elemento analisado seja em relação à curva de deslocamento vertical em função do tempo de incêndio. Por fim, a estratégia de modelagem termoestrutural desenvolvida para a viga mista de madeira e concreto forneceu curva de deslocamento vertical em função do tempo de incêndio semelhante à curva obtida por meio de modelo analítico disponível na literatura. Por meio do modelo elaborado foi possível observar que a elevação do nível de carregamento reduz o tempo de resistência do elemento estrutural e que a proteção térmica do concreto é essencial para aumentar o tempo até a ruptura da viga. / Timber-concrete composite beams are formed by the union of timber beams to reinforced concrete slabs through of shear connectors. When timber-concrete composite floors are compared to timber floors or reinforced concrete floors it is possible to highlight some advantages, including good performance in fire situations. When subjected to thermal actions, structural elements suffer strength and stiffness reductions, being, therefore, necessary to know the modifications suffered by each of its components, which for the case studied are: timber, concrete and shear connectors. Thus, it is developed a numerical modeling strategy using the computational program ABAQUS, which is based on the finite element method, for the study of timber-concrete composite beams in fire situation. In the first stage of the research it was carried out a numerical modeling of timber beam and timber-concrete composite beam at room temperature, finding good correlation between the force versus displacement curves in the middle of the span obtained numerically and through tests available in the literature. Then, it was carried out the calibration of the thermal and mechanical properties of the Brazilian wood, reaching numerical results close to the experimental ones, either in relation to the temperatures of the analyzed element or in relation to the vertical displacement curve as a function of the fire time. Finally, the thermo-structural modeling strategy developed for the timber-concrete composite beam provided a vertical displacement curve as a function of the fire time similar to the curve obtained through an analytical model available in the literature. Through of the elaborated model it was possible to observe that the load level increase reduces the resistance fire time of the structural element and that the thermal protection of the concrete is essential to increase the rupture time of the beam.
66

Análise da viabilidade econômica do projeto estrutural de edifícios de múltiplos andares com estrutura de aço / Analysis of the economic viability of the structural design of multi-story buildings with steel structures

Machado, Rafael Tamanini 20 August 2012 (has links)
O presente estudo traz uma revisão bibliográfica dos sistemas estruturais, da estabilidade e análise estrutural de edifícios de múltiplos andares com estrutura de aço e, ainda, do emprego de elementos mistos aço e concreto nesses sistemas, com ênfase às vigas mistas. É aplicável a duas áreas, a saber: acadêmica e prática. Na área acadêmica, contribui com informações que permitem iniciar linhas de pesquisas para diversos assuntos. Na área prática, através de exemplos, contribui com a análise da viabilidade do processo construtivo e estrutural. E por meio de instruções mínimas, contribui para o desenvolvimento de projetos de estruturas metálicas. A referida pesquisa é embasada na ABNT NBR 8800:2008 e, quando indispensável, nas normas ANSI/AISC 360-10 e EN 1994-1-1:2004. / The concerned study brings a literature review of structural systems, stability and structural analysis of multistory buildings with steel structures and also the use of steel-concrete composite elements in those systems, with emphasis on composite beams. It applies to two subjects, namely: academic and practical. In academics, it contributes with informations that allows you to start several lines of research. In the practice, through examples, it contributes with the assessment of the viability of the construction and structural process. And using minimal instructions, it contributes to the development of steel structure projects. The related research is based on the ABNT NBR 8800:2008 and, when necessary, on ANSI/AISC 360-10 and EN 1994-1-1:2004.
67

Estudo teórico-experimental da contribuição da armadura para a capacidade resistente de vigas parcialmente revestidas / A theoretical and experimental study of steel bars contribution of the bending capacity of the partially encased composite beams

