• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • Tagged with
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of III-V Compound Semiconductor MOS Structures with Titanium Oxide as Gate Oxide

Yen, Chih-Feng 19 December 2007 (has links)
Due to the high electron mobility compared with Si, much attention has been focused on III-V compound semiconductors (gallium arsenide (GaAs) and indium phosphide (InP)) high-speed devices. The high-k material TiO2 not only has high dielectric constant (k = 35-100) but has well lattice match with GaAs and InP substrate. Therefore, titanium oxide (TiO2) was chosen to be the gate oxide in this study. The major problem of III-V compound semiconductors is known to have poor native oxide on it and leading to the Fermi level pinning at the interface of oxide and semiconductor. The C-V stretch-out phenomenon can be observed and the leakage current is high. The higher dielectric constant of poly-crystalline TiO2 film grown on GaAs can be obtained by metal organic chemical vapor deposition (MOCVD). But the high leakage current also occurred due to the grain boundary and defects in the poly-crystalline TiO2 film. The surface passivation of GaAs with (NH4)2Sx treatment (S-GaAs) could prevent it from oxidizing after cleaning and improve the interface properties of MOSFET. The fluorine from liquid phase deposited SiO2 solution can passivate the grain boundary of poly-crystalline MOCVD-TiO2 film and interface state. The high dielectric constant and low leakage current of fluorine passivated MOCVD-TiO2/S-GaAs can be obtained. The leakage current densities are 3.41 x 10-7 A/cm2 and 1.13 x 10-6A/cm2 at ¡Ó1.5 MV/cm, respectively. The Dit is 4.6 x 1011 cm-2eV-1 at the midgap. The dielectric constant can reach 71. In addition, the post-metallization annealing (PMA) is another efficiency way to improve the MOCVD-TiO2 quality. The mechanism of PMA process is from the reaction between the aluminum contact and hydroxyl groups existed on TiO2 film surface. Then the active hydrogen is produced to diffuse through the oxide and passivate the oxide traps. For PMA (350oC)-MOCVD-TiO2 on S-GaAs MOS structure, the leakage current densities can reach 2.5 x 10-7 and 5 x 10-7 A/cm2 at ¡Ó1.5 MV/cm, respectively. The dielectric constant and the Dit are 66 and 5.96 x 1011 cm-2eV-1, respectively. In order to avoid the leakage current from grain boundary of poly-crystalline TiO2, and liquid phase deposited TiO2 (LPD-TiO2) at low temperature can preserve the function of sulfur passivation. Therefore, the amorphous LPD-TiO2 was deposited on S-GaAs. The leakage current densities are 1.04 x 10-7 and 1.91 x 10-7 A/cm2 at ¡Ó0.5 MV/cm, respectively. The Dit is 3.2 x 1011 cm-2eV-1 and the dielectric constant is 48. The LPD-TiO2 film was deposited on (NH4)2Sx treated InP (S-InP), and the 4 x 100 £gm2 enhancement mode N channel InP MOSFET with LPD-TiO2 as gate oxide was fabricated, which showed the good characteristic. The normalized maximum gm is 43 mS/mm at VG = 1.3 V for VDS fixed at 1 V. The maximum calculated £gFE of 348 cm2/V¡Es at VDS = 1 V is obtained.
2

High Dielectric Constant Nickel-doped Titanium Oxide Films by Liquid Phase Deposition

Chiu, Shih-chen 11 August 2011 (has links)
In this study, the characteristics of Nickel-doped LPD-TiO2 films on silicon substrate were investigated. In our experiment, we do some measurement about physical, chemical and electrical properties for undoped and Nickel-doped LPD-TiO2 films and discussed with them. The TiO2 film thickness was characterized by field emission scanning electron microscopy ( FE-SEM ), structure was characterized by X-ray diffraction (XRD), chemical properties was characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and electrical properties was characterized by leakage current: current-voltage (B1500A) and dielectric constant: capacitance-voltage (4980A). For the electrical property improvements, we investigated the Ni-doped LPD-TiO2 films by the post-anneal treatments in nitrogen, oxygen and nitrous oxide ambient. For nickel doping, the nickel chloride was used as the doping solution and the electrical characteristics were improved. After thermal annealing in nitrous oxide at 700 oC, the dielectric constant of polycrystalline titanium oxide film is 29 and can be improved to 94 with nickel doping.
