• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 151
  • 40
  • 38
  • 20
  • 20
  • 10
  • 7
  • 7
  • 6
  • 6
  • 3
  • 2
  • 1
  • Tagged with
  • 410
  • 107
  • 62
  • 55
  • 48
  • 47
  • 45
  • 45
  • 44
  • 43
  • 41
  • 38
  • 38
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Desifn And Optimization Of A Mixed Flow Compressor Impeller Using Robust Design Methods

Cevik, Mert 01 September 2009 (has links) (PDF)
This is a study that is focused on developing an individual design methodology for a centrifugal impeller and generating a mixed flow impeller for a small turbojet engine by using this methodology. The structure of the methodology is based on the design, modeling and the optimization processes, which are operated sequentially. The design process consists of engine design and compressor design codes operated together with a commercial design code. Design of Experiment methods and an in-house Neural Network code is used for the modeling phase. The optimization is based on an in-house code which is generated based on multidirectional search algorithm. The optimization problem is constructed by using the inhouse parametric design codes of the engine and the compressor. The goal of the optimization problem is to reach an optimum design which gives the best possible combination of the thrust and the fuel consumption for a small turbojet engine. The final combination of the design parameters obtained from the optimization study are used in order to generate the final design with the commercial design code. On the last part of the thesis a comparison of the final design and a standard radial flow impeller is made in order to clarify the benefit of the study. The results have been showed that a mixed flow compressor design is superior to a standard radial flow compressor in a small turbojet application.
302

Physics based modeling of axial compressor stall

Zaki, Mina Adel 28 August 2009 (has links)
Axial compressors are used in a wide variety of aerodynamic applications and are one of the most important components in aero-engines. The operability of compressors is however limited at low-mass flow rates by fluid dynamic instabilities such as stall and surge. These instabilities can lead to engine failure and loss of engine power which can compromise the aircraft safety and reliability. Therefore, a better understanding of how stall occurs and the causes behind its inception is extremely important. In the vicinity of the stall line, the flow field is inherently unsteady due to the interactions between adjacent rows of blades, formation of separation cells, and the viscous effects including shock-boundary layer interaction. Accurate modeling of these phenomena requires a proper set of stable and accurate boundary conditions at the rotorstator interface that conserve mass, momentum and energy, while eliminating false reflections. As a part of this effort, an existing 3D Navier-Stokes analysis for modeling single stage compressors has been modified to model multi-stage axial compressors and turbines. Several rotor-stator interface boundary conditions have been implemented. These have been evaluated for the first stage (a stator and a rotor) of the two stage fuel turbine on the space shuttle main engine (SSME). Their effectiveness in conserving global properties such as mass, momentum, and energy across the interface, while yielding good performance predictions has been evaluated. While all the methods gave satisfactory results, a characteristic based approach and an unsteady sliding mesh approach are found to work best. Accurate modeling of the formation of stall cells requires the use of advanced turbulence models. As a part of this effort, a new advanced turbulence model called Hybrid RANS/KES (HRKES) has been developed and implemented. This model solves Menter's k--SST model near walls and switches to a Kinetic Eddy Simulation (KES) model away from walls. The KES model solves directly for local turbulent kinetic energy and local turbulent length scales, alleviating the grid spacing dependency of the length scales found in other Detached Eddy Simulation (DES) and Hybrid RANS/LES (HRLES) models. Within the HRKES model, combinations of two different blending functions have been evaluated for blending the near wall model to the KES model. The use of realizability constraints to bound the KES model parameters has also been studied for several internal and external flows. The current methodology is used in the prediction of the performance map for the NASA Stage 35 compressor configuration as a representative of a modern compressor stage. The present approach is found to satisfactory predict the onset of stall. It is found that the rotor blade tip leakage vortex and its interaction with the shock wave is mainly the reason behind the stall inception in this compressor stage.
303

Pastato aprūpinimo energija galimybių tyrimas / Possibility Study of Energy Supply for Building