Cavalcanti, Leandro de Amorim 26 March 2010 (has links)
Este trabalho tem por objetivo investigar a contribuição da armadura para a capacidade resistente de vigas mistas parcialmente revestidas, bem como sua eficiência para promover o comportamento conjunto aço-concreto, imprescindível para a obtenção de vigas mistas. O estudo engloba uma investigação experimental com ensaios de vigas sob flexão em quatro pontos e uma simulação numérica utilizando o pacote computacional DIANA®, visando obter dados do comportamento de vigas mistas parcialmente revestidas com armadura longitudinal. Foram ensaiados quatro modelos de viga mista parcialmente revestida e duas variáveis foram analisadas: taxa de armadura longitudinal no concreto e posição dos conectores tipo pino com cabeça. Os resultados experimentais mostraram a eficiência do conjunto armadura-conector para o aumento da capacidade resistente à flexão e para a promoção da interação aço-concreto. A simulação numérica teve concordância satisfatória com os resultados experimentais obtidos. / This study aims to investigate the contribution of the steel bars to the flexure capacity and to promote the composite behavior in partially encased composite beams. The study includes an experimental investigation of partially encased beams under bending in four points and a numerical simulation using the computer package DIANA® to collect data from the behavior of partially encased composite beams with longitudinal reinforcement. Four models of partially encased composite beams were tested and two variables were analyzed: rate of longitudinal reinforcement in concrete and position of stud bolts. The experimental results showed the efficiency of the junction between reinforcing bars and stud bolt to the increase the bending capacity of the partially encased beam and to obtain the steel-concrete interaction. The numerical simulation has good agreement with the experimental results.
68

Análise numérica de vigas mistas de madeira e concreto em situação de incêndio / Numerical analysis of timber-concrete composite beams in fire situation

Felipi Pablo Damasceno Fernandes 10 May 2018 (has links)
As vigas mistas de madeira e concreto são formadas pela união de vigas de madeira a lajes de concreto armado por meio de conectores de cisalhamento. Quando os pisos mistos de madeira e concreto são comparados aos pisos construídos unicamente em madeira ou àqueles confeccionados somente em concreto armado é possível destacar algumas vantagens, incluindo o bom desempenho em situações de incêndio. Os elementos estruturais quando submetidos a ações térmicas sofrem redução de resistência e rigidez, sendo, desta forma, necessário conhecer as modificações sofridas por cada um de seus componentes, que para o caso estudado são: a madeira, o concreto e os conectores de cisalhamento. Desta forma, foi elaborada uma estratégia de modelagem numérica para o estudo de vigas mistas de madeira e concreto em situação de incêndio, utilizando o programa computacional ABAQUS, o qual é baseado no método dos elementos finitos. Em uma primeira etapa da pesquisa foram realizadas modelagens numéricas de vigas de madeira e mistas de madeira e concreto em temperatura ambiente, encontrando-se boa correlação entre as curvas força versus deslocamento no meio do vão obtida numericamente e por meio de ensaios disponíveis na literatura. Em seguida procedeu-se a calibração das propriedades térmicas e mecânicas da madeira brasileira, alcançando-se resultados numéricos próximos aos experimentais, seja em relação às temperaturas do elemento analisado seja em relação à curva de deslocamento vertical em função do tempo de incêndio. Por fim, a estratégia de modelagem termoestrutural desenvolvida para a viga mista de madeira e concreto forneceu curva de deslocamento vertical em função do tempo de incêndio semelhante à curva obtida por meio de modelo analítico disponível na literatura. Por meio do modelo elaborado foi possível observar que a elevação do nível de carregamento reduz o tempo de resistência do elemento estrutural e que a proteção térmica do concreto é essencial para aumentar o tempo até a ruptura da viga. / Timber-concrete composite beams are formed by the union of timber beams to reinforced concrete slabs through of shear connectors. When timber-concrete composite floors are compared to timber floors or reinforced concrete floors it is possible to highlight some advantages, including good performance in fire situations. When subjected to thermal actions, structural elements suffer strength and stiffness reductions, being, therefore, necessary to know the modifications suffered by each of its components, which for the case studied are: timber, concrete and shear connectors. Thus, it is developed a numerical modeling strategy using the computational program ABAQUS, which is based on the finite element method, for the study of timber-concrete composite beams in fire situation. In the first stage of the research it was carried out a numerical modeling of timber beam and timber-concrete composite beam at room temperature, finding good correlation between the force versus displacement curves in the middle of the span obtained numerically and through tests available in the literature. Then, it was carried out the calibration of the thermal and mechanical properties of the Brazilian wood, reaching numerical results close to the experimental ones, either in relation to the temperatures of the analyzed element or in relation to the vertical displacement curve as a function of the fire time. Finally, the thermo-structural modeling strategy developed for the timber-concrete composite beam provided a vertical displacement curve as a function of the fire time similar to the curve obtained through an analytical model available in the literature. Through of the elaborated model it was possible to observe that the load level increase reduces the resistance fire time of the structural element and that the thermal protection of the concrete is essential to increase the rupture time of the beam.
69

