Spelling suggestions: "subject:"compound semiconductor"" "subject:"compound emiconductor""
1 |
Characterization of III-V Compound Semiconductor MOS Structures with Titanium Oxide as Gate OxideYen, Chih-Feng 19 December 2007 (has links)
Due to the high electron mobility compared with Si, much attention has been focused on III-V compound semiconductors (gallium arsenide (GaAs) and indium phosphide (InP)) high-speed devices. The high-k material TiO2 not only has high dielectric constant (k = 35-100) but has well lattice match with GaAs and InP substrate. Therefore, titanium oxide (TiO2) was chosen to be the gate oxide in this study.
The major problem of III-V compound semiconductors is known to have poor native oxide on it and leading to the Fermi level pinning at the interface of oxide and semiconductor. The C-V stretch-out phenomenon can be observed and the leakage current is high. The higher dielectric constant of poly-crystalline TiO2 film grown on GaAs can be obtained by metal organic chemical vapor deposition (MOCVD). But the high leakage current also occurred due to the grain boundary and defects in the poly-crystalline TiO2 film.
The surface passivation of GaAs with (NH4)2Sx treatment (S-GaAs) could prevent it from oxidizing after cleaning and improve the interface properties of MOSFET. The fluorine from liquid phase deposited SiO2 solution can passivate the grain boundary of poly-crystalline MOCVD-TiO2 film and interface state. The high dielectric constant and low leakage current of fluorine passivated MOCVD-TiO2/S-GaAs can be obtained. The leakage current densities are 3.41 x 10-7 A/cm2 and 1.13 x 10-6A/cm2 at ¡Ó1.5 MV/cm, respectively. The Dit is 4.6 x 1011 cm-2eV-1 at the midgap. The dielectric constant can reach 71.
In addition, the post-metallization annealing (PMA) is another efficiency way to improve the MOCVD-TiO2 quality. The mechanism of PMA process is from the reaction between the aluminum contact and hydroxyl groups existed on TiO2 film surface. Then the active hydrogen is produced to diffuse through the oxide and passivate the oxide traps. For PMA (350oC)-MOCVD-TiO2 on S-GaAs MOS structure, the leakage current densities can reach 2.5 x 10-7 and 5 x 10-7 A/cm2 at ¡Ó1.5 MV/cm, respectively. The dielectric constant and the Dit are 66 and 5.96 x 1011 cm-2eV-1, respectively.
In order to avoid the leakage current from grain boundary of poly-crystalline TiO2, and liquid phase deposited TiO2 (LPD-TiO2) at low temperature can preserve the function of sulfur passivation. Therefore, the amorphous LPD-TiO2 was deposited on S-GaAs. The leakage current densities are 1.04 x 10-7 and 1.91 x 10-7 A/cm2 at ¡Ó0.5 MV/cm, respectively. The Dit is 3.2 x 1011 cm-2eV-1 and the dielectric constant is 48. The LPD-TiO2 film was deposited on (NH4)2Sx treated InP (S-InP), and the 4 x 100 £gm2 enhancement mode N channel InP MOSFET with LPD-TiO2 as gate oxide was fabricated, which showed the good characteristic. The normalized maximum gm is 43 mS/mm at VG = 1.3 V for VDS fixed at 1 V. The maximum calculated £gFE of 348 cm2/V¡Es at VDS = 1 V is obtained.