Navickaitė, Agnė 27 June 2008 (has links)
Baigiamajame magistro darbe nagrinėjamos decentralizuoto (paskirstytojo) generavimo ir atsinaujinančių energijos išteklių panaudojimo sprendimai, aprūpinant pastatą įvairia energija – šiluma, vėsa, karštu vandeniu, elektra. Energija aprūpinama panaudojant tokius įrenginius – kogeneratorių, kompresorinę ir absorbcinę šaldymo mašinas, saulės kolektorius, dujinį katilą. Apibūdinami pasirinkti įrenginiai, jų veikimo principai, savybės, atskleidžiami jų privalumai ir trūkumai. Parengiamos trys alternatyvių variantų principinės energijos sistemų schemos, suformuotos iš minėtų įrenginių derinių. Pristatomi šių alternatyvių įvairios eneregijos gaminimo variantų galios ir energijos kiekių rodikliai. Parenkamas optimalus naujų technologijų derinys. Alternatyvių variantų ekonominis pagrįstumas įvertinamas, parenkant optimalų energijos generatorių derinį atsižvelgiant į jų bendrą atsiperkamumą. Apibendrinus teorines žinias ir gautus skaičiavimo rezultatus, pateikiamos baigiamojo darbo išvados ir pasiūlymai. Darbą sudaro 6 dalys: įvadas, teorin�� dalis, analizinė dalis, ekonominė dalis, išvados ir pasiūlymai, literatūros sąrašas. Darbo apimtis – 61 psl. teksto be priedų, 34 iliustr., 11 lent., 46 literatūros šaltiniai. Atskirai pridedami darbo priedai. / Solutions of decentralized (distributed) production and application of renewable energy sources in the case of different energy - like heating, cooling, hot water, electricity - supply for a building were analyzed in the final master thesis work. Energy supply sources are cogenerator, compressor and absorption cooling machines, solar collectors, gas boiler. Selected devices, their principles of work, characteristics, their advantages and disadvantages were described. Three schemes of principal energy system alternative were described, using combinations of devices mentioned above. Power and energy amount indexes of different energy generating alternatives were specified. The optimal combinations of new technologies were selected. After the optimal combination of energy generating system was done, economical validity of alternatives were estimated taking into account their total payback time. After theory and received results were summarized, the conclusions and suggestions were presented in the end of the final master work. Work consists of 6 parts: introduction, theory, analysis part, economical part, conclusions and suggestions, literature source. Size of Work: 61 pages of text excluding the appendixes, 34 pictures, 11 tables, 46 literature sources. Appendixes of the work are attached separately.
304

Experimental analysis of the unsteady flow and instabilities in a high-speed multistage compressor

Courtiade, Nicolas 22 November 2012 (has links) (PDF)
The present work is a result of collaboration between the LMFA (Laboratoire de Mécanique des Fluides et d'Acoustique, Ecole Centrale de Lyon - France), Snecma and the Cerfacs. It aims at studying the flow in the 3.5-stages high-speed axial compressor CREATE (Compresseur de Recherche pour l'Etude des effets Aérodynamique et TEchnologique - rotation speed: 11543 RPM, Rotor 1 tip speed: 313 m/s), designed and built by Snecma and investigated at LMFA on a 2-MW test rig. Steady measurements, as well as laser velocimetry, fast-response wall static and total pressure measurements have been used to experimentally investigate the flow. The analysis focuses on two main aspects: the study of the flow at stable operating points, with a special interest on the rotor-stator interactions, and the study of the instabilities arising in the machine at low mass flow rates.The description of the unsteady flow field at stable operating points is done through measurements of wall-static pressure, total pressure and velocity, but also total temperature, entropy and angle of the fluid. It is shown that the complexity and unsteadiness of the flow in a multistage compressor strongly increases in the rear part of the machine, because of the interactions between steady and rotating rows. Therefore, a modal analysis method developed at LMFA and based on the decomposition of Tyler and Sofrin is presented to analyze these interactions. It is first applied to the pressure measurements, in order to extract the contributions of each row. It shows that all the complex pressure interactions in CREATE can be reduced to three main types of interactions. The decomposition method is then applied to the entropy field extracted from URANS CFD calculations performed by the Cerfacs, in order to evaluate the impact of the interactions on the performance of the machine in term of production of losses.The last part of this work is devoted to the analysis of the instabilities arising in CREATE at low mass flows. It shows that rotating pressure waves appear at stable operating points, and increase in amplitude when going towards the surge line, until reaching a critical size provoking the onset a full span stall cell bringing the machine to surge within a few rotor revolutions. The study of these pressure waves, and the understanding of their true nature is achieved through the experimental results and the use of some analytical models. A precise description of the surge transient through wall-static pressure measurements above the rotors is also provided, as well as a description of a complete surge cycle. An anti-surge control system based on the detection of the amplitude of the pressure waves is finally proposed.
305