3

Study of Titanium Oxide and Nickel Oxide Films by Liquid Phase Deposition

Fan, Cho-Han 27 October 2011 (has links)
An uniform titanium oxide film was grown on indium tin oxide/glass substrate with the aqueous solutions of ammonium hexafluoro-titanate and boric acid. The as-deposition titanium oxide film shows good electrochromic property because of fluorine passivation on defects and dangling bonds. The transmittance of as-grown titanium oxide on indium tin oxide/glass with a thickness of 270 nm is about 85% at the wavelength of 550 nm. By 50 times electrochromic cycling test, the transparency ratio of TiO2 film is kept at 45% between fully colored state and fully bleached state at the wavelength of 550 nm. Under ultraviolet illumination, the growth of titanium oxide film grown is enhanced. The root mean squared value of surface roughness is improved from 3.723 to 0.523 nm. Higher fluorine concentration from (NH4)2TiF6 passivate defects and dangling bonds of titanium oxide during the growth. After 50 times electrochromic cycling test, the transparency ratio UV-TiO2 is improved from 37.5% to 42.4% at the wavelength of 550 nm. The electrical characteristics of nickel-doped titanium oxide films on p-type (100) silicon substrate by liquid phase deposition were investigated. For nickel doping, the nickel chloride was used as the doping solution and the electrical characteristics were improved. After thermal annealing in nitrous oxide at 700 oC, the dielectric constant of polycrystalline titanium oxide film is 29 and can be improved to 94 with nickel doping. Uniform nickel oxide film was grown on a conducting glass substrate with the aqueous solution of saturated NiF2¡E4H2O solution and H3BO3. The quality of NiO is improved after thermal annealing at 300 oC in air from the decrease of oxygen vacancy and better F ion passivation on defects and dangling bonds. The transmittance of as-deposited NiO/ITO/glass with a thickness of 100 nm is about 78% and improved to 88% after annealing at the wavelength of 550 nm. By the electrochromic cycling test 50 times on annealed NiO film, the transparency ratio is kept at 48% between fully colored state and fully bleached state at the wavelength of 550 nm. By the memory time test, the annealed LPD-NiO film has shorter memory time. The growth of nickel oxide film grown on indium-tin oxide/glass substrate by liquid phase deposition is enhanced under ultraviolet photo-irradiation was studied. a-Ni(OH)2 dominates the composition of as-grown NiO film. After thermal treatment at 300 oC,a-Ni(OH)2 is transformed into NiO. For thermally treated NiO under ultraviolet photo-irradiation, the recrystallization and the colored and bleached transmittance after 50 times electrochromic test were improved. Both improvements come from fluorine passivation. Transparent and conductive thin films consisting of p-type nickel oxide (NiO) semiconductors were prepared by liquid phase deposition. A resistivity of 8 x 10-1 -cm was obtained for NiO films prepared at liquid phase deposition. The transmittance of NiO is almost 70 % in the 550 nm wavelength was obtained for a 384.3 nm thick NiO film.