|
2 |
Fabrication of bulk crystal and thin film of Ⅱ-Ⅳ-Ⅴ2 type compound semiconductor ZnSnP2 for photovoltaic application / Ⅱ-Ⅳ-Ⅴ2型化合物半導体ZnSnP2のバルク結晶および薄膜作製と太陽電池材料への応用Nakatsuka, Shigeru 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20334号 / 工博第4271号 / 新制||工||1662(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 安田 秀幸, 教授 酒井 明, 准教授 野瀬 嘉太郎 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
3 |
Compound semiconductor material manufacture, process improvementWilliams, Howard R. January 2002 (has links)
IQE (Europe) Ltd. manufactures group III/V compound semiconductor material structures, using the Metal Organic Vapour Phase Epitaxy process. The manufactured ranges of semi-conducting materials are relative to discrete or multi-compound use of Gallium Arsenide or Indium Phosphide [III/V]. For MOVPE to compete in large-scale markets, the manufacturing process requires transformation into a reliable, repeatable production process. This need is identified within the process scrap percentage of the process when benchmarked against the more mature Si-CVD process. With this wide-ranging product base and different material systems, flexible processes and systems are essential. The negative impact however, of this demanded flexibility is a complex system, resulting in instability. Minor fluctuations in time, flow, pressure, temperature, or composition in the manufacturing process, will lead to characteristic differences in the produced material [product], when comparing the prescribed run to the actual run. The product profile changes very rapidly, correspondingly the failure profile of the process is equally as dynamic, it is essential therefore that the analysis and projected activities and actions can be identified and consolidated in a timely manner. This project evaluates the process used by IQEE to manufacture III/V compound semi-conducting material structures and uses the business performance to identify the process drivers. One year's [1997] business and process information is used for a single iteration of the improvement cycle. These drivers are then utilised as operators and offer the critical weaknesses in the process related to performance blockages. Some of the techniques utilised in the process evaluation and cause derivation; are original contributions specifically derived for use with a multi-platform complex process with multiple cause and effect operators. A double reporting FMEA contributes a differing rank for like machines running differing products, offering a machine specific failure profile. A novel composite of P-diagram and process flow techniques enables determination of activity influences confirming the key failure mechanism as previously identified by the business risk analysis. This project concludes by nominating the key failure mechanism accounting for 41% of the approximate 50% scrap figure identified again within the business risk analysis. The effects attributed to this failure mechanism are 2- dimensionally analysed utilising an original double operating FMEA, plotting effect to effect for the individual causes, offering a prioritised list of failure categories. The highest priority failure mode is addressed by an equipment design exercise, resulting in an overall 10% sales potential recontribution.
|
4 |
Studies of magnetoresistance and Hall sensors in semiconductorsWipatawit, Praphaphan January 2006 (has links)
The design, fabrication and performance of an Extraordinary Magnetoresistance (EMR) and a Vertical Mesa Hall Sensor (VMHS) are studied. EMR devices have been fabricated from a 2DEG InAs/GaSb structures which exhibit a low carrier density and high mobility that achieve the best performance. The general electrical magneto-transport properties are given. The experiments investigate mainly different metallic patterns, which are Rectangular, Triangular and Tip pattern between 4-300 K. Probe configurations and the enhancement of relative size of metallic patterns are described. EMR effect is due to current deflection around the metal-semiconductor interface. The results are metallic pattern dependent. Using finite element analysis, good agreement between experimental and theoretical results was found. The best performance sensor is a symmetrical metallic Tip pattern. It is enhanced by the length of the Tip’s point and the large metallic area. This pattern when combines with an asymmetrical probe configuration, exhibits the highest EMR of 900% at –0.275T measured by inner probes and the best sensitivity of 54Ω/T at room temperature. The second study presents in-plane Hall effect sensors made from InSb. A simple device geometry has been used in which current flows in a plane perpendicular to the device surface. Device sensitivity depends on its geometry and a series of different contacts are used to investigate the geometry of the current flow distribution. The structures produced are only sensitive to the presence of one in-plane field component, and they also demonstrate good angular selectivity. Multi-electrodes were used to investigate biasing current from both mesa and substrate condition. We are able to examine the Hall voltage as a function of contact positions and also to create multiple VMHS. Offset reduction of devices has been achieved by moving the ground contacts to re-balance the current distribution under the mesa surface.
|
5 |
Defects and Defect Clusters in Compound SemiconductorsJanuary 2020 (has links)
abstract: Extended crystal defects often play a critical role in determining semiconductor device performance. This dissertation describes the application of transmission electron microscopy (TEM) and aberration-corrected scanning TEM (AC-STEM) to study defect clusters and the atomic-scale structure of defects in compound semiconductors.
An extensive effort was made to identify specific locations of crystal defects in epitaxial CdTe that might contribute to degraded light-conversion efficiency. Electroluminescence (EL) mapping and the creation of surface etch pits through chemical treatment were combined in attempts to identify specific structural defects for subsequent TEM examination. Observations of these specimens revealed only surface etch pits, without any visible indication of extended defects near their base. While chemical etch pits could be helpful for precisely locating extended defects that intersect with the treated surface, this study concluded that surface roughness surrounding etch pits would likely mitigate against their usefulness.