Experimental investigation of corner stall in a linear compressor cascade

Ma, Wei 15 February 2012 (has links) (PDF)
In applied research, a lack of understanding of corner stall, i.e. the three-dimensional (3D) separation in the juncture of the endwall and blade corner region, which has limited the efficiency and the stability of compressors. Both Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) still need to be calibrated for turbomachinery applications. In the fundamental research of the turbulent boundary layer (TBL), there are a lot of findings of the effects of curvature and pressure gradients, which also play an important role in physics of corner stall. The purpose of this thesis is (i) to carry out an experiment in a cascade, (ii) to gain a database that could be used to calibrate both RANS and LES, and (iii) to give some basic explanations of corner stall through investigating the TBL on the suction side at the mid-span which is more complex than those in the basic investigations but simpler than those in a real engine. A detailed and accurate experiment of 3D flow field through a linear compressor cascade has been set up. Experimental data were acquired for a Reynolds number of 3.82×10 ^5 based on blade chord and inlet flow conditions. Measurements have been achieved by hot-wire anemometry, pressure taps on blade and endwall, five-hole pressure probe, oil visualization, 2D particle image velocimetry (PIV),and two-component laser Doppler anemometry (LDA). An original and complete database was thus obtained. The TBL on the suction side at mid-span was investigated. The wall-normal negative pressure gradient restrains the separation, on the contrary to its influence in the corner stall. The streamwise adverse pressure gradient can be responsible for the development of Reynolds stresses. The remarkable phenomenon at measurement stations near the trailing edge of blade is that an inflection point occurs in each profile of the mean streamwise velocity. At this inflection point, the magnitudes of the Reynolds stresses reach their maximum values, and the direction of energy diffusion also changes. The velocity field in the corner stall was presented. Bimodal histograms of velocity exist in the experiment. The bimodal points mainly appear in the region around the mean interface of separated flow and non-separated flow. At a bimodal point the local two velocity components are non-independent from each other, due to the aperiodic interplay of two basic modes in the flow field. Two modes were proposed to interpret the physics of bimodal behaviour.
306

Development of a dynamic centrifugal compressor selector for large compressed air networks in the mining industry / Johan Venter.

Venter, Johan January 2012 (has links)
Various commercial software packages are available for simulating compressed air network operations. However, none of these software packages are able to dynamically prioritise compressor selection on large compressed air networks in the mining industry. In this dissertation, a dynamic compressor selector (DCS) will be developed that will actively and continuously monitor system demand. The software will ensure that the most suitable compressors, based on efficiency and position in the compressed air network, are always in operation. The study will be conducted at a platinum mine. Compressed air flow and pressure requirements will be maintained without compromising mine safety procedures. Significant energy savings will be realised. DCS will receive shaft pressure profiles from each of the shafts’ surface compressed air control valves. These parameters will be used to calculate and predict the compressed air demand. All pipe friction losses and leaks will be taken into account to determine the end-point pressure losses at different flow rates. DCS will then prioritise the compressors of the compressed air network based on the overall system requirement. This software combines the benefits of supply-side and demand-side management. Potential energy savings with DCS were proven and compressor cycling reduced. A DCS user-friendly interface was created to easily set up any mine’s compressed air network. / Thesis (MIng (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2013
307

Development of a dynamic centrifugal compressor selector for large compressed air networks in the mining industry / Johan Venter.

