Spelling suggestions: "subject:"composite structure"" "subject:"eomposite structure""
31 |
Natural Fiber Reinforced ThermoplasticsSiengchin, Suchart 21 October 2016 (has links)
Biocomposites made from biodegradable polymer as matrix and natural fiber as reinforcement are certainly environmentally friendly materials. Both constituent materials are fully biodegradable and do not leave any noxious components on Earth. The natural fibers have been used as reinforcement due to their advantages compared to glass fibers such as low cost, high specific strength and modulus, low density, renewability and biodegradability. Major aims of this work were to produce natural fibers and/or nanoparticles with polyethylene (PE), polypropylene (PP) and polylactide (PLA), poly(hydroxybutyrate-co-hydroxyvalerate)(PHBV) matrices and determine their structure-property relationships. Following abstracts of the present research work are manifold:
BINARY COMPOSITES
Polylactide (PLA)/flax mat composites
The polylactide (PLA)/flax mat and modified PLA/flax mat composites were produced by hot press technique. Two additives of non-regulated wax/ethylene acrylate copolymer/butyl acrylate and acrylic were used as modifier for PLA. The dispersion of the flax mat in the composites was studied by scanning electron microscopy (SEM). The PLA composites were subjected to instrumented falling weight impact test. The mechanical and thermal properties of the composites were determined in tensile test, thermogravimetric analysis (TGA) and dynamic-mechanical thermal analysis (DMTA), respectively. It was found that the PLA based composites increased the impact resistance. The tensile strength value of modified PLA/flax mat composite decreased slightly compared to the PLA. The elongation at break data indicated that an improvement in ductility of modified PLA and its composites. Moreover, addition of thermal modifier enhanced thermal resistance below processing temperature of PLA and had a marginal effect on the glass transition temperature of PLA. The storage modulus master curves were constructed by applying the time-temperature superposition (TTS) principle. The principle of linear viscoelastic material was fairly applicable to convert from the modulus to the creep compliance for all systems studied.
Polylactide (PLA)/woven flax textiles composites
The polylactide (PLA)/woven flax textiles 2x2 twill and 4x4 hopsack composites were produced by interval hot press technique. Two weave styles of flax used to reinforce in PLA. The dispersion of the flax composite structures in the composites was inspected in scanning electron microscopy (SEM). The PLA composites were subjected to instrumented falling weight impact test. The mechanical properties (tensile, stiffness and strength) of the composites were determined in tensile and dynamic-mechanical thermal analysis (DMTA) tests, respectively. SEM observed that the interfacial gaps around pulled-out fibers were improved when produced by the interval hot press. It was also found that the both styles of flax composites increased the impact resistance compared to the neat PLA. The tensile strength and stiffness value of PLA/flax composites were markedly higher than that of the neat PLA and reflect the effects of composite structures. The calculated storage creep compliance was constructed by applying the time-temperature superposition (TTS) principle. The calculated creep response of these flax composites was much lower than that of the neat PLA.
Polyethylene and polypropylene/nano-silicon dioxide/flax composites
Composites composed of polylactide (PLA), modified PLA and woven flax fiber textiles (Flax weave style of 2x2 twill and 4x4 hopsack) were produced by hot press technique. Two structurally different additives used to modify PLA. The dispersion of the flax composite structures in the composites was studied by scanning electron microscopy (SEM) and computed microtomography system (µCT). The PLA composites were subjected to water absorption and instrumented falling weight impact tests. The thermomechanical and creep properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA)and short-time creep tests, respectively. It was found that the modified PLA and its composite increased the impact resistance compared to the unmodified PLA. Incorporation of flax decreased resistance to thermal degradation and increased water uptake. The impact energy and stiffness value of PLA/flax composites was markedly higher than that of PLA but reflect the effects of composite structures and flax content. The storage modulus master curves were constructed by applying the time-temperature superposition (TTS) principle. From the master curve data, the effect of modified PLA on the storage modulus was more pronounced in the low frequencies range.
Polylactide (PLA)/woven flax fiber textiles/boehmite alumina (BA) composites
The textile biocomposites made from woven and non-woven flax fibre reinforced poly(butylene adipate-co-terephthalate) (PBAT) were prepared by compression moulding using film stacking method. The mechanical properties (such as tensile strength and stiffness, flexural strength and modulus, and impact strength) of textile biocomposites were determined in tensile, flexural and impact tests, respectively. The PBAT-based composites were subjected to water absorption. The comparison of the mechanical properties was made between pure PBAT and textile composites. The influence of flax weave styles on the mechanical properties was also evaluated. The results showed that the strength of the textile biocomposites was increased according to weave types of fibers, especially in the stiffness was significantly increased with the higher densification of the fibers. The 4x4-plain woven fibers (4-yard-wrap and 4-yard-weft weave direction) reinforced biocomposite indicated the highest strength and stiffness compared to the other textile biocomposites and pure PBAT. This was considered to be as the result of the character of weave style of 4x4-plain woven fibers. The aminopropyltriethoxysilane affected the mechanical properties and water absorption of the resulting composites laminates due to the surface compatibility between flax fiber and PBAT.
HYBRID COMPOSITES
Polyethylene/nanoparticle, natural and animal composites
Binary and ternary composites composed of high-density polyethylene (HDPE), boehmite alumina (BA) and different kinds of natural-, animal fibers, like flax, sponge gourd (SG), palm and pig hair (PH) were produced by hot press technique. Aqueous BA suspensions were sprayed on the HDPE/flax mat to prepare nanoparticle/natural fiber reinforced ternary polymer composites followed by drying. The dispersion of the natural-, animal fibers and BA particles in the composites was studied by scanning electron microscopy (SEM) and discussed. The thermomechanical and stress relaxation properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA) and short-time stress relaxation tests (performed at various temperatures), respectively. The HDPE based composites were subjected to water absorption and instrumented falling weight impact tests. It was found that the all composites systems increased the stiffness, stress relaxation and reduced the impact toughness. The stress relaxation modulus of natural-, animal fiber composites were higher compared to that of the neat HDPE. This modulus increased greatly with in corporation of BA. The relaxation master curves were constructed by applying the time-temperature superposition (TTS) principle. The inverse of Findley power law could fairly applicable to describe the relaxation modulus vs. time traces for all systems studied. Incorporation of BA particles enhanced the thermal resistance which started to degrade at higher temperature compared to the HDPE/flax mat composite. The HDPE/flax mat/BA composite could reduce the water uptake.
Polyethylene/Flax/SiO2 Composites
Composites composed of high-density polyethylene (HDPE), woven flax fiber textiles (Flax weave style of 2x2 twill and 4x4 hopsack) and silicon dioxide (SiO2) were produced by hot press with nano spraying technique. The SiO2 slurries were sprayed by a hand onto the both surface of the woven flax fiber. The HDPE /woven flax fibers composites with and without used nano-spraying technique were produced by hot pressing in a laboratory press. The dispersion of SiO2 particles and flax in the composites was studied by scanning electron microscopy (SEM). The related HDPE based composites were subjected to instrumented falling weight impact test. The thermal resistance, stiffness and tensile strength properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA) and tensile tests, respectively. It was found that the impact energy and stiffness value of HDPE/flax composites was markedly higher than that of HDPE but reflect the effects of composite structures and flax content. Incorporation of SiO2 particles enhanced resistance to thermal degradation. It was established that the linear viscoelastic material principle are fairly applicable to convert from the modulus to the creep compliance results.