Defect locations in GaAs solar-cell devices were identified using combinations of EL, photoluminescence, and Raman scattering, and then studied more closely using TEM. Observations showed that device degradation was invariably associated with a cluster of extended defects, rather than a single defect, as previously assumed. AC-STEM observations revealed that individual defects within each cluster consisted primarily of intrinsic stacking faults terminated by 30° and 90° partial dislocations, although other defect structures were also identified. Lomer dislocations were identified near locations where two lines of strain contrast intersected in a large cluster, and a comparatively shallow cluster, largely constrained to the GaAs emitter layer, contained 60° perfect dislocations associated with localized strain contrast.
In another study, misfit dislocations at II-VI/III-V heterovalent interfaces were investigated and characterized using AC-STEM. Misfit strain at ZnTe/GaAs interfaces, which have relatively high lattice mismatch (7.38%), was relieved primarily through Lomer dislocations, while ZnTe/InP interfaces, with only 3.85% lattice mismatch, were relaxed by a mixture of 60° perfect dislocations, 30° partial dislocations, and Lomer dislocations. These results were consistent with the previous findings that misfit strain was relaxed primarily through 60° perfect dislocations that had either dissociated into partial dislocations or interacted to form Lomer dislocations as the amount of misfit strain increased. / Dissertation/Thesis / Doctoral Dissertation Physics 2020
|
6 |
Investigation on properties of zinc phosphide related materials and interfaces for optoelectronic devices / 光・電子デバイスを指向した燐化亜鉛関連材料および界面の特性に関する研究Katsube, Ryoji 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21104号 / 工博第4468号 / 新制||工||1694(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 杉村 博之, 教授 田中 功, 准教授 野瀬 嘉太郎 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
7 |
Scanning Tunneling Microscopy Investigation of Rock-salt and Zinc-blende Nitrides Grown by Molecular Beam EpitaxyAl-Brithen, Hamad A.H. January 2004 (has links)
No description available.
|
8 |
Design, Fabrication and Characterization of a GaAs/InxGa1-xAs/GaAs Heterojunction Bipolar TransistorLidsky, David 16 October 2014 (has links)
Designs for PnP GaAs/InxGa1-xAs/GaAs heterojunction bipolar transistors (HBTs) are proposed and simulated with the aid of commercial software. Band diagrams, Gummel plots and common emitter characteristics are shown for the specific case of x=1, x=0.7, and x linearly graded from 0.75 to 0.7. Of the three designs, it is found that the linearly graded case has the lowest leakage current and the highest current gain. IV curves for all four possible classes of InAs/GaAs heterojunction (nN, nP, pN, pP) are calculated. A pN heterojunction is fabricated and characterized. In spite of the 7% lattice mismatch between InAs and GaAs, the diode has an ideality factor of 1.26 over three decades in the forward direction. In the reverse direction, the leakage current grows exponentially with the magnitude of the bias, and shows an effective ideality factor of 3.17, in stark disagreement with simulation. IV curves are taken over a temperature range of 105 K to 405 and activation energies are extracted. For benchmarking the device processing and the characterization apparatus, a conventional GaAs homojunction diode was fabricated and characterized, showing current rectification ratio of 109 between plus one volt and minus one volt. Because the PnP material for the optimal HBT design was not available, an Npn GaAs/InAs/InAs HBT structure was processed, characterized, and analyzed. The Npn device fails in both theory and in practice; however, by making a real structure, valuable lessons were learned for crystal growth, mask design, processing, and metal contacts. / Master of Science
|
9 |
Optical properties of ALN and deep UV photonic structures studied by photoluminescenceSedhain, Ashok January 1900 (has links)
Doctor of Philosophy / Department of Physics / Jingyu Lin / Time-resolved deep ultraviolet (DUV) Photoluminescence (PL) spectroscopy system has been employed to systematically monitor crystalline quality, identify the defects and impurities, and investigate the light emission mechanism in III-nitride semiconducting materials and photonic structures. A time correlated single photon counting system and streak camera with corresponding time resolutions of 20 and 2 ps, respectively, were utilized to study the carrier excitation and recombination dynamics. A closed cycle He-flow cryogenic system was employed for temperature dependent measurements. This system is able to handle sample temperatures in a wide range (from 10 to 900 K). Structural, electrical, and morphological properties of the material were monitored by x-ray diffraction (XRD), Hall-effect measurement, and atomic force microscopy (AFM), respectively. Most of the samples studied here were synthesized in our laboratory by metal organic chemical vapor deposition (MOCVD). Some samples were bulk AlN synthesized by our collaborators, which were also employed as substrates for homoepilayer growth.