4

Filmes de SiO2 depositados e crescidos termicamente sobre SiC : caracterização físico-química e elétrica / SiO2 films deposited and thermally grown on SiC: Electrical and physicochemical characterization

Pitthan Filho, Eduardo January 2013 (has links)
O carbeto de silício (SiC) é um semicondutor com propriedades adequadas para substituir o silício em dispositivos eletrônicos em aplicações que exijam alta potência, alta freqüência e/ou temperatura. Além disso, um filme de dióxido de silício (SiO2) pode ser crescido termicamente sobre o SiC de maneira análoga a sobre silício, permitindo que a tecnologia já existente para a fabricação de dispositivos utilizando Si possa ser adaptada para o caso do SiC. No entanto, filmes crescidos termicamente sobre SiC apresentam maior densidade de defeitos eletricamente ativos na região interfacial SiO2/SiC que no SiO2/Si. Assim, compreender a origem e os parâmetros que afetam essa degradação elétrica é um importante passo para a tecnologia do SiC. A primeira parte deste trabalho teve como objetivo compreender o efeito de parâmetros de oxidação (pressão de oxigênio e tempo de oxidação) no crescimento térmico de filmes de dióxido de silício sobre substratos de carbeto de silício. As oxidações foram realizadas em ambiente rico em 18O2 e a influência na taxa de crescimento térmico dos filmes de Si18O2 e nas espessuras das regiões interfaciais formadas entre o filme dielétrico e o substrato foram investigadas utilizando análises por reação nuclear. Para correlacionar as modificações nas propriedades investigadas com as propriedades elétricas das amostras, estruturas metal-óxidosemicondutor foram fabricadas e levantamento de curvas corrente-voltagem e capacitânciavoltagem foi realizado. Com isso, pretendeu-se melhor compreender a origem da degradação elétrica gerada pela oxidação térmica no SiC. Observou-se que a taxa de crescimento térmico dos filmes de SiO2 depende de um parâmetro dado pelo produto do tempo de oxidação e da pressão de oxigênio, para as condições testadas. O deslocamento da tensão de banda plana com relação ao valor ideal mostrou-se igualmente dependente desse parâmetro, indicando que uma maior degradação elétrica na região interfacial SiO2/SiC ocorrerá conforme o filme fica mais espesso devido ao aumento dos parâmetros investigados. Não observaram-se modificações nas espessuras da região interfacial SiO2/SiC e na tensão de ruptura dielétrica dos filmes de SiO2 atribuídas aos parâmetros de oxidação testados. Na segunda parte deste trabalho, visando minimizar a degradação elétrica da região interfacial SiO2/SiC gerada pela oxidação térmica do SiC, propôs-se crescer termicamente, em uma condição mínima de oxidação, um filme muito fino e estequiométrico de SiO2, monitorado por espectroscopia de fotoelétrons induzidos por raios X. Para formar filmes mais espessos de SiO2 e poder fabricar estruturas MOS, depositaram-se filmes de SiO2 por sputtering. As espessuras e estequiometria dos filmes depositados foram determinadas por espectrometria de retroespalhamento Rutherford com ou sem canalização. As estruturas MOS em que o filme fino de SiO2 foi crescido termicamente antes da deposição apresentaram menor deslocamento da tensão de banda plana com relação ao valor ideal e maior tensão de ruptura dielétrica do que as amostras em que o filme foi apenas crescido termicamente ou apenas depositado, confirmando a minimização da degradação elétrica da região interfacial SiO2/SiC pela rota proposta. O efeito de um tratamento térmico em ambiente inerte de Ar nas estruturas também foi investigado. Observou-se uma degradação elétrica na região interfacial SiO2/SiC devido a esse tratamento. Análises por reação nuclear indicaram que o filme fino crescido termicamente não permaneceu estável durante o tratamento térmico, perdendo oxigênio para o ambiente gasoso e misturando os isótopos de oxigênio do filme crescido termicamente com o do filme depositado. / Silicon carbide (SiC) is a semiconductor with adequate properties to substitute silicon in electronic devices in applications that requires high power, high frequency, and/or high temperature. Besides, a silicon dioxide (SiO2) film can be thermally grown on SiC in a similar way to that on Si, allowing that technology already used to fabricate devices based on Si to be adapted to the SiC case. However, the oxide films thermally grown on SiC present higher density of electrical defects at the SiO2/SiC interfacial region when compared to the SiO2/Si. Thus, the understanding of the origin and what parameters affect the electrical degradation is an important step to the SiC technology. The first part of this work aimed to understand the effect of oxidation parameters (oxygen pressure and oxidation time) in the thermal growth of silicon dioxide films on silicon carbide substrates. The oxidations were performed in an 18O2 rich