Un- and Modified Polylactide (PLA) /woven Flax Fiber composites
Hybrid composites composed of polypropylene (PP) or high-density polyethylene (HDPE), different flax fibers (unidirectional-, biaxial and twill2x2) and silicon dioxide (SiO2) were produced by hot press technique. The ternary polymer composite was effectively fabricated by spraying SiO2 solvents onto the surface of flax fiber. The dispersion of SiO2 particles and flax in the composites was studied by scanning electron microscopy (SEM). The related PP and HDPE based composites were subjected to instrumented falling weight impact test. The thermal and mechanical properties of the composites were determined by thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA), creep and stress relaxation tests, respectively. It was found that thermal decomposition temperature of the PP or HDPE/flax composites increased by the addition of SiO2 particles. The impact energy, stiffness, creep resistance and relaxation modulus value of all flax composites increased markedly compared to the PP and HDPE matrix. Time–temperature superposition (TTS) was applied to estimate the creep and relaxation modulus of the composites as a function of time in the form of a master curve. The activation energies for the all PP and HDPE composites systems studied were also calculated by using the Arrhenius equation. The generalized Maxwell model was fairly applicable to the stress relaxation results.
Polylactide (PLA)/woven flax fiber textiles/boehmite alumina (BA) composites
Composites composed of polylactide (PLA), woven flax fiber textiles (weave style of 2x2 twill and 4x4 hopsack) and boehmite alumina (BA) were produced by hot press. The spraying technique served for the pre-dispersion of the alumina nanoparticles. The aqueous alumina slurry was produced by mixing the water with water dispersible alumina. The dispersion of the flax structures and alumina particles in the composites was studied by scanning electron microscopy (SEM). The PLA composites were subjected to water absorption and instrumented falling weight impact tests. The creep and thermomechanical properties of the composites were determined in short-time creep tests (performed at various temperatures), thermogravimetric analysis (TGA) and dynamic-mechanical thermal analysis (DMTA), respectively. It was found that the incorporation of alumina particles reduced the water uptake compared to the PLA/flax blends. The impact energy and stiffness value of PLA/flax blends was markedly higher than that of PLA but reflected the effects of composite structures. Incorporation of alumina particles enhanced storage modulus and the creep resistance compared to the PLA/flax blends but slightly incremented thermal resistance at high temperature. No clear trend in the flax weave style- effect was found in the thermal behaviour. The creep master curves were constructed by applying the time-temperature superposition (TTS) principle. The Findley power law could satisfactorily describe the creep compliance vs. time traces for all systems studied.
Poly(hydroxybutyrate-co-hydroxyvalerate)/sisal natural fiber/clay composites
Poly(hydroxybutyrate-co-hydroxyvalerate)(PHBV) biocomposites different sisal containing with the fiber length of 0.25 and 5 mm, and addition of clay particles were prepared by hot compression technique. Silane (Bis(triethoxysilylpropyl)tetrasulfide) treatment has been used to modify in order to enhance the properties of related hybrid composites. The all composites were subject to water absorption test. The mechanical properties of hybrid composites such as tensile stiffness and strength, toughness and hardness determined in tensile, impact and hardness tests, respectively. It was found that tensile strength, stiffness and impact strength of long sisal fiber improved with increasing fiber content. Hardness of short sisal fiber improved with increasing fiber content. Treated Silane of long fibers at 20 wt.% loading was found to enhance the tensile strength fiber by 10% and impact strength by 750% as compared to the neat PHBV. Note that this feature was also confirmed by the appearance of a scanning electron microscopy. Moreover, the hardness and water resistance of the PHBV/sisal composites increased by the addition of clay particles. The diffusion coefficient for the PHBV and hybrid composites systems studied were also calculated. / Bioverbundwerkstoffe aus biologisch abbaubarem Polymer als Matrix und Naturfasern als Verstärkung sind ohne weiteres umweltfreundliche Materialien. Beide Bestandsmaterialien sind vollständig biologisch abbaubar und hinterlassen keine schädlichen Bestandteile auf der Erde zurück. Die als Verstärkung verwendeten Naturfasern wurden aufgrund ihrer Vorteile gegenüber Glasfasern, wie z.B. geringe Kosten, hohe spezifische Festigkeit und Steifigkeit, geringe Dichte, Erneuerbarkeit und Kompostierbarkeit ausgesucht. Der Hauptfokus dieser Arbeit lag darin Naturfasern und/oder Nanopartikel mit Polyethylen (PE), Polypropylen (PP) und Polylactid (PLA) herzustellen, sowie Poly-Hydroxybutyrat-Co-Hydroxyvalerat (PHBV) Matrizen und deren Struktur-Eigenschaft-Verhältnis zu bestimmen. Die folgenden Kurzfassungen der vorliegenden Forschungsarbeit sind vielfältig:
BINÄRE VERBUNDWERKSTOFFE
Polylactid (PLA)/ Flachsmatten-Verbundwerkstoffe
Die Polylactid (PLA)/Flachsmatte und modifizierte PLA/Flachsmatten-Verbundwerkstoffe wurden im Pressverfahren hergestellt. Als Modifikator für das PLA wurden zwei nicht regulierte Wachs/Ethylen-Acrylat-Copolymer/Butyl-Acrylat und Acryl Additive verwendet. Die Verteilung der Flachsmatte in den Verbundwerkstoffen wurde mit dem Rasterelektronenmikroskop (SEM) untersucht. Die PLA-Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die mechanischen und thermischen Eigenschaften der Verbundwerkstoffe wurden im Zugversuch, der thermogravimetrische Analyse (TGA) und der dynamisch mechanischen Thermoanalyse (DMTA) jeweils bestimmt. Es zeigte sich, dass die PLA/Flachsmatten-basierten Verbundwerkstoffe eine erhöhte Schlagzähigkeit aufwiesen. Die Zähigkeitswerte der modifizierten PLA/Flachsmatten-Verbundwerkstoffe waren leicht verringert im Vergleich zum PLA. Die Bruchdehnungswerte zeigten eine Verbesserung der Verformbarkeit des modifizierten PLAs und dessen Verbundwerkstoffe. Nach Zugabe eines Wärme-Modifikators verbesserte sich der Wärmewiderstand auf unter Verarbeitungstemperatur des PLA und hatte nur einen unwesentlichen Einfluss auf die Glasübergangstemperatur des PLA. Die Hauptkurve des Speichermoduls wurde mit der Zeit-Temperatur-Überlagerung (TTS) aufgestellt. Auf alle untersuchten Systeme konnte das dafür gut geeignete Prinzip der linear viskoelastischen Werkstoffe angewendet werden um die Steifigkeit in die Kriechneigung umzuwandeln.