Venter, Johan January 2012 (has links)
Various commercial software packages are available for simulating compressed air network operations. However, none of these software packages are able to dynamically prioritise compressor selection on large compressed air networks in the mining industry. In this dissertation, a dynamic compressor selector (DCS) will be developed that will actively and continuously monitor system demand. The software will ensure that the most suitable compressors, based on efficiency and position in the compressed air network, are always in operation. The study will be conducted at a platinum mine. Compressed air flow and pressure requirements will be maintained without compromising mine safety procedures. Significant energy savings will be realised. DCS will receive shaft pressure profiles from each of the shafts’ surface compressed air control valves. These parameters will be used to calculate and predict the compressed air demand. All pipe friction losses and leaks will be taken into account to determine the end-point pressure losses at different flow rates. DCS will then prioritise the compressors of the compressed air network based on the overall system requirement. This software combines the benefits of supply-side and demand-side management. Potential energy savings with DCS were proven and compressor cycling reduced. A DCS user-friendly interface was created to easily set up any mine’s compressed air network. / Thesis (MIng (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2013
308

Three-dimensional Design And Analysis Of A Compressor Rotor Blade

Ozgur, Cumhur 01 August 2005 (has links) (PDF)
Three-dimensional design and three-dimensional CFD analysis of a compressor rotor stage are performed. The design methodology followed is based on a mean line analysis and a radial equilibrium phase. The radial equilibrium is established at a selected number of radii. NACA 65 series airfoils are selected and stacked according to the experimental data available. The CFD methodology applied is based on a three-dimensional, finite difference, compressible flow Euler solver that includes the source terms belonging to rotational motion. The accuracy of the solver is shown by making use of two different test cases. The CFD solution of the designed geometry predicts the static pressure rises and flow turning angles to a good degree of accuracy.
309

Modelagem numérica do escoamento em válvulas automáticas de compressores pelo Método da Fronteira Imersa

Rodrigues, Tadeu Tonheiro [UNESP] 30 August 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:23:38Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-08-30Bitstream added on 2014-06-13T20:30:31Z : No. of bitstreams: 1 rodrigues_tt_me_ilha.pdf: 2332044 bytes, checksum: 6e277868f01ea21a46dfbf5c827109a7 (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Fundação de Ensino Pesquisa e Extensão de Ilha Solteira (FEPISA) / A compreensão do escoamento em válvulas de compressores herméticos alternativos é de fundamental importância para introduzir modificações no projeto delas de maneira a aumentar a performance dos compressores, e por fim, dos ciclos de refrigeração. A válvula do compressor é um dispositivo ímpar, umas vez que seu funcionamento se dá pela ação da pressão exercida pelo escoamento, caracterizando um problema de forte interação fluido- estrutura. O uso da modelagem numérica através das ferramentas da mecânica dos fluidos computacional (CFD) tem se destacado como a alternativa mais dinâmica para o estudo do fenômeno. O trabalho desenvolvido foi voltado para o estudo numérico do escoamento através do difusor radial, o qual é um modelo simplificado da válvula, com o emprego do Método da Fronteira Imersa com Modelo Físico Virtual para a modelagem do disco superior do difusor (palheta). O ponto forte desta metodologia é que a representação de regiões sólidas é feita pelo cálculo de um campo de força, o qual é introduzido nas equações das células na vizinhança do sólido. Este procedimento dispensa o uso de malhas que se adaptam ao corpo, possibilitando o uso de malhas cartesianas convencionas para modelar geometrias complexas e móveis. A metodologia foi acoplada com a solução das equações governantes do escoamento em coordenadas cilíndricas através do Método dos Volumes Finitos. Inicialmente, a metodologia foi validada, utilizando como dados de referência resultados provenientes de estudos numéricos e experimentais, e foi avaliada a influência dos parâmetros do procedimento na qualidade final dos resultados. Na segunda etapa foram desenvolvidos estudos preliminares referentes ao movimento do disco superior, com a imposição artificial dos processos de abertura e fechamento da válvula. Os resultados obtidos mostraram que a metodologia adotada... / The fully understanding of the flow through automatic valves of alternative hermetic compressors is essentiall to introduce modifications in its project aiming the improvement of the compressor performance and, also, the refrigeration cycle. The compressor valve is a singular device, once its operation is ruled by the flow pressure, characterizing a case with a strong fluid-structure interaction. The using of numerical tools trough the methods of computational fluid dynamics (CFD) has gained especial attention due to its flexibility to study the phenomenon. The present work was developed to study numerically the flow through the radial diffuser, which is a simplified model of the valve, with the employment of the Immersed Boundary Method with Virtual Physical Model to modeling the superior disk (valve reed). The main advantage of this methodology is that the modeling of solid boundaries is performed with the calculus of a force field, which is introduced in the cells equations nearby the solid. This procedure dispenses the using of body-fitted meshes, enabling the adoption of conventional Cartesian meshes to model complex and moving geometries. The methodology was coupled with the solution of the governing equations in cylindrical coordinates though the Finite Volume Method. Firstly, the methodology was validated, confronting the results obtained with data from numerical and experimental studies, where the influence of the main parameters in the quality of the final results was evaluated. In the second step were developed preliminary studies concerning the movement of the superior disk, whose opening and closing movements were artificially imposed. The results obtained showed that the adopted methodology is quit promising and flexible, and can be employed in more refined studies to the comprehension of the flow through the valve regarding the fluid-structure interaction that rules the problem
310