ambient and the influence on the growth rate of the Si18O2 films and on the interfacial region thickness formed between the dielectric film and the substrate were investigated using nuclear reaction analyses. To correlate the modifications observed in these properties with modifications in the electrical properties, metal-oxide-semiconductors structures were fabricated and current-voltage and capacitancevoltage curves were obtained. The aim was to understand the origin of the electrical degradation due to the thermal oxidation of silicon carbide. It was observed that the growth rate of the Si18O2 films depends on the parameter given by the product of the oxygen pressure and the oxidation time, under the conditions tested. The flatband voltage shift with respect to the ideal value was also influenced by the same parameter, indicating that a larger electrical degradation in the SiO2/SiC interfacial region will occur as the film becomes thicker due to the increase of the values of the investigated parameters. No modifications were observed in the SiO2/SiC interfacial region thickness and in the dielectric breakdown voltage of the SiO2 films that could be attributed to the oxidation parameters tested. In the second part of this work, in order to minimize electrical degradation due to thermal oxidation of silicon carbide, a stoichiometric SiO2 film with minimal thickness was thermally grown, monitored by X-ray photoelectron spectroscopy. To obtain thicker films and to fabricate MOS structures, a SiO2 film was deposited by sputtering. The thicknesses and stoichiometries of the deposited films were determined by Rutherford backscattering spectrometry using or not the channeling geometry. The MOS structures in which a thin film was thermally grown before the deposition presented smaller flatband voltage shift and higher breakdown voltage when compared to SiO2 films only thermally grown or only deposited directly on SiC, confirming that the electrical degradation in the SiO2/SiC interfacial region was minimized using the proposed route. The effect of one thermal treatment in argon in the structures was also investigated. An electrical degradation in the SiO2/4H-SiC interface was observed. Nuclear reaction analyses indicated that the thin film thermally grown was not stable during the annealing, loosing O to the gaseous ambient and mixing O isotopes of the thermally grown film with those of the deposited film.
5

Filmes de SiO2 depositados e crescidos termicamente sobre SiC : caracterização físico-química e elétrica / SiO2 films deposited and thermally grown on SiC: Electrical and physicochemical characterization

Pitthan Filho, Eduardo January 2013 (has links)
O carbeto de silício (SiC) é um semicondutor com propriedades adequadas para substituir o silício em dispositivos eletrônicos em aplicações que exijam alta potência, alta freqüência e/ou temperatura. Além disso, um filme de dióxido de silício (SiO2) pode ser crescido termicamente sobre o SiC de maneira análoga a sobre silício, permitindo que a tecnologia já existente para a fabricação de dispositivos utilizando Si possa ser adaptada para o caso do SiC. No entanto, filmes crescidos termicamente sobre SiC apresentam maior densidade de defeitos eletricamente ativos na região interfacial SiO2/SiC que no SiO2/Si. Assim, compreender a origem e os parâmetros que afetam essa degradação elétrica é um importante passo para a tecnologia do SiC. A primeira parte deste trabalho teve como objetivo compreender o efeito de parâmetros de oxidação (pressão de oxigênio e tempo de oxidação) no crescimento térmico de filmes de dióxido de silício sobre substratos de carbeto de silício. As oxidações foram realizadas em ambiente rico em 18O2 e a influência na taxa de crescimento térmico dos filmes de Si18O2 e nas espessuras das regiões interfaciais formadas entre o filme dielétrico e o substrato foram investigadas utilizando análises por reação nuclear. Para correlacionar as modificações nas propriedades investigadas com as propriedades elétricas das amostras, estruturas metal-óxidosemicondutor foram fabricadas e levantamento de curvas corrente-voltagem e capacitânciavoltagem foi realizado. Com isso, pretendeu-se melhor compreender a origem da degradação elétrica gerada pela oxidação térmica no SiC. Observou-se que a taxa de crescimento térmico dos filmes de SiO2 depende de um parâmetro dado pelo produto do tempo de oxidação e da pressão de oxigênio, para as condições testadas. O deslocamento da tensão de banda plana com relação ao valor ideal mostrou-se igualmente dependente desse parâmetro, indicando que uma maior degradação elétrica na região interfacial SiO2/SiC ocorrerá conforme o filme fica mais espesso devido ao aumento dos parâmetros investigados. Não observaram-se modificações nas espessuras da região interfacial SiO2/SiC e na tensão de ruptura dielétrica dos filmes