Polylactid (PLA)/Flachstextilgewebe-Verbundwerkstoffe
Die Polylactid (PLA)/Flachstextilgewebe 2x2 Körper und 4x4 Gewebe mit Leinwandbindung-Verbundwerkstoffe wurden im Intervall-Pressverfahren hergestellt. Das PLA wurde mit zwei Flachsgewebeformen verstärkt. Die Verteilung der Flachs-Verbundwerkstoffstrukturen in den Verbundwerkstoffen wurde mit dem Rasterelektronenmikroskop (SEM) untersucht. Die PLA Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die mechanischen Eigenschaften (Zugfestigkeit, Steifigkeit und Festigkeit) der jeweiligen Verbundwerkstoffe wurden in Zugversuchen und dynamisch mechanischen Thermoanalysen (DMTA) bestimmt. Das Rasterelektronenmikroskop zeigte auf, das der Grenzflächenzwischenraum von rausgezogenen Fasern sich durch das Herstellen im Intervall-Pressverfahren verbessert hat. Auch zeigte sich, dass beide Arten der Flachs-Verbundwerkstoffe die Schlagzähigkeit der Verbundwerkstoffe erhöht im Vergleich zum puren PLA. Die Zugfestigkeit- und Steifigkeitswerte der PLA/Flachs-Verbundwerkstoffe waren deutlich höher als die der puren PLA und spiegeln die Effekte von Verbundwerkstoffstrukturen wieder. Die berechnete Kriechneigung im Speichermodul wurde durch die Anwendung des Zeit-Temperatur-Überlagerung (TTS) Prinzips aufgestellt. Die errechnete Kriechgeschwindigkeit der Flachs-Verbundwerkstoffe war wesentlich geringer als im puren PLA.
Polyethylen und Polypropylen/Nanosilikon Dioxid/Flachs-Verbundwerkstoffe
Verbundwerkstoffe hergestellt aus Polylactid (PLA), modifiziertem PLA und Flachsfasertextilgewebe (Flachsgewebeform von 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) wurden im Pressverfahren hergestellt. Zwei strukturell unterschiedliche Additive wurden verwendet um das PLA zu modifizieren. Die Verteilung der Flachs-Verbundwerkstoffstruktur wurde unter dem Rasterelektronenmikroskop (SEM) und dem computergestütztes Computer-Tomography-System (µCT) untersucht. Die PLA Verbundwerkstoffe wurden dem Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die Kriech- und thermomechanischen Eigenschaften der respektiven Verbundwerkstoffe wurden in der thermogravimetrischen Analyse (TGA), der dynamisch mechanischen Thermoanalyse (DMTA) und dem Kurzzeit-Kriechversuch bestimmt. Das modifizierte PLA und dessen Verbundwerkstoffe zeigten eine Erhöhung der Schlagzähigkeit im Vergleich zum unmodifizierten PLA. Die Einbindung von Flachs verringerte den Widerstand gegenüber thermischer Degradierung und erhöhte die Wasseraufnahme. Die Schlagenergie- und Steifigkeitswerte der PLA/Flachs-Verbundwerkstoffe war deutlich höher als die der PLA aber spiegelt die Effekte von Verbundwerkstoffstrukturen mit Flachsinhalt wieder. Die Hauptkurve des Speichermoduls wurde mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Das Datenmaterial der Hauptkurve zeigte den Effekt des modifizierten PLAs auf dem Speichermodul deutlich ausgeprägter im Bereich der Niederfrequenz.
Polylactide (PLA)/Flachfasertextilgewebe/Böhmit Aluminumoxid (BA)-Verbundwerkstoffe
Die textilen Bioverbundwerkstoffe wurden aus flachsfaserverstärkten Poly(Butylen Adipat-Co-Terephtalat) (PBAT) Gewebe und Vlies im Formpressverfahren mit der Folien-Stapelmethode hergestellt. Die mechanischen Eigenschaften (wie Zugfestigkeit und Steifigkeit, Biegefestigkeit, Steifigkeit und Schlagzähigkeit) der jeweiligen textilen Bioverbundwerkstoffe wurde in Zug-, Biege-, und Schlagtests ermittelt. Die PBAT basierten Verbundwerkstoffe wurden dem Wasseraufnahmetest unterzogen. Der Vergleich der mechanischen Eigenschaften wurde zwischen reinem PBAT und textilen Verbundwerkstoffen durchgeführt. Der Einfluss der Flachsgewebeformen auf die mechanischen Eigenschaften wurde ebenfalls untersucht. Die Ergebnisse zeigten das die Festigkeit der textilen Bioverbundwerkstoffe mit der Webart der Fasern anstieg, signifikant in Bezug auf die Steifigkeit bei einer erhöhten Verdichtung der Fasern. Die 4x4 flachfasergewebten (4-Schussfaden-Windung und 4-Kettfaden-Windung) verstärkten Bioverbundwerkstoffe zeigten die höchste Festigkeit und Steifigkeit im Vergleich zu den anderen textilen Bioverbundwerkstoffen und dem puren PBAT. Dieses Resultat wurde der Beschaffenheit der 4x4-flachfasergewebten Webart zugewiesen. Das Aminopropyltriethoxysilan beeinträchtigte die mechanischen Eigenschaften und Wasseraufnahme der entstandenen Verbundlaminate durch Oberflächenkompatibilität zwischen der Flachsfaser und dem PBAT.
HYBRIDE VERBUNDWERKSTOFFE
Polyethylen/Nanopartikel, natürliche und tierische Verbundwerkstoffe
Binäre und ternäre Verbundwerkstoffe, bestehend aus hoch dichtem Polyethylen (HDPE), Böhmit Aluminumoxid (BA) und verschiedenen natürlichen und tierischen Fasern wie Flachs, Schwammgurke (SG), Palmfaser und Schweinehaar (PH), wurden im Pressverfahren hergestellt. Vorbereitend wurden wasserhaltige BA-Suspensionen auf die HDPE/Flachsmatte gesprüht um nanopartikel/naturfaserverstärkte ternäre Polymer-Verbundwerkstoffe nach dem Trocknen zu erhalten. Die Verteilung der Natur-,Tierfasern und der BA-Partikel in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop untersucht und diskutiert. Die thermomechanischen und Spannungsrelaxation-Eigenschaften der jeweiligen Verbundwerkstoffe wurden in der thermogravimetrischen Analyse (TGA), der dynamisch mechanischen Thermoanalyse (DMTA) und dem Kurzzeit-Stressrelaxationstest (bei unterschiedlichen Temperaturen durchgeführt) bestimmt. Die HDPE-basierten Verbundwerkstoffe wurden Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstests unterzogen. Es wurde festgestellt, dass alle Verbundwerkstoffsysteme eine Erhöhung der Steifigkeit und Spannungsrelaxation und eine Verminderung der Kerbschlagzähigkeit aufzeigten. Die Spannungsrelaxations-Steifigkeit von Naturfaser-, Tierfaserverbundwerkstoffen war größer im Vergleich zu reinem HDPE. Diese Steifigkeit steig deutlich an mit der Einbindung von BA. Die Hauptkurven der Relaxation wurden mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Die Umkehrung des Findley Potenzgesetzes konnte gut für die Beschreibung der Relaxations-Steifigkeit vs. Zeitüberwachung in allen untersuchten Systemen angewendet werden. Die Einbindung der BA-Partikel erhöhte den Wärmewiderstand, welcher bei höherer Temperatur zu sinken begann im Vergleich zu HDPE/Flachsmatten-Verbundwerkstoff. Der HDPE/Flachsmatte/BA-Verbundwerkstoff konnte die Wasseraufnahme verringern.