Cisalhamento entre viga e laje pré-moldadas ligadas mediante nichos preenchidos com concreto de alto desempenho / Shear between precast beam and precast slab joined by pockets filled with high performance concrete

Araújo, Daniel de Lima 25 March 2002 (has links)
Neste trabalho, foram estudadas as vigas compostas formadas por viga e laje pré-moldadas de concreto. A ligação empregada na interface era constituída por conectores metálicos associados com concreto moldado no local. Os conectores eram formados por vergalhões de aço dobrados em forma de laço, que eram inseridos em nichos existentes na laje pré-moldada. A ligação era realizada preenchendo os nichos com concreto de alto desempenho. O objetivo foi caracterizar a ligação viga-laje e analisar o comportamento à flexão das vigas compostas com laje pré-moldada. Foram realizados ensaios de cisalhamento direto sob carregamento monotônico, tendo sido observados aumentos de 250% na resistência da ligação devido à substituição da ligação plana e lisa por outra com chave de cisalhamento. A partir desses ensaios, foi proposto um modelo analítico para representar o comportamento das ligações com chave de cisalhamento, considerando a influência da resistência do concreto, do diâmetro do conector e da adição de fibras metálicas à ligação. Foram realizados ensaios de cisalhamento direto com carregamento cíclico não reversível, tendo sido observado menores perdas de rigidez na ligação devido à adição de fibras. Os resultados de ensaios em vigas mostraram que a resistência à flexão da viga composta está diretamente relacionada com a resistência ao cisalhamento da interface. O dimensionamento adequado da interface garantiu à viga composta com laje pré-moldada um comportamento semelhante ao das vigas com laje moldada no local. Dessa forma, esse sistema apresenta-se como uma alternativa viável ao sistema com laje moldada no local. / Composite beams formed by precast beam and precast deck were studied in this work. The connection used in the interface was constituted by steel connectors associated with cast-in-place concrete. Steel bars bent in hoop form constituted the connectors, which were inserted in shear pockets in the precast deck. The connection was carried out filling the shear pockets with high performance concrete. The objective was to characterize the beam-deck connection and to analyze the flexural behavior of the composite beams with precast deck. Push-out tests with monotonic loading were carried out, and it was observed an increase of 250% in the shear strength of the connection due to the substitution of the plane smooth surface for other with shear-key. Based on these tests, an analytic model to represent the behavior of the connections with shear-key was proposed, considering the influence of the strength of the cast-in-place concrete, the diameter of the connector and the addition of steel fibers to the connection. Push-out tests with no reversible cyclic loading were carried out, and it was observed lower shear stiffness degradation in the connection due to the addition of fibers. The results of beam tests showed that the flexural strength of the composite beam is directly related to the shear strength of the interface. The appropriate design of the interface guaranteed to the composite beam with precast deck a flexural behavior similar to the beams with cast-in-place deck. In that way, the system with precast deck is a viable alternative to the system with cast-in-pace deck.
70

Wavelet Based Spectral Finite Elements For Wave Propagation Analysis In Isotropic, Composite And Nano-Composite Structures