de SiO2 atribuídas aos parâmetros de oxidação testados. Na segunda parte deste trabalho, visando minimizar a degradação elétrica da região interfacial SiO2/SiC gerada pela oxidação térmica do SiC, propôs-se crescer termicamente, em uma condição mínima de oxidação, um filme muito fino e estequiométrico de SiO2, monitorado por espectroscopia de fotoelétrons induzidos por raios X. Para formar filmes mais espessos de SiO2 e poder fabricar estruturas MOS, depositaram-se filmes de SiO2 por sputtering. As espessuras e estequiometria dos filmes depositados foram determinadas por espectrometria de retroespalhamento Rutherford com ou sem canalização. As estruturas MOS em que o filme fino de SiO2 foi crescido termicamente antes da deposição apresentaram menor deslocamento da tensão de banda plana com relação ao valor ideal e maior tensão de ruptura dielétrica do que as amostras em que o filme foi apenas crescido termicamente ou apenas depositado, confirmando a minimização da degradação elétrica da região interfacial SiO2/SiC pela rota proposta. O efeito de um tratamento térmico em ambiente inerte de Ar nas estruturas também foi investigado. Observou-se uma degradação elétrica na região interfacial SiO2/SiC devido a esse tratamento. Análises por reação nuclear indicaram que o filme fino crescido termicamente não permaneceu estável durante o tratamento térmico, perdendo oxigênio para o ambiente gasoso e misturando os isótopos de oxigênio do filme crescido termicamente com o do filme depositado. / Silicon carbide (SiC) is a semiconductor with adequate properties to substitute silicon in electronic devices in applications that requires high power, high frequency, and/or high temperature. Besides, a silicon dioxide (SiO2) film can be thermally grown on SiC in a similar way to that on Si, allowing that technology already used to fabricate devices based on Si to be adapted to the SiC case. However, the oxide films thermally grown on SiC present higher density of electrical defects at the SiO2/SiC interfacial region when compared to the SiO2/Si. Thus, the understanding of the origin and what parameters affect the electrical degradation is an important step to the SiC technology. The first part of this work aimed to understand the effect of oxidation parameters (oxygen pressure and oxidation time) in the thermal growth of silicon dioxide films on silicon carbide substrates. The oxidations were performed in an 18O2 rich ambient and the influence on the growth rate of the Si18O2 films and on the interfacial region thickness formed between the dielectric film and the substrate were investigated using nuclear reaction analyses. To correlate the modifications observed in these properties with modifications in the electrical properties, metal-oxide-semiconductors structures were fabricated and current-voltage and capacitancevoltage curves were obtained. The aim was to understand the origin of the electrical degradation due to the thermal oxidation of silicon carbide. It was observed that the growth rate of the Si18O2 films depends on the parameter given by the product of the oxygen pressure and the oxidation time, under the conditions tested. The flatband voltage shift with respect to the ideal value was also influenced by the same parameter, indicating that a larger electrical degradation in the SiO2/SiC interfacial region will occur as the film becomes thicker due to the increase of the values of the investigated parameters. No modifications were observed in the SiO2/SiC interfacial region thickness and in the dielectric breakdown voltage of the SiO2 films that could be attributed to the oxidation parameters tested. In the second part of this work, in order to minimize electrical degradation due to thermal oxidation of silicon carbide, a stoichiometric SiO2 film with minimal thickness was thermally grown, monitored by X-ray photoelectron spectroscopy. To obtain thicker films and to fabricate MOS structures, a SiO2 film was deposited by sputtering. The thicknesses and stoichiometries of the deposited films were determined by Rutherford backscattering spectrometry using or not the channeling geometry. The MOS structures in which a thin film was thermally grown before the deposition presented smaller flatband voltage shift and higher breakdown voltage when compared to SiO2 films only thermally grown or only deposited directly on SiC, confirming that the electrical degradation in the SiO2/SiC interfacial region was minimized using the proposed route. The effect of one thermal treatment in argon in the structures was also investigated. An electrical degradation in the SiO2/4H-SiC interface was observed. Nuclear reaction analyses indicated that the thin film thermally grown was not stable during the annealing, loosing O to the gaseous ambient and mixing O isotopes of the thermally grown film with those of the deposited film.