Polyethylen/Flachs/SiO Verbundwerkstoffe
Verbundwerkstoffe bestehend aus hoch dichtem Polyethylen (HDPE), Flachsfasertextilgewebe (Flachsgewebeform 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) und Siliziumdioxid (SiO2) wurden im Pressverfahren mit Nanospritztechnik hergestellt. Die SiO2 Schlämme wurden auf beide Oberflächen des Flachsfasergewebes per Hand gesprüht. Die HDPE/ Flachsfasergewebe-Verbundwerkstoffe wurden in einer Laborpresse im Pressverfahren mit und ohne Nanospritztechnik hergestellt. Die Verteilung der SiO2-Partikel und des Flachs in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop (SEM) untersucht. Die ähnlichen HDPE-basierten Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Der Wärmewiderstand, Steifigkeit- und Zugfestigkeit-Eigenschaften der jeweiligen Verbundwerkstoffe wurden in thermogravimetrischen Analysen (TGA), dynamisch mechanischen Thermoanalysen (DMTA) und Zugversuchen bestimmt. Es zeigte sich, dass die Aufprallenergie und Steifigkeitswerte der HDPE/Flachs-Verbundwerkstoffe deutlich höher als die des HDPE waren aber die Effekte von Verbundwerkstoffen mit Flachsinhalt widerspiegeln. Die Einbindung von SiO2-Partikeln erhöhte den Widerstand von thermischer Degradierung. Es wurde bestimmt, das das Prinzip der linear viskoelastischen Werkstoffe gut anwendbar auf die Umwandlung der Steifigkeit zu Kriechneigungsergebnissen ist.
Modifizierte und nicht modifizierte Polylactid (PLA)/Flachsfasergewebe-Verbundwerkstoffe
Hybride Verbundwerkstoffe aus Polypropylen (PP) oder hoch-dichtem Polyethylen (HDPE), verschiedenen Flachsfasern (unidirektional, biaxial und 2x2 Körper) und Siliziumdioxid (SiO2) wurden im Pressverfahren hergestellt. Der ternäre Polymer-Verbundwerkstoff wurde wirkungsvoll durch das Aufbringen von SiO2 Lösemitteln auf die Oberfläche der Flachsfaser hergestellt. Die Verteilung der SiO2-Partikel und des Flachs in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop (SEM) untersucht. Die ähnlichen PP- und HDPE-basierten Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die thermischen und mechanischen Eigenschaften der respektiven Verbundwerkstoffe wurde in thermogravimetrischen Analysen (TGA), dynamisch mechanischen Thermoanalysen (DMTA), Kriech- und Spannungsrelaxations-Tests bestimmt. Es zeigte sich, dass die thermische Zersetzungstemperatur der PP oder HDPE/Flachs-Verbundwerkstoffe durch das Auftragen der SiO2-Partikel ansteigt. Die Aufprallenergie-, Steifigkeit-, Kriechbeständigkeit- und Relaxation-Steifigkeitn-Werte aller Flachs-Verbundwerkstoffe stiegen deutlich an im Vergleich zur PP und HDPE Matrix. Die Zeit-Temperatur-Überlagerung (TTS) wurde angewandt um die Kriech- und Relaxation-Steifigkeit für die Verbundwerkstoffe als Funktion der Zeit in Form einer Hauptkurve zu schätzen. Die Aktivierungsenergien aller untersuchten PP und HDPE-Verbundwerkstoffsysteme wurden mit der Arrhenius Gleichung errechnet. Das generalisierte Maxwell Model war gut auf die Spannungsrelaxationsergebnisse anwendbar.
Polylactide (PLA)/Flachsfasertextilgewebe/Böhmit Aluminiumoxid (BA)-Verbundwerkstoffe
Verbundwerkstoffe bestehend aus Polylactid (PLA), Flachfasertextilgewebe (Gewebeform 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) und Böhmit Aluminium (BA) wurden im Pressverfahren hergestellt. Für die Vordispergierung der Aluminiumoxid-Nanopartikel wurde die Spritztechnik angewendet. Die wasserhaltigen Aluminiumoxid-Schlämme wurden durch das Vermischen von Wasser mit wasserdispergierbarem Aluminiumoxid hergestellt. Die Verteilung der Flachsstrukturen und Aluminiumoxid-Partikeln in den Verbundwerkstoffen wurde mit einem Rasterelektronenmikroskop (SEM) untersucht. Die PLA-Verbundwerkstoffe wurden Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstests unterzogen. Die Kriech- und thermomechanischen Eigenschaften der jeweiligen Verbundwerkstoffe wurden in Kurzzeit-Kriechversuchen (bei unterschiedlichen Temperaturen durchgeführt), thermogravimetrischen Analysen (TGA) und dynamisch mechanischen Thermoanalysen (DMTA) bestimmt. Es zeigte sich, dass das Einbringen der Aluminiumoxid-Partikel die Wasseraufnahme im Vergleich zu PLA/Flachs-Gemischen reduziert. Die Aufprallenergie- und Steifigkeitswerte der PLA/Flachs-Gemische waren signifikant höher als die des PLA aber spiegelten die Effekte von Verbundwerkstoffstrukturen wieder. Das Einbringen von Aluminiumoxid-Partikeln verbesserte die Lagerungs-Steifigkeit und die Kriechbeständigkeit im Vergleich zu PLA/Flachs-Gemischen, erhöhte allerdings leicht den Wärmewiderstand bei hohen Temperaturen. Kein klarer Trend in der Flachswebart konnte dem Temperaturverhalten zugeordnet werden. Die Kriech-Hauptkurven wurden mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Das Findley Potenzgesetz konnte zufriedenstellend die Kriechneigung vs. Zeitüberwachung für alle untersuchten Systeme beschreiben.
Poly(Hydroxybutyrat-Co-Hydroxyvalerat)/Natursisalfaser/Ton-Verbundwerkstoffe
Poly(Hydroxybutyrat-Co-Hydroxyvalerat) (PHBV) Bioverbundwerkstoffe die Sisalfasern in Längen von 0,25 und 5 mm und Ton-Partikeln enthalten wurden im Heißpressverfahren hergestellt. Die Silan (Bis(Trithoxysilylpropyl)Tetrasulfide) Behandlung wurde für die Modifizierung verwendet um die Eigenschaften von ähnlichen hybriden Verbundwerkstoffen zu verbessern. Alle Verbundwerkstoffe wurden dem Wasseraufnahmetest unterzogen. Die mechanischen Eigenschaften der jeweiligen hybriden Verbundwerkstoffe wie Zugsteifigkeit und Festigkeit, Zähigkeit und Härte wurden in Zugversuchen, Schlagtests und Härteprüfungen bestimmt. Es zeigte sich, dass die Zugfestigkeit, Steifigkeit und Schlagzähigkeit von langen Sisalfasern sich mit der Erhöhung des Fasergehalts verbessert. Behandeltes Silan von langen Fasern mit 20 wt.% Belastung zeigte eine Verbesserung der Faser-Zugfestigkeit um 10% und Schlagzähigkeit von 750% im Vergleich zu reinem PHBV. Diese Besonderheit wurde auch von einem Rasterelektronenmikroskop bestätigt. Weiterhin ist die Härte und Wasserbeständigkeit in PHBV/Sisal-Verbundwerkstoffen durch das Einbringen von Ton-Partikeln angestiegen. Die Diffusionskoeffizienten für die untersuchten PHBV- und hybriden Verbundwerkstoffsysteme wurden auch errechnet.