Mitra, Mira 12 1900 (has links)
Wave propagation is a common phenomenon in aircraft structures resulting from high velocity transient loadings like bird hit, gust etc. Apart from understanding the behavior of structures under such loading, wave propagation analysis is also important to gain knowledge about their high frequency characteristics, which have several applications. The applications include structural health monitoring using diagnostic waves and control of wave transmission for reduction of noise and vibration. Transient loadings with high frequency content are associated with wave propagation. As a result, the higher modes of the structure participate in the response. Finite element (FE) modeling for such problem requires very fine mesh to capture these higher modes. This leads to large system size and hence large computational cost. Wave propagation problems are usually solved in frequency domain using fast Fourier transform (FFT) and spectral finite element method is one such technique which follows FE procedure in the transformed frequency domain. In this thesis, a novel wavelet based spectral finite element (WSFE) is developed for wave propagation analysis in finite dimension structures. In WSFE for 1-D waveguides, the partial differential wave equations are reduced to a set of ODEs using orthogonal compactly supported Daubechies scaling functions for temporal approximation. The localized nature of the Daubechies basis functions allows finite domain analysis and imposition of the boundary conditions. The reduced ODEs are usually solved exactly, the solution of which gives the dynamic shape functions. The interpolating functions used here are exact solution of the governing differential equation and hence, the exact elemental dynamic stiffness matrix is derived. Thus, In the absence of any discontinuities, one element is sufficient to model 1-D waveguide of any length. This elemental stiffness matrix can be assembled to obtain the global matrix as in FE and after solution, the time domain responses are obtained using the inverse wavelet transform. The developed technique circumvents several serious limitations of the conventional FFT based Spectral Finite Element (FSFE). In FSFE, the wave equations are reduced to ODEs using FFT for time approximation. The remaining part of the formulation is quite similar to that of WSFE. The required assumption of periodicity in FSFE, however, does not allow modeling of finite length structures. It results in “wrap around” problem, which distorts the response simulated using FSFE and a semi-infinite (“throw-off”) element is required for imparting artificial damping. This artificial damping occurs as the “throw off” element allows leakage of energy. In some cases, a very high damping can also be considered instead of “throw off” element to remove wrap around effects. In either cases, the damping introduced is much larger than any inherent damping that may be present in the structure. It should also be mentioned that even in presence of the artificial damping, a larger time window is required for removing the distortions completely. The developed WSFE method is completely free from such problems and can efficiently handle undamped finite length structures irrespective of the time window considered. Apart from this, FSFE allows imposition of only zero initial condition and in contrary any initial conditions can be used in WSFE. Though FSFE has problem in modeling finite length undamped structures for time domain analysis, it is well suited for performing frequency domain study of wave characteristics, namely, the determination of spectrum and dispersion relations. WSFE is also capable of extracting these frequency dependent wave properties, however only up to a certain fraction of the Nyquist frequency. This constraint results from the loss in frequency resolution due to the increase in time resolution in wavelet analysis, where the basis functions are bounded both in time and frequency. A price has to be paid in frequency domain in order to obtain a bound in the time domain. The consequence of this analysis is to impose a constraint on the time sampling rate for the simulation with WSFE, to avoid spurious dispersion. WSFE for 2-D waveguides are formulated using Daubechies scaling functions for both temporal and spatial approximations. The initial and boundary conditions, however, are imposed using two different methods, which are wavelet extrapolation technique and periodic extension or restraint matrix respectively. The 2-D WSFE is bounded in both the spatial directions unlike 2-D FSFE, which is essentially unbounded in one spatial direction. Apart from this, 2-D WSFE is also free from “wrap around” problem similar to 1-D WSFE due to the localized nature of the basis functions used for temporal approximation. In this thesis, WSFE is developed for isotropic 1-D and 2-D waveguides for time and frequency domain analysis. These include elementary rod, Euler-Bernoulli and Timoshenko beams in 1-D modeling, and plates and axisymmetric cylinders in 2-D modeling. The wave propagation responses simulated using WSFE for these waveguides are validated using FE results. The advantages of the proposed technique over the corresponding FSFE method are also highlighted all through the numerical examples. Next part of the thesis involves the extension of the developed WSFE technique for modeling composite and nano-composite structures to study their wave propagation behavior. Due to their anisotropic nature, analysis of composite structures, particularly high frequency transient analysis is much more complicated compared to the corresponding metallic structures. This is due to the presence of stiffness coupling in these structures. Superior mechanical properties of composites, however, are making them integral parts of an aircraft and thus they often experience such short duration, high velocity impact Loadings. Very few literatures report the response of composite structures subjected to such high frequency excitations. Here, WSFE is formulated for a higher order composite beam with axial, flexural, shear and contractional degrees of freedom. WSFE is also formulated for composite plates using classical laminated plate theory with axial and flexural degrees of freedom. Simulations performed using these WSFE models are used to study the higher order and elastic coupling effects on the wave propagation responses. Carbon nanotubes (CNTs) and