6

Filmes de SiO2 depositados e crescidos termicamente sobre SiC : caracterização físico-química e elétrica / SiO2 films deposited and thermally grown on SiC: Electrical and physicochemical characterization

Pitthan Filho, Eduardo January 2013 (has links)
O carbeto de silício (SiC) é um semicondutor com propriedades adequadas para substituir o silício em dispositivos eletrônicos em aplicações que exijam alta potência, alta freqüência e/ou temperatura. Além disso, um filme de dióxido de silício (SiO2) pode ser crescido termicamente sobre o SiC de maneira análoga a sobre silício, permitindo que a tecnologia já existente para a fabricação de dispositivos utilizando Si possa ser adaptada para o caso do SiC. No entanto, filmes crescidos termicamente sobre SiC apresentam maior densidade de defeitos eletricamente ativos na região interfacial SiO2/SiC que no SiO2/Si. Assim, compreender a origem e os parâmetros que afetam essa degradação elétrica é um importante passo para a tecnologia do SiC. A primeira parte deste trabalho teve como objetivo compreender o efeito de parâmetros de oxidação (pressão de oxigênio e tempo de oxidação) no crescimento térmico de filmes de dióxido de silício sobre substratos de carbeto de silício. As oxidações foram realizadas em ambiente rico em 18O2 e a influência na taxa de crescimento térmico dos filmes de Si18O2 e nas espessuras das regiões interfaciais formadas entre o filme dielétrico e o substrato foram investigadas utilizando análises por reação nuclear. Para correlacionar as modificações nas propriedades investigadas com as propriedades elétricas das amostras, estruturas metal-óxidosemicondutor foram fabricadas e levantamento de curvas corrente-voltagem e capacitânciavoltagem foi realizado. Com isso, pretendeu-se melhor compreender a origem da degradação elétrica gerada pela oxidação térmica no SiC. Observou-se que a taxa de crescimento térmico dos filmes de SiO2 depende de um parâmetro dado pelo produto do tempo de oxidação e da pressão de oxigênio, para as condições testadas. O deslocamento da tensão de banda plana com relação ao valor ideal mostrou-se igualmente dependente desse parâmetro, indicando que uma maior degradação elétrica na região interfacial SiO2/SiC ocorrerá conforme o filme fica mais espesso devido ao aumento dos parâmetros investigados. Não observaram-se modificações nas espessuras da região interfacial SiO2/SiC e na tensão de ruptura dielétrica dos filmes de SiO2 atribuídas aos parâmetros de oxidação testados. Na segunda parte deste trabalho, visando minimizar a degradação elétrica da região interfacial SiO2/SiC gerada pela oxidação térmica do SiC, propôs-se crescer termicamente, em uma condição mínima de oxidação, um filme muito fino e estequiométrico de SiO2, monitorado por espectroscopia de fotoelétrons induzidos por raios X. Para formar filmes mais espessos de SiO2 e poder fabricar estruturas MOS, depositaram-se filmes de SiO2 por sputtering. As espessuras e estequiometria dos filmes depositados foram determinadas por espectrometria de retroespalhamento Rutherford com ou sem canalização. As estruturas MOS em que o filme fino de SiO2 foi crescido termicamente antes da deposição apresentaram menor deslocamento da tensão de banda plana com relação ao valor ideal e maior tensão de ruptura dielétrica do que as amostras em que o filme foi apenas crescido termicamente ou apenas depositado, confirmando a minimização da degradação elétrica da região interfacial SiO2/SiC pela rota proposta. O efeito de um tratamento térmico em ambiente inerte de Ar nas estruturas também foi investigado. Observou-se uma degradação elétrica na região interfacial SiO2/SiC devido a esse tratamento. Análises por reação nuclear indicaram que o filme fino crescido termicamente não permaneceu estável durante o tratamento térmico, perdendo oxigênio para o ambiente gasoso e misturando os isótopos de oxigênio do filme crescido termicamente com o do filme depositado. / Silicon carbide (SiC) is a semiconductor with adequate properties to substitute silicon in electronic devices in applications that requires high power, high frequency, and/or high temperature. Besides, a silicon dioxide (SiO2) film can be thermally grown on SiC in a similar way to that on Si, allowing that technology already used to fabricate devices based on Si to be adapted to the SiC case. However, the oxide films thermally grown on SiC present higher density of electrical defects at the SiO2/SiC interfacial region when compared to the SiO2/Si. Thus, the understanding of the origin and what parameters affect the electrical degradation is an important step to the SiC technology. The first part of this work aimed to understand the effect of oxidation parameters (oxygen pressure and oxidation time) in the thermal growth of silicon dioxide films on silicon carbide substrates. The oxidations were performed in an 18O2 rich ambient and the influence on the growth rate of the Si18O2 films and on the interfacial region thickness formed between the dielectric film and the substrate were investigated using nuclear reaction analyses. To correlate the modifications observed in these properties with modifications in the electrical properties, metal-oxide-semiconductors structures were fabricated and current-voltage and capacitancevoltage curves were obtained. The aim was to understand the origin of the electrical degradation due to the thermal oxidation of silicon carbide. It was observed that the growth rate of the Si18O2 films depends on the parameter given by the product of the oxygen pressure and the oxidation time, under the conditions tested. The flatband voltage shift with respect to the ideal value was also influenced by the same parameter, indicating that a larger electrical degradation in the SiO2/SiC interfacial region will occur as the film becomes thicker due to the increase of the values of the investigated parameters. No modifications were observed in the SiO2/SiC interfacial region thickness and in the dielectric breakdown voltage of the SiO2 films that could be attributed to the oxidation parameters tested. In the second part of this work, in order to minimize electrical degradation due to thermal oxidation of silicon carbide, a stoichiometric SiO2 film with minimal thickness was thermally grown, monitored by X-ray photoelectron spectroscopy. To obtain thicker films and to fabricate MOS structures, a SiO2 film was deposited by sputtering. The thicknesses and stoichiometries of the deposited films were determined by Rutherford backscattering spectrometry using or not the channeling geometry. The MOS structures in which a thin film was thermally grown before the deposition presented smaller flatband voltage shift and higher breakdown voltage when compared to SiO2 films only thermally grown or only deposited directly on SiC, confirming that the electrical degradation in the SiO2/SiC interfacial region was minimized using the proposed route. The effect of one thermal treatment in argon in the structures was also investigated. An electrical degradation in the SiO2/4H-SiC interface was observed. Nuclear reaction analyses indicated that the thin film thermally grown was not stable during the annealing, loosing O to the gaseous ambient and mixing O isotopes of the thermally grown film with those of the deposited film.
7

Facile and Process Compatible Growth of High-k Gate Dielectric Materials (TiO2, ZrO2 and HfO2) on Si and the Investigation of these Oxides and their Interfaces by Deep Level Transient Spectroscopy

Kumar, Arvind January 2016 (has links) (PDF)
The continuous downscaling has enforced the device size and oxide thickness to few nanometers. After serving for several decades as an excellent gate oxide layer in complementary metal oxide semiconductor (CMOS) devices, the thickness of SiO2 layer has reached to its theoretical limits. Ultra-thin films of SiO2 can result in severe leakage currents due to direct tunneling as well as maintaining the homogeneity of the layers becomes an additional challenge. The use of a high- (HK) layer can solve these twin concerns of the semiconductor industry, which can also enhance the capacitance due to superior dielectric permittivity and reduce the leakage current by being thicker than the silicon dioxide. This thesis is concerned about the development of solution route fabricated high-k (TiO2, ZrO2 and HfO2) gate dielectrics and the investigation of high-/silicon interfaces by highly sensitive DLTS technique in MOS structures. The solution processing reduce the industrial fabrication cost and the DLTS method has the advantage to accurately measure the interface related defects parameters; such as interface trap density (Dit), capture cross-section (), activation energy (ET) and also distinguish between bulk and interface traps. In this thesis, HK films have been deposited by solution route, the material and electrical properties of the film and the HK/Si interface have been extensively evaluated. IN CHAPTER 1, we have summarized the history and evolution of transistor and it provides the background for the work presented in this thesis. IN CHAPTER 2, we have described the experimental method /technique used for the fabrication and characterization. The advantages and working principals of spin-coating and DLTS techniques are summarized. IN CHAPTER 3, we have presented the preparation and optimization of TiO2 based HK layer. Structural, surface morphology, optical