|
32 |
MECHANICS OF STRUCTURE GENOME-BASED MULTISCALE DESIGN FOR ADVANCED MATERIALS AND STRUCTURESSu Tian (14232869) 09 December 2022 (has links)
<p>Composite materials have been invented and used to make all kinds of industrial products, such as automobiles, aircraft, sports equipment etc., for many years. Excellent properties such as high specific stiffness and strength have been recognized and studied for decades, motivating the use of composite materials. However, the design of composite structures still remains a challenge. Existing design tools are not adequate to exploit the full benefits of composites. Many tools are still based on the traditional material selection paradigm created for isotropic homogeneous materials, separated from the shape design. This will lose the coupling effects between composite materials and the geometry and lead to less optimum design of the structure. Hence, due to heterogeneity and anisotropy inherent in composites, it is necessary to model composite parts with appropriate microstructures instead of simplistically replacing composites as black aluminum and consider materials and geometry at the same time.</p>
<p><br></p>
<p>This work mainly focuses on the design problems of complex material-structural systems through computational analyses. Complex material-structural systems are structures made of materials that have microstructures smaller than the overall structural dimension but still obeying the continuum assumption, such as fiber reinforced laminates, sandwich structures, and meta-materials, to name a few. This work aims to propose a new design-by-analysis framework based on the mechanics of structure genome (MSG), because of its capability in accurate and efficient predictions of effective properties for different solid/structural models and three-dimensional local fields (stresses, strains, failure status, etc). The main task is to implement the proposed framework by developing new tools and integrating these tools into a complete design toolkit. The main contribution of this work is a new efficient high-fidelity design-by-analysis framework for complex material-structural systems.</p>
<p><br></p>
<p>The proposed design framework contains the following components. 1) MSG and its companion code SwiftComp is the theoretical foundation for structural analysis in this design framework. This is used to model the complex details of the composite structures. This approach provides engineers the flexibility to use different multiscale modeling strategies. 2) Structure Gene (SG) builder creates finite element-based model inputs for SwiftComp using design parameters defining the structure. This helps designers deal with realistic and meaningful engineering parameters directly without expert knowledge of finite element analysis. 3) Interface is developed using Python for easy access to needed data such as structural properties and failure status. This is used as the integrator linking all components and/or other tools outside this framework. 4) Design optimization methods and iteration controller are used for conducting the actual design studies such as parametric study, optimization, surrogate modeling, and uncertainty quantification. This is achieved by integrating Dakota into this framework. 5) Structural analysis tool is used for computing global structural responses. This is used if an integrated MSG-based global analysis process is needed.</p>
<p><br></p>
<p>Several realistic design problems of composite structures are used to demonstrate the capabilities of the proposed framework. Parameter study of a simple fiber reinforce laminated structure is carried out for investigating the following: comparing with traditional design-by-analysis approaches, whether the new approach can bring new understandings on parameter-response relations and because of new parameterization methods and more accurate analysis results. A realistic helicopter rotor blade is used to demonstrate the optimization capability of this framework. The geometry and material of composite rotor blades are optimized to reach desired structural performance. The rotor blade is also used to show the capability of strength-based design using surrogate models of sectional failure criteria. A thin-walled composite shell structure is used to demonstrate the capability of designing variable stiffness structures by steering in-plane orientations of fibers of the laminate. Finally, the tool is used to study and design auxetic laminated composite materials which have negative Poisson's ratios.</p>
|
33 |
Uma contribuição ao estudo das pontes em vigas mistas / A contribution to the study of composite steel-concrete bridges decksGutiérrez Klinsky, Gelafito Eduardo René 10 June 1999 (has links)
Este estudo fundamenta-se na análise numérica, via elementos finitos, de pontes em vigas mistas; considera-se a interação de todos os elementos que compõem a estrutura na transferência dos esforços até os apoios. Inicialmente apresenta-se um estado da arte sobre o projeto, execução e análise de pontes em vigas mistas, identificando as simplificações e deficiências existentes no cálculo destas estruturas. O estudo do comportamento estrutural de tabuleiros mistos foi abordado do ponto de vista tridimensional, sendo para isto modelados e analisados tabuleiros com 8, 10, 12, 14, 16, 18, 20, 22, 24 e 26 m. de vão mediante a utilização do programa ANSYS, versão 5.4. Foi estudada a influência que a presença de contraventamentos, espessura da laje, vão e posição da carga móvel na seção transversal exercem na distribuição de cargas nas vigas, sendo para isto considerado comportamento elástico-linear. Realizou-se também uma abordagem ao estudo da redundância estrutural de tabuleiros mistos considerando as não linearidades física e geométricas do conjunto. Foi verificado que tabuleiros sobre duas e quatro vigas mantêm o equilíbrio estático após que uma das vigas sofre fratura, sem experimentar grandes deslocamentos (inferiores ou ligeiramente superiores ao limite L/500). / This work is based in the numerical analysis, by finite elements, of bridge decks with composite beams; in this study the interaction of all the elements that compose the structure is considered in the transference of the efforts to the supports. lnitially, a state of the art on the design, construction and analysis of composite bridge decks is presented, identifying the simplifications adopted, lack of information at the present on the subject and aspects that need further studies on this bridges. The study of the structural behavior of composite bridge decks was approached from a three-dimensional point of view, modeling and analyzing composite decks with 8, 10, 12, 14, 16, 18, 20, 22, 24 and 26 m of span by using the software ANSYS, version 5.4. The influence that the bracing system, thickness of the slab, span and live load position on the deck, over the load distribution in the composite beams, considering linear-elastic behavior, was studied. An approach to the study of the structural redundancy of composite bridge decks was also made, considering the physical and geometric nonlinearities of the structure. lt was verified that decks consisting of two and four composite beams maintain the static equilibrium after the fracture of one of the beams, without large displacements (inferior or lightly superior to the limit L/500).