High quality AlN epilayers with (0002) XRD linewidth as narrow as 50 arcsec and screw type dislocation density as low as 5x10[superscript]6 cm[superscript]-2 were grown on sapphire substrates. Free exciton transitions related to all valence bands (A, B, and C) were observed in AlN directly by PL, which allowed the evaluation of crystal field (Δ[subscript]CF) and spin-orbit (Δ[subscript]SO) splitting parameters exerimentally. Large negative Δ[subscript]CF and, consequently, the difficulties of light extraction from AlN and Al-rich AlGaN based emitters due to their unique optical polarization properties have been further confirmed with these new experimental data. Due to the ionic nature of III-nitrides, exciton-LO phonon Frohlich interaction is strong in these materials, which is manifested by the appearance of phonon replicas accompanying the excitonic emission lines in their PL spectra.
The strength of the exciton-phonon interactions in AlN has been investigated by measuring the Huang-Rhys factor. It compares the intensity of the zero phonon (exciton emission) line relative to its phonon replica.
AlN bulk single crystals, being promising native substrate for growing nitride based high quality device structures with much lower dislocation densities (<10[superscript]4 cm[superscript]-2), are also expected to be transparent in visible to UV region. However, available bulk AlN crystals always appear with an undesirable yellow or dark color. The mechanism of such undesired coloration has been investigated. MOCVD was utilized to deposit ~0.5 μm thick AlN layer on top of bulk crystal. The band gap of strain free AlN homoepilayers was 6.100 eV, which is ~30 meV lower compared to hetero-epitaxial layers on sapphire possessing compressive strain. Impurity incorporation was much lower in non-polar m-plane growth mode and the detected PL signal at 10 K was about an order of magnitude higher from a-plane homo-epilayers compared to that from polar c-plane epilayers.
The feasibility of using Be as an alternate p-type dopant in AlN has been studied. Preliminary studies indicate that the Be acceptor level in AlN is ~330 meV, which is about 200 meV shallower than the Mg level in AlN.
Understanding the optical and electronic properties of native point defects is the key to achieving good quality material and improving overall device performance. A more complete picture of optical transitions in AlN and GaN has been reported, which supplements the understanding of impurity transitions in AlGaN alloys described in previous reports.
|
10 |
Metalorganic chemical vapor deposition of gallium nitride on sacrificial substratesFenwick, William Edward 18 June 2009 (has links)
GaN-based light emitting diodes (LEDs) face several challenges if the technology is to make a significant impact on the solid state lighting market. The two most pressing of these challenges are cost and efficiency. The development of alternative substrate technologies shows promise toward addressing both of these challenges, as both GaN-based device technology and the associated metalorganic chemical vapor deposition (MOCVD) technology are already relatively mature. Zinc oxide (ZnO) and silicon (Si) are among the most promising alternative substrates for GaN epitaxy. This work focuses on the development of MOCVD growth processes to yield high quality GaN-based materials and devices on ZnO and Si.
ZnO, because of its similar lattice constant and thermal expansion coefficient, is a promising substrate for growth of low defect-density GaN. The major hurdles for GaN growth on ZnO are the instability of ZnO in a hydrogen atmosphere and out-diffusion of zinc and oxygen from the substrate. A process was developed for the MOCVD growth of wurtzite GaN and InxGa1-xN on ZnO, and the structural and optical properties of these films were studied. High zinc and oxygen concentrations remained an issue, however, and the diffusion of zinc and oxygen into the subsequent GaN layer was studied more closely.
Silicon is the most promising material for the development of an inexpensive, large-area substrate technology. The challenge in GaN growth on Si is the tensile strain induced by the lattice and thermal mismatch between GaN and Si. A thin atomic layer deposition (ALD)-grown Al2O3 interlayer was employed to relieve strain while also simplifying the growth process. While some strain was still observed, the oxide interlayer leads to an improvement in thin film quality and a reduction in both crack density and screw dislocation density in the GaN films.
A comparison of GaN-based LEDs grown on sapphire and Al2O3/Si shows similar performance characteristics for both devices. IQE of the devices on silicon is ~32%, compared to ~37% on sapphire. These results show great promise toward an inexpensive, large-area, silicon-based substrate technology for MOCVD growth of GaN-based optoelectronic devices.
|
Page generated in 0.0679 seconds