electrical and dielectric properties are discussed in details. A high- 34 value is achieved for the 36 nm TiO2 films. IN CHAPTER 4, we presented the technologically relevant Si/TiO2 interface study by DLTS technique. The DLTS analysis reveals a small capture cross-section of the interface with acceptable interface state density. IN CHAPTER 5, we have focused on the fabrication of amorphous ZrO2 films on p-Si substrate. The advantage of amorphous dielectric layer is summarized as first dielectric reported SiO2 is used in its amorphous phase. The moderate-15 with low leakage current density is achieved. IN CHAPTER 6, the HfO2 films are prepared using hafnium isopropoxide and a high value of dielectric constant 23 is optimized with low leakage current density. The current conduction mechanisms are discussed in details. IN CHAPTER 7, we have probed the oxygen vacancy related sub-band-gap states in HfO2 by DLTS technique. IN CHAPTER 8, we have presented the summary of the dissertation and the prospect research directions are suggested. In summary, we have studied the group IVB transition metal elemental oxides (TMEO); TiO2, ZrO2 and HfO2 thin films in the MOS structure, as a possible replacement of SiO2 gate dielectric. For the TMEO films deposition a low-cost and simple method spin-coating was utilized. The film thicknesses are in the range of 35 – 39 nm, which was measured by ellipsometry and confirmed with the cross-sectional SEM. A rough surface of gate dielectric layer can trap the charge carrier and may cause the Fermi level pinning, which can cause the threshold voltage instabilities. Hence, surface roughness of oxide layer play an important role in CMOS device operation. We have achieved quite good flat surfaces (RMS surface roughness’s are 0.2 – 2.43 nm) for the films deposited in this work. The TiO2 based MOS gate stack shows an optimized high dielectric constant ( 34) with low leakage current density (3.710-7 A.cm-2 at 1 V). A moderate dielectric constant ( 15) with low leakage current density (4.710-9 A.cm-2 at 1 V) has been observed for the amorphous ZrO2 thin films. While, HfO2 based MOS gate stack shows reasonably high dielectric constant ( 23) with low leakage current density (1.410-8 A.cm-2 at 1 V). We have investigated the dominating current conduction mechanism and found that the current is mainly governed by space charge limited conduction (SCLC) mechanism for the high bias voltages, while low and intermediate bias voltages show the (Poole – Frenkel) PF and (Fowler – Nordheim) FN tunneling, respectively. For the HfO2 MOS device band alignment is drawn from the UPS and J-V measurements. The band gap and electron affinity of HfO2 films are estimated 5.9 eV and 3 eV, respectively, which gives a reasonable conduction band offset (1.05 eV) with respect to Si. A TMEO film suffers from a large number of intrinsic defects, which are mostly oxygen vacancies. These defects can create deep levels below the conduction band of high- dielectric material, which can act like a hole and electron traps. In addition to that, interface between Si and high- is an additional concern. These defect states in the band gap of high- or at the Si/ high- interface might lead to the threshold voltage shifts, lower carrier mobility in transistor channel, Fermi level pinning and various other reliability issues. Hence, we also studied bulk and interfacial defects present in the high- films on Si and their interface with Si by a very sensitive DLTS technique. The capture cross-sections are measured by insufficient filling DLTS (IF – DLTS). The defects present at the interface are Si dandling bond and defect in the bulk are mostly oxygen vacancies related defects present in various charge states. The interface states (Dit) are in the range of 2×1011 to 9×1011 eV-1cm-2, which are higher than the Al/SiO2/Si MOS devices (Dit in Al/SiO2/Si is the benchmark and in the order of 1010 eV-1cm-2). Still this is an acceptable value for Si/high-k (non-native oxide) MOS devices and consistent with other deposition methods. The capture cross-sections are found to be quite low in the order of 10-18 to 10-19 cm2, which indicate a minor impact on the device operation. The small value of capture cross-sections are attributed to the involvement of tunneling, to and from the bulk traps to the interface. In conclusion, the low cost solution processed high- thin films obtained are of high quality and find their importance as a potential dielectric layer. DLTS study will be helpful to reveal various interesting facts observed in high- such as resistive switching, magnetism and leakage current problems mediated by oxygen vacancy related defects

Page generated in 0.0381 seconds