|
34 |
Analysis of delamination of composite laminates through the XFEM based on the Layerwise displacement theory / Análise de delaminação em compósitos laminados pelo método XFEM baseado no campo de deslocamento da teoria LayerwiseSantos, Matheus Vilar Mota 18 June 2018 (has links)
Composite laminates are being more employed as fundamental structures due to its low weight and high stiffness. An example of this innovation is the primary structures of modern aircraft, which are lighter than the material formerly used. To predict the material response as load gradually increases can be quite demanding due to composite\'s complex failure mechanism. Hence superior computational models should be further investigated to precisely predict the mechanical behavior of composite media. This dissertation addresses an extended finite element procedure based on the layerwise displacement theory to simulate purely mode I delamination failure in composite laminates. The present model has the potential to perform structural analyzes in a pre-delaminated structure and also considering progressive failure. The type of element to be employed at the discretion of the model is the rectangular 4-node iso-parametric homogeneous element whose displacement field is approximated based in the layerwise theory. There are four types of degrees of freedom, one displacement in each direction, and one degree of freedom associated to the strong discontinuity. Numerical examples already solved in the bibliography are suggested in this dissertation, which demonstrate the potential of the model developed to accurately simulate pure mode I delamination in case of the investigation here is further elaborated. In addition, one possibility of future development of this dissertation is the modeling of fracture mode I without the need to discretize the cohesive planes as realized in traditional Cohesive Zone Methods. / Compósitos laminados estão sendo mais empregados como estruturas fundamentais devido ao seu baixo peso e alta rigidez. Um exemplo dessa inovação são as estruturas primárias das aeronaves modernas, que são mais leves do que as os materiais empregados antigamente. Prever a resposta do material à medida que a carga aumenta gradualmente pode ser difícil devido ao complexo mecanismo de falha dos compósitos. Portanto, modelos computacionais mais refinados devem ser investigados a fim de se prever um comportamento mecânico mais preciso. Esta dissertação aborda um procedimento de elementos finitos estendido baseado na teoria de deslocamento layerwise para simular falhas de delaminação modo I em laminados compósitos. O modelo abordado tem potencial para realizar análises em uma estrutura prédelaminada além de falha progressiva. O tipo de elemento a ser empregado na discrição do modelo é o isoparamétrico, homogêneo de 4 nós, retangular, e o campo de deslocamento é baseado na teoria layerwise. Existem quatro tipos de graus de liberdade, um deslocamento em cada direção, e um grau de liberdade associado à forte. Sugere-se nesse trabalho, exemplos, que são comparados com a bibliografia, e que apontam que o modelo desenvolvido nesta dissertação tem o potencial de simular o fenômeno de delaminação em modo I com acurácia, caso o estudo nessa dissertação seja estendido. Além disso, uma possibilidade de desenvolvimento futuro desse trabalho é a modelagem da fratura modo I sem a necessidade de discretizar os planos coesivos entre as lâminas, como realizado em métodos coesivos tradicionais.
|
35 |
Zur physikalisch nichtlinearen Analyse von Verbund-Stabtragwerken unter quasi-statischer Langzeitbeanspruchung / On the Physically Nonlinear Analysis of Composite Structures under Quasi-Static Long-Term LoadingHannawald, Frank 02 April 2006 (has links) (PDF)
Software for designing structural frameworks in civil engineering is getting more and more complex. By offering reliable and efficient calculation methods, economic goals can be reached as well as the civil engineer's demands. Furthermore, opportunities for special developments are created and acceptance of new building systems is increased. The work presented here introduces a method for the physically nonlinear analysis of different composite beam designs for building and bridge structures which are subjected mainly to bending stresses under quasi-static, long-term loading. In addition, the utilization of these methods, including materials and modelling concepts, are shown in a newly developed software package. Present developments for composite construction and civil engineering requirements are the basis for the materials and modelling possibilities discussed. Particular attention is given to a realistic description of time and load dependent variables characterizing the state of the composite structures and their interactions. The selection of material models is based on experimental results. The main points of interest are concrete properties like creep, shrinkage, effluent hydration heat, cracking and boundary behaviour between different materials. Material behaviour under load and reload conditions was taken into account as well. The static solution is based on the incremental iterative application of the deformation method. Each iteration starts with the numerical integration of the beam system of differential equations. Based on the effects at the beam boundaries, the consideration of load and system modifications, as well as time dependent and independent constraint processes, is shown. An essential extension of the composite beam structure model is obtained using the system of differential equations for the flexible bond. Several detailed models are linked to a time dependent simulation for the entire system, which has been incorporated into a software package visualizing the time dependent variables. Finally, some practical application examples are presented. The validation of the implemented approach is demonstrated by correlating the calculated results with real life measurements. / Softwareentwicklungen für die Tragwerksplanung im Bauwesen werden zunehmend komplexer. Mit der Bereitstellung zuverlässiger und effizienter Berechnungsmethoden, welche sowohl ingenieurgemäße Ansprüche als auch wirtschaftliche Zielsetzungen erfüllen, werden neue Möglichkeiten für eine zielgerichtete Entwicklung oder verstärkte Etablierung von neueren Bauweisen geschaffen. Die vorliegende Arbeit beschreibt ein Verfahren zur physikalisch nichtlinearen Analyse vorwiegend biegebeanspruchter Verbund-Stabtragwerke des Hoch- und Brückenbaues unter quasi-statischer Langzeitbeanspruchung. Die zugehörige programmtechnische Umsetzung wird veranschaulicht. Die Modellierungsmöglichkeiten bezüglich der Werkstoffe orientieren sich an baupraktisch relevanten Erfordernissen sowie an den Besonderheiten und aktuellen Entwicklungen der Verbundbauweise. Besonderes Augenmerk wird zunächst auf eine realitätsnahe Darstellung der den Gebrauchs¬zustand von Verbundtragwerken charakterisierenden zeit- und lastabhängigen Einflussgrößen sowie ihrer Wechselwirkungen gelegt. Zur objektiven Beurteilung möglicher Materialmodelle wird zuerst auf das prinzipielle Verhalten im Experiment eingegangen, danach erfolgt eine Auswahl geeigneter Modelle. Schwerpunkte stellen dabei insbesondere die Betoneigenschaften Kriechen, Schwinden, abfließende Hydratationswärme und die Rissbildung sowie das Verbundverhalten zwischen den Werkstoffen dar. Diese Betrachtungen schließen das Werk¬stoffverhalten unter Be- und Entlastung ein. Die statische Lösung basiert auf einer inkrementell-iterativen Anwendung der Deformations¬methode. Ausgangspunkt der Berechnungen in einem Iterationsschritt ist die numerische Integration des Stab-Differentialgleichungssystems. Ausgehend von der Formulierung der Wirkungsgrößen an einem Stabrändern wird die Berücksichtigung von Belastungs- und Systemmodifikationen sowie zeitabhängigen und -unabhängigen Zwangsprozessen aufgezeigt. Eine wesentliche Erweiterung der Anwendungen im Stahl-Beton-Verbundbau stellt die Herleitung des Stab-Differentialgleichungssystems für den nachgiebigen Verbund dar. Mit der Verknüpfung einzelner Detailmodelle zu einem zeitabhängigen Lösungsverfahren und deren Integration in einen entsprechenden Softwareentwurf wird die programmtechnische Basis für eine modellhafte, zeitvariante Erfassung der beschreibenden Kenngrößen bereitgestellt. Ausgewählte praktische Beispiele demonstrieren abschließend die Anwendungsmöglichkeiten des Verfahrens und stellen die Verifikation der Simulationsergebnisse anhand von Messungen dar.