Investigação numérica e experimental do escoamento em válvulas de compressores herméticos

Anhê Junior, Sérgio Antônio [UNESP] 28 June 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:23:39Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-06-28Bitstream added on 2014-06-13T20:30:31Z : No. of bitstreams: 1 anhejunior_sa_me_ilha.pdf: 2550289 bytes, checksum: 4299d702522bdb3a4b51de625099c77e (MD5) / Fundação de Ensino Pesquisa e Extensão de Ilha Solteira (FEPISA) / O presente trabalho refere-se à investigação experimental e numérica do escoamento em difusores radiais, que são usados como modelos de representação de sistemas de válvulas de compressores de refrigeração. Uma bancada experimental é projetada, construída e validada para medir a distribuição de pressão, sobre o disco frontal de um difusor radial de razão de diâmetro 3, para números de Reynolds de 1500 a 9000 e afastamento entre os discos frontal e anterior variando de 0,415mm a 0,705mm aproximadamente. Paralelamente, desenvolve-se um código computacional, baseado na metodologia de Volumes Finitos para malhas desencontradas, para simular o escoamento na geometria do difusor radial. O código computacional é primeiramente validado por meio dos resultados experimentais obtidos da bancada construída. Após sua validação, o código é usado para analisar o escoamento em um difusor de razão de diâmetro igual a 1,4, para números de Reynolds variando de 500 a 2500 e afastamento entre discos na fixa de 0,125 a 1,0mm. Os resultados numéricos mostram o surgimento de recirculação extendendo-se em toda região do difusor. Além disso, os resultados de perfil de pressão sobre o disco frontal fornecem forças e quedas totais de pressão no difusor que aumentam com o número de Reynolds e afastamento entre disco. Esse comportamento produz um ponto de mínima área efetiva de força localizado na faixa de , para números de Reynolds variando de 500 a 1500. Para número de Reynolds mais elevados, , a área efetiva de força sempre aumenta com o aumento do afastamento entre discos. A área efetiva de escoamento, outro parâmetro de interesse para a simulação do compressor, apresenta um crescimento linear com o afastamento entre discos, independentemente do número de Reynolds avaliado. / In this work, an experimental and numerical investigation of the flow in radial diffusers representing the valve system of refrigeration compressor is accomplished. An experimental bench is designed, build, and validated allowing the measurement of the pressure distribution on the frontal disk surface of a radial diffuser with diameter ratio equal to 3, for Reynolds number varying from 1500 to 9000 and distances between disks in the ranges of 0.415 to 0.705mm. In addition, a computational code based on the Finite Volume Methodology for staggered mesh is developed in order to simulate the flow though the radial diffuser. The computational code is firstly validated by using the experimental data obtained from the experimental bench. After its validation, the code is used for analyzing the flow through a radial diffuser with diameter ratio equal to 1.4, for Reynolds numbers varying from 500 to 2500 and distance between disks in the range of 0.125 a 1.0 mm. The numerical results showed recirculation regions extending through the whole diffuser for the majority of the analyzed cases. The pressure profiles on the frontal disk surface produce forces and total pressure drops through the diffuser that increase with both Reynolds number and distance between disks. There is a minimum effective force area in the range of , for Reynolds numbers varying from 500 a 1500. For higher Reynolds numbers, , the effective force area always increases for increasing distance between disks. The effective flow area, another parameter used for simulating the compressor, increases linearly with the distance between disks, independently of the Reynolds number.

Page generated in 0.058 seconds