their composites are attracting a great deal of experimental and theoretical research world-wide. The recent trend in the literature shows a great interest in the dynamic and wave characteristics of CNTs and nano-composites because of their several applications. In most of these applications, CNTs are used in the embedded form as it does not requires precise alignment of the nano-tubes. In addition, the extraordinary mechanical properties of CNTs are being exploited to achieve high strength nano-composite. Apart from the experimental studies and atomistic simulation to study the mechanical properties of CNTs and nano-composites, continuum modeling is also receiving much attention, mainly due to its computational viability. In this thesis, a 1-D WSFE is formulated for multi-wall carbon nanotube (MWNT) embedded composite modeled as beam using higher order layer-wise theory. This theory allows to model partial interfacial shear stress transfer, which normally occurs due to improper dispersion of CNTs in nano-composites. The effects of different matrix materials and fraction of shear stress transfer on the wave characteristics are studied. The responses obtained using other beam theories are also compared. The beam modeling does not allow capturing the radial motions of the CNT, which are important for several applications. These can be effectively captured by modeling the CNT using a 2-D axisymmetric model. Hence, a 2-D WSFE model is constructed to capture the high frequency characteristics of single-walled carbon nanotubes (SWNTs). The response of SWNT simulated using the developed model is validated with experimental and atomistic simulation results reported in the literature. The comparison are done for dispersion relation and also radial breathing mode frequencies. The effects of geometrical parameters, namely the radius and the wall thickness of the SWNT on the higher radial, longitudinal and coupled radial-longitudinal vibrational modes are analyzed. These behaviors are studied in both time and frequency domains. Such time domain analyses of finite length SWNT are not possible with the Fourier transform based techniques reported in literature, although, such analyses are important particularly for sensor applications of SWNT. Spectral finite element method is very much suited for solution of inverse problems like force reconstruction from the measured wave response. This is because the technique is based on the concept of transfer function between the displacements (output) and applied forces (input). In the present work, WSFE is implemented for identification of impact force from the wave propagation responses simulated with FE and used as surrogate experimental results. The results show that WSFE can accurately reconstruct the impulse load applied to 1-D waveguides which include rod, Euler-Bernoulli beam and connected 2-D frame, even with highly truncated response. This is unlike FSFE, where the accuracy of the identified force depends largely on the time window of the measured responses. The detection of damage from the wave propagation analysis is another class of inverse problems considered in this thesis and is of utmost importance in the area of aircraft structural health monitoring. Here, the detection scheme is based on arrival time of the waves reflected from the damage. A novel detection technique based on wavelet filtering is proposed here and it is shown to work efficiently even in the presence of noise in the measured wave responses. Detection of damage requires an efficient damage model to simulate the mode of structural failure. In this regard, two spectrally formulated wavelet elements are proposed, one to model isotropic beam with through-width notch and the second to model composite beam with embedded de-lamination. In the first case, the response of the damaged beam is considered as the perturbation of the undamaged response and the linear perturbation analysis leads to a completely new set of dynamic stiffness matrix. In the second case, the delamination is modeled by subdividing the de-laminated region into separate waveguides and full damage model is established by imposing the kinematics. These models help to simulate wave propagation in such damaged beams to study the effect of damage on the wave response. Noise and vibration are often transmitted from the source to the other parts of the structure in the form of wave propagation. Thus, control of such wave transmission is essential for reduction of noise and vibration, which are the main cause of discomfort and in many cases cause failure of structure. Here, techniques for both passive and active controls of wave are proposed. For active control, a closed loop system is modeled using WSFE with magnetostrictive actuator for control of axial and flexural wave propagations in connected isotropic 1-D waveguides. The feedback is negative velocity and/or acceleration measured at different sensor points. A very new application of CNT reinforced composite for passive control of vibration and wave response is explored in this thesis. For this, a novel concept of nano-composite inserts is proposed. This insert can be made from CNTs dispersed in polymer. The high stiffness of the inserts helps to regulate the power flow in the form of wave propagation from the point of application of the loads to other parts of the structures. The length of the insert, volume fraction of CNTs and position are changed to achieve the required reduction in wave amplitudes. The entire thesis is split up into eight chapters. Chapter 1 presents a brief introduction, the motivation and objective of the thesis. Chapters 2 and 3 give a detail account of wavelet spectral finite element formulation for 1-D and 2-D isotropic waveguides, while Chapter 4 gives the same for composite waveguides. Chapter 5 brings out essential wave characteristics in carbon nanotubes and nano-composite structures, while Chapters 6 and 7 exclusively deal with application of WSFE to some real world problems. The thesis ends with summary and directions of future research. In summary, the thesis has brought out several new aspects of wave propagation in isotropic, composite and nano-composite structures. In addition to establishing wavelet spectral finite element as a useful tool for wave propagation analysis, several new techniques are presented, several new algorithm are proposed and several new concepts are explored.

Page generated in 0.045 seconds