|
36 |
Elaboration d'un alliage métallique de structure cubique centrée pour le stockage portatif de l'hydrogène / Development of a metallic alloy with a centered cubic structure for a mobile hydrogen storage devicePlanté, Damien 11 July 2013 (has links)
Cette étude s’inscrit dans le cadre du stockage de l’hydrogène pour des applications mobiles de faibles puissances électriques. Elle a été réalisée dans le cadre du projet FUI HyCAN. L’objectif était la formulation et la fonctionnalisation d’un alliage métallique de structure cubique corps centrée. Ces solutions solides désordonnées sont à base de vanadium qui présente initialement une bonne réactivité vis-à-vis de l’hydrogène.Cependant la thermodynamique du système V-H ne permet pas une utilisation pour des températures inférieures à 40°C, son coût est prohibitif et sa mise en oeuvre en milieu industriel nécessite quelques précautions. Nous avons travaillé sur trois grandes familles d’alliages à base de vanadium. Les alliages de Ti-V-Cr ont été étudiés au rayonnement synchrotron par diffraction X in operando dans le but de comprendre les transformations structurales observables lors de l’hydruration et de les relier à la thermodynamique des composés. Dans unsecond temps, le cahier des charges du projet nous a orienté vers des composites à base de vanadium dans lesquels nous développons une structure intergranulaire permettant une meilleure activation et une déstabilisation contrôlée de l’hydrure pour atteindre des températures de fonctionnement proche de 0°C.L’utilisation du ferro-vanadium en tant que précurseur a motivé l’étude des alliages de type Ti-V-Fe et Ti-V-Fe-Cr. La viabilité des solutions de stockage sur la base de ces matériaux est discutée. Tout au long de ces travaux la relation microstructure/propriété de sorption de l’hydrogène est systématiquement discutée et des modèles empiriques décrivant l’équilibre de l’hydrure sont systématiquement confrontés à la base bibliographique.Enfin, une partie de l’étude est consacrée à l’étude et à la modélisation des réservoirs en condition de fonctionnement, d’un point de vue de la thermique, du respect des normes de sécurité et des contraintes mécaniques générées par le lit de poudre réactif. / This study has been carried out in the framework of solid state hydrogen storage for mobile applications withlow electrical power. It was conducted under the FUI project HyCAN. The objective was to develop andfunctionalize a bcc alloy. Such disordered solid solutions are based on vanadium, which initially has a goodreactivity in relation to hydrogen. However, the thermodynamics of V-H system does not allow applicationsbelow 40 ° C, the cost is prohibitive and its implementation in industrial environments is not straightforward.We worked on three major families of vanadium alloys. Alloys Ti-V-Cr have been studied by in operandosynchrotron radiation X-ray diffraction in order to understand the observable structural transformations that takeplace during hydrogenation and then to link them to the thermodynamics of compounds. In a second step, thespecifications of the project directed us towards vanadium composites in which we develop an intergranularstructure for a better controlled activation and destabilization of the hydride so as to reach operatingtemperatures near 0 ° C. The use of ferro-vanadium as a precursor prompted the study of alloys in the Ti-V-Feand Ti-V-Cr-Fe systems. The viability of storage solutions on the basis of these materials is discussed.Throughout the course of this work the relationship between microstructure and hydrogen sorption properties issystematically discussed and empirical models describing the hydride equilibrium are routinely faced with thebibliographic database.Finally, part of the study is devoted to the study and modeling of reservoirs in operating condition, from thepoint of view of heat exchange, compliance with safety standards and mechanical stresses generated by the bedreactive powder.
|
37 |
Analysis of delamination of composite laminates through the XFEM based on the Layerwise displacement theory / Análise de delaminação em compósitos laminados pelo método XFEM baseado no campo de deslocamento da teoria LayerwiseMatheus Vilar Mota Santos 18 June 2018 (has links)
Composite laminates are being more employed as fundamental structures due to its low weight and high stiffness. An example of this innovation is the primary structures of modern aircraft, which are lighter than the material formerly used. To predict the material response as load gradually increases can be quite demanding due to composite\'s complex failure mechanism. Hence superior computational models should be further investigated to precisely predict the mechanical behavior of composite media. This dissertation addresses an extended finite element procedure based on the layerwise displacement theory to simulate purely mode I delamination failure in composite laminates. The present model has the potential to perform structural analyzes in a pre-delaminated structure and also considering progressive failure. The type of element to be employed at the discretion of the model is the rectangular 4-node iso-parametric homogeneous element whose displacement field is approximated based in the layerwise theory. There are four types of degrees of freedom, one displacement in each direction, and one degree of freedom associated to the strong discontinuity. Numerical examples already solved in the bibliography are suggested in this dissertation, which demonstrate the potential of the model developed to accurately simulate pure mode I delamination in case of the investigation here is further elaborated. In addition, one possibility of future development of this dissertation is the modeling of fracture mode I without the need to discretize the cohesive planes as realized in traditional Cohesive Zone Methods. / Compósitos laminados estão sendo mais empregados como estruturas fundamentais devido ao seu baixo peso e alta rigidez. Um exemplo dessa inovação são as estruturas primárias das aeronaves modernas, que são mais leves do que as os materiais empregados antigamente. Prever a resposta do material à medida que a carga aumenta gradualmente pode ser difícil devido ao complexo mecanismo de falha dos compósitos. Portanto, modelos computacionais mais refinados devem ser investigados a fim de se prever um comportamento mecânico mais preciso. Esta dissertação aborda um procedimento de elementos finitos estendido baseado na teoria de deslocamento layerwise para simular falhas de delaminação modo I em laminados compósitos. O modelo abordado tem potencial para realizar análises em uma estrutura prédelaminada além de falha progressiva. O tipo de elemento a ser empregado na discrição do modelo é o isoparamétrico, homogêneo de 4 nós, retangular, e o campo de deslocamento é baseado na teoria layerwise. Existem quatro tipos de graus de liberdade, um deslocamento em cada direção, e um grau de liberdade associado à forte. Sugere-se nesse trabalho, exemplos, que são comparados com a bibliografia, e que apontam que o modelo desenvolvido nesta dissertação tem o potencial de simular o fenômeno de delaminação em modo I com acurácia, caso o estudo nessa dissertação seja estendido. Além disso, uma possibilidade de desenvolvimento futuro desse trabalho é a modelagem da fratura modo I sem a necessidade de discretizar os planos coesivos entre as lâminas, como realizado em métodos coesivos tradicionais.
|
38 |
Uma contribuição ao estudo das pontes em vigas mistas / A contribution to the study of composite steel-concrete bridges decksGelafito Eduardo René Gutiérrez Klinsky 10 June 1999 (has links)
Este estudo fundamenta-se na análise numérica, via elementos finitos, de pontes em vigas mistas; considera-se a interação de todos os elementos que compõem a estrutura na transferência dos esforços até os apoios. Inicialmente apresenta-se um estado da arte sobre o projeto, execução e análise de pontes em vigas mistas, identificando as simplificações e deficiências existentes no cálculo destas estruturas. O estudo do comportamento estrutural de tabuleiros mistos foi abordado do ponto de vista tridimensional, sendo para isto modelados e analisados tabuleiros com 8, 10, 12, 14, 16, 18, 20, 22, 24 e 26 m. de vão mediante a utilização do programa ANSYS, versão 5.4. Foi estudada a influência que a presença de contraventamentos, espessura da laje, vão e posição da carga móvel na seção transversal exercem na distribuição de cargas nas vigas, sendo para isto considerado comportamento elástico-linear. Realizou-se também uma abordagem ao estudo da redundância estrutural de tabuleiros mistos considerando as não linearidades física e geométricas do conjunto. Foi verificado que tabuleiros sobre duas e quatro vigas mantêm o equilíbrio estático após que uma das vigas sofre fratura, sem experimentar grandes deslocamentos (inferiores ou ligeiramente superiores ao limite L/500). / This work is based in the numerical analysis, by finite elements, of bridge decks with composite beams; in this study the interaction of all the elements that compose the structure is considered in the transference of the efforts to the supports. lnitially, a state of the art on the design, construction and analysis of composite bridge decks is presented, identifying the simplifications adopted, lack of information at the present on the subject and aspects that need further studies on this bridges. The study of the structural behavior of composite bridge decks was approached from a three-dimensional point of view, modeling and analyzing composite decks with 8, 10, 12, 14, 16, 18, 20, 22, 24 and 26 m of span by using the software ANSYS, version 5.4. The influence that the bracing system, thickness of the slab, span and live load position on the deck, over the load distribution in the composite beams, considering linear-elastic behavior, was studied. An approach to the study of the structural redundancy of composite bridge decks was also made, considering the physical and geometric nonlinearities of the structure. lt was verified that decks consisting of two and four composite beams maintain the static equilibrium after the fracture of one of the beams, without large displacements (inferior or lightly superior to the limit L/500).
|
39 |
Approche multiéchelle en espace et en temps pour la prévision des endommagements dans les structures composites soumises à un impact de faible énergie / A multiscale space time approche to simulate damages in composite structures subjected to a low energy impactChantrait, Teddy 17 December 2014 (has links)
Les stratifiés composites sont de plus en plus utilisés dans les pièces de structures des aéronefs ce qui fait émerger de nouvelles problématiques comme celle des Impacts de Faible Energie (IFE). En effet, bien qu’ils possèdent des propriétés rapportées à leur masse très intéressantes ces matériaux peuvent être vulnérables aux petits chocs. Or, compte tenu des nombreux paramètres influents lors d’un tel impact (énergie, vitesse, stratification...), les essais actuellement majoritairement privilégiés à l’échelle industrielle sont long et coûteux. Ainsi, l’apport de la simulation numérique pourrait être d’une grande aide pour les constructeurs. La pratique du « virtual testing », en particulier, permettrait d’aller dans cette direction ce qui aurait pour effet de rationaliser les campagnes d’essais et les coûts financier qui en découlent. Cependant, elle peine à être mise en place ici car le temps CPU nécessaire pour la simulation fine des ndommagements induits par les IFE est trop important avec les méthodes actuelles. Partant de ce constat, ce travail a consisté à tirer avantageusement partie de la localisation spatiale et temporelle des délaminages, fissurations matricielles et ruptures de fibres qui peuvent apparaître pendant l’impact pour diminuer le coût de calcul. Ainsi une méthode multiéchelle en espace et en temps a été mise en place. Elle consiste à découper la structure impactée en deux zones. L’une est située autour du point d’impact, elle contient l’ensemble des non-régularités du problème (contact, loi adoucissante, modèle de zone cohésive). Elle est traitée avec le code de dynamique explicite Europlexus. L’autre correspond à la partie complémentaire. Le problème mécanique y est beaucoup plus régulier et il est traité avec le code de dynamique implicite Zset/Zébulon. Un couplage peu intrusif basé sur la méthode GC est donc réalisé entre ces deux codes. Il permet d’utiliser une modélisation adaptée dans chacune des deux régions ce qui permet en particulier d’utiliser des pas de temps différents. Un rapport supérieur à 1000 peut ainsi être obtenu entre celui du code explicite fixé par la condition de stabilité et celui utilisé dans la partie complémentaire. Un gain de temps CPU significatif confirmé par la simulation d’un impact réalisé sur un panneau composite raidi est ainsi obtenu. Il est également montré que la répartition implicite/explicite peut évoluer au cours du calcul. Pour cela un mécanisme de bascule a été mis en place. Il permet ainsi de faire transiter la résolution d’une partie de la structure initialement traitée dans le code Zebulon dans Europlexus. Un gain de temps supplémentaire est alors obtenu grâce à cette méthode sur le même cas d’application. / The composite laminates are increasingly used in aircraft structural parts which lead to new issues such as the Low Energy Impacts (LEI). Indeed, although they have well mechanical properties relative to their mass, small shocks may be very harmfull for laminates. Controlling such situations is essential for manufacturers that why lot of testing campaigns are currently performed. Yet, they are time consuming and expensive considering the many influential parameters (energy, speed, layup...). Numerical simulations of this phenomenon by practicing the so called “virtual testing” process could be really helpfull to rationalize testing campaigns in order to save money. Yet, this practice remain currently hard to do at the industrial scale due to the excessive CPU time required for fine simulation of damages induced by the LEI. Based on this observation, this work has consisted in taking advantage of the spatial and temporal location of delamination, matrix cracking and fiber breakage that can occur during impact in order to reduce the computational cost. Thus, a space and time multiscale method has been put in place. The impacted structure is split into two areas. One is located around the impacted point, it contains all the non-regularities of the problem (contact, softening law, cohesive zone model). This domain is treated with the explicit dynamics code Europlexus. The other one corresponds to the complementary part. The mechanical problem is much more regular and it is treated with the implicit dynamics code Zset / Zebulon. A low intrusive coupling based on the GC method is carried out between these two codes. It allows to use an adapted model in both regions different time step are in particular used. A time step ratio upper to 1000 can be reach between the one of the explicit code set by the stability condition and the one used in the complementary part. As a results, significant CPU time is saved. This is confirmed by the simulation of a stiffened composite panel impacted. It is also shown that the implicit / explicit allocation can change over the calculation. To do that, a switch mechanism has been established. It thus makes it possible to transit the resolution of a portion of the structure initially solved in the code Zebulon to Europlexus. As a results, further gain is obtained.
|
40 |
Návrh silničního ocelobetonového komorového mostu na obchvatu Bludova / Design of steel-concrete composite structure of road box girder bridge on by-road of BludovKuba, Michal January 2018 (has links)
The aim of this work is design and assessment of the box-girder road bridge on by-road of Bludov. Bridge is designed as composite steel concrete bridge with 5 spans with distances between supports of 31,25 m; 40,0 m; 60,0 m; 60,0 m and 40,35 m. Main bearing structure is designed as open steel box-girder with reinforced concrete deck. Box girder is braced with longitudinal and transversal bracings. Main structure is separated for each traffic direction. The bridge crosses river Morava and railway in 2nd and 3rd span, respectively. The category of road I/44 is S 21,5/100. The height of steel box girder is designed as 2,5 m. Bridge will be built by incremental launching method, with in-situ casted concrete deck afterwards. The bridge is designed according to current standards. Supporting elements are designed from steel of class S 355 and concrete of class C35/45.
|
Page generated in 